Super EvaGreen (20×水溶液)使用说明

合集下载

阿尔新蓝染液(固核红)(pH2.5)使用说明书

阿尔新蓝染液(固核红)(pH2.5)使用说明书


货号
品名
包装
HCY128A
阿尔新蓝染液(pH2.5)
100mL
HCY128B
核固红染液
100mL
说明书
1份
1
3)对于培养细胞
用 4%多聚甲醛固定 10 min 以上;PBS 洗涤 2×2 min。
2. 阿尔新蓝染液
对于上述处理好的样品
1) 将切片置于阿尔新蓝染液(pH2.5)中 30min;
2) 流动的自来水冲洗 2min,蒸馏水漂洗;
3) 用核固红染液复染 5min;
4) 流动的自来水冲洗 1min,蒸馏水漂洗;
5) 脱水、透明后,用树脂封片剂封片。
结果
粘蛋白类染为亮蓝;核染为红色。
注意事项
1. 需自备 4%多聚甲醛、梯度乙醇、二甲苯,中性树胶或其它封片剂。
2. 进一步鉴定酸性粘蛋白,需要使用其他 pH 值的染液。
3.第一次使用本试剂盒时建议先取 1~2 个样品做预实验。
温馨提示
为了您的自身安全,使用试剂前,请做好防护,如穿实验服,戴手套等。
增加。强酸性粘液物质将被染成蓝色,核染成粉红色到红色。阿尔新蓝染液的 pH 值为 2.5,
可对结肠切片进行染色。
使用说明
1.样品处理
1)对于石蜡切片
二甲苯中脱蜡 2×3~5min。无水乙醇 5 min、90%乙醇 2 min、70%乙醇 2 min、PBS 漂洗 2 min。
2)对于冰冻切片
PBS 漂洗 2 min。
杭州昊鑫生物科技股份有限公司
htpp://
阿尔新蓝染液(固核红)(pH2.5)
阿尔新蓝染液(Alcian Blue staining solution)

雷德诺水溶氧化氢抗溅液-精品(乳胶)安全数据表说明书

雷德诺水溶氧化氢抗溅液-精品(乳胶)安全数据表说明书

P280 P264
Wear protective gloves, protective clothing,eye protection,face protection. Wash face, hands and any exposed skin thoroughly after handling.
P210 Keep away from heat, sparks, open flames, hot surfaces - No smoking.
111-42-2
ETHYLENE OXIDE
75-21-8
*The exact percentage (concentration) of composition has been withheld as a trade secret.
Weight %* 10-20 1-10 <1
<0.0001
March 23, 2019
Section 3: Composition and Information on Ingredients
SUBSTANCES:
Chemical Name
CAS-No
DIMETHYLETHER
115-10-6
NONYLPHENOXYPOLYETHOXYETHANOL
127087-87-0
DIETHANOLAMINE
Radnor Water Based Anti-Spatter - Premium (Aerosol)
Anti-Spatter Prevents Spatter Build Up in Welding Operations 64000111 042R Radnor 259 North Radnor - Chester Road - Suite 100 Radnor, PA, 19087-5283 866-734-3438 March 23 Regulated Hazardous / Regulated

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Pellicon 超滤(UF) 浓稠化(DF)操作指南说明书

Notice: The information in this document is subject to change without notice and should not be construed as a commitment by Merck Millipore or an affiliate. Neither Merck Millipore nor any of its affiliates assumes responsibility for any errors that may appear in this document.Introduction .........................................................................................................................................3Objectives, Methods and Materials ...............................................................................................4Installation ...........................................................................................................................................6Pre-use Flushing Procedure ............................................................................................................7Normalized Water Permeability (NWP) Measurement ............................................................9Determination of System Hold-up Volume..............................................................................11System Equilibration ......................................................................................................................12Determination of Optimum TMP ................................................................................................13Concentration ..................................................................................................................................14Diafiltration ......................................................................................................................................15Recovery Operations ......................................................................................................................17Clean In Place (CIP) ........................................................................................................................19Post CIP Normalized Water Permeability Measurement .....................................................20Storage ...............................................................................................................................................21Appendix 1: Diafiltration Buffer Volume Requirements (22)Pellicon ® Ultrafiltration (UF)/ Diafiltration (DF) Operations Protocol GuideIntroductionObjectives of a UF/DF StudyThe objectives of a UF/DF study include determination of cassette capacity (volume/area) and sizing estimations for large volume processing of a given feed stream.Methods of a UF/DF StudyFeed StreamThe feed stream used in the study should be as representative (as possible) to the actual process (temperature, concentration, density, etc.). Initial and filtrate (post-testing) samples should be taken and tested for product recovery.MaterialsPellicon® 3 88 cm2 Cassettes with Ultracel® MembranePellicon® 3 88 cm2 Cassettes with Biomax® MembranePellicon® 2 Mini Cassettes with Ultracel® MembraneObjectives, Methods and Materials AccessoriesAdditional Ordering Information1.1 Set up system per general arrangement drawing. In principle, the tubing lengths should be minimized so as to minimize the working volume of the system. This enhances the ability to reach higher concentrations and lowersnon-recoverable volumes (recovery loss).1.2 The permeate (or filtrate) pressure gauge may be omitted in standard UF operation since there should not be any filtrate pressure in this line.1.3 Install the membrane as per the installation guide included in the membrane device box. Silicone gaskets areincluded in the Pellicon® 2 Device Box and must be used with the Pellicon® 2 membranes to achieve a proper device to holder seal. Pellicon® 3 devices (mini and micro) have gaskets that are integral to the device that make the device to holder seal.1.3.1 When working with micro (0.88cm 2) devices the required torque might be lower than the specification. If during the flushing procedure a high feed pressure (≥14psig) is observed loosen the membrane fromthe holder and re-torque to 140 in-pounds.3-Way Figure 1.UF/DF SystemGeneral Arrangement2.1 Pellicon® devices come from the factory pre-wet with preservative solution that must be removed beforeprocessing product. See Table 1 for flush volume recommendations.2.2 Arrange the system flowpath into the Single-Pass Filtrate Open mode (SPFO) as shown in Figure 2.2.3 Fill the feed vessel with the required purified water volume from Table 1.3-Way Figure 2.Single-Pass Filtrate Open mode (SPFO) ArrangementTable 1.Sanitization Solution and Flushing VolumeMethods2.4 Set the retentate Valve to fully open. Set the pump to supply 5 LMM (L/min/m 2) feed flow rate.2.5 Start the pump and monitor the feed pressure gauge. The pressure should stabilize to between 5-14 psig. If the pressure is outside this guideline, re-check the installation and torque wrench settings.2.6 Set the retentate pressure to 5 psig so as to ensure that the membrane is being fully flushed. Continue until the volume in the feed vessel is minimized, then stop the pump. Do not entrain air into the system.2.7 See Table 1 and add required volume of sanitization solution, to the feed vessel. Set the system in ‘Single Pass’ flow path. Start thepump to displace the water from the lines and the internal volume of the membrane to avoid dilution. When the sanitization solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.8 Set the system flowpath to the total recycle mode (Figure 3). Fill the vessel with required volume of sanitization solution,see Table 1.2.9 Recirculate at 5 LMM feed flowrate for 30-60 min. Set the retentate pressure to ~5 psig to ensure CIP (Clean-In-Place) of the full membrane area.2.10 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again andpump the feed vessel out to the receiver vessel. When CIP solution level in the feed vessel had been minimized, stop the pump before air is entrained into the system.2.11 Fill the feed vessel with purified water and start the pump. Flush the system to drain back to neutral pH. A microcassette basedsystem will require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range.Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.Figure 3.Total Recycle Mode3.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining air into the system.3.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psig and the retentate pressure to read 5 psig.3.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to the UFconcentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.3.4 Calculate the Normalized Water Permeability of the membrane using the following formulas:Equation 1J = Qp/AWhere: J= Volumetric Flux (L/M 2/Hr) Qp = permeate flow rate in L/hrA =Area of the membrane device(s)andEquation 2NWP = J * F /Transmembrane pressure (TMP)Where: NWP = Normalized Water Permeability (L/M 2/Hr/psid) J= Volumetric Flux (L/M 2/Hr) F = Temperature Correction FactorTMP = Transmembrane pressure (P feed + P ret )/2 – Pperm (pressure drop across the membrane in psid)3-Way Figure 4.Concentration ModeNormalized Water Permeability (NWP) MeasurementTemperatureF TemperatureFTemperatureF*Based on Water Fluidity Relative to 25°C (77°F) Fluidity Value F= (μT°C /μ25°C) or (μT°F/μ77°F)3.5 This is now the baseline permeability of the device. Record this value in the experimental notebook or runsheet.Table 2. Normalized Water Permeability Temperature Correction Factor (F)*4.1 Set the retentate valve to fully open. Adjust the feedflow to 5 LMM and reduce the volume in the feed vessel to just above the vessel discharge. Stop the system pump.4.2 Obtain a suitable container to capture the remaining volume in the system (50 mL tube for a microcassette based system). Record the tare weight of the container. Set the system feed rate to 2-3 LMM.4.3 Set the system flowpath to the recovery mode (Figure 5). Close the permeate isolation valve. Start the pump and collect all of the remainingliquid in the system into the sample container.4.4 Weigh the gross weight of the container and record the net weight of container and convert this to volume. Add 5 mL to the amount to calculate the total hold-up volume in the system for a micro-cassette based system. Add 31 mL to the amount to calculate the total hold upvolume for a mini-cassette based system.3-Way Figure 5.Recovery Mode5.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.5.2 Fill the feed vessel with the equilibration buffer volume (see recommended volumes in Table 1).5.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 3 working volumes into the receiver.5.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode. Start the pump, set retentate pressure to 5psi,and operate in total recycle for ~5 min.=20 psig,5.5 Stop the pump and reset the system in to the SPFO mode. Set the Transmembrane pressure of the system to ~15 psid (e.g., PfeedP=10 psig). Start the pump and reduce the volume in the feed vessel to just above the vessel discharge. Do not withdraw too much liquid retfrom the feed vessel and entrain air into the system. Stop the pump. Open the retentate valve to full open. The system now has just the hold-up volume of buffer in it and is ready to accept the protein feed.5.6 Add the feed to the feed vessel. The total system volume = amount of feed added + the hold-up volume. The total system volume isconsidered Vo and is used to calculate concentration factor, diafiltration number, etc.6.1 Set the system flowpath to the total recycle mode (Figure 3).6.2 Start the agitator. The agitator should spin fast enough to cause a slight depression in the surface of the liquid in the vessel. The agitator should be monitored during the process and never be allowed to vortex the liquid and entrain air or cause foaming.6.3 Set the feedflow to 5 LMM. Allow the system to operate in the total recycle mode for ~5 minutes with the retentate valve fully open. Record temperature, Feed pressure, Retentate pressure and elapsed time. 6.4 Measure the permeate flowrate by redirecting the permeate line to a receiver on a balance or by collecting in a graduate cylinder. Measure thevolume (mass) for 1 min. Record the volume and calculate flux.6.5 Manipulating the retentate valve, increase the Transmembrane pressure by 5 psid. The TMP should increase but the DP (P feed -P ret ) should remain constant (see the example in Table 3).6.6 Repeat this measurement until the membrane flux becomes insensitive with the change in TMP. Reduce the TMP to and re-measure 1-2 of the flux measurements. If they are different by greater than 10% the membrane may have become polarized or fouled. Generally, avoid operating too far into the flux insensitive region.6.6.1 If polarization has occurred a depolarization step is recommended. To achieve this, lower the flow rate to ~10% of the operating feed flow rate and let the system run in total recycle for a minimum of 5 minutes. After the time has elapse re-measure the flux and compare to the original value. If the re-measured flux continues to differ by more than 20% the membrane may be fouled. At this point it is likelythat the flux can only be restored by stopping the experiment and cleaning. (See section 9 for more on depolarization)6.7 The optimum TMP is found by selecting a pressure slightly below the “knee” of the flux vs. TMP curve. In the example the knee of the curve is23-24 psid (Figure 7). The optimum TMP at this concentration is 20 psid.6.8 The Optimum TMP experiment may be repeated at an intermediate concentration and at the final concentration or just the final concentrationto find an over-all process TMP optimum.V o l u m e t r i c F l u x (L M H )Transmembrane Pressure (Psid)302520151050Figure 6.Flux and TMP Excursion Example at 5 LMMTable 3.Flux Excursion Data7.1 Determine the required permeate volume needed to be collected to achieve the target concentration.Equation 3 Vp = Vsi - (Vs i x Conc i / Conc T )Where:= Initial System Volume (Feed Volume + Hold-up Volume)VsiConc= Initial Concentrationi= Target ConcentrationConcTVp = Target Permeate Volume7.2 Zero the balance and set the system flowpath to concentration mode and start the pump and the timer.7.3 Set the TMP to the previously determined optimum TMP. Record time, temperature, the pressures and the permeate weight.7.4 As the concentration step progresses, the feed pressure (and TMP) may rise due to viscosity increase as a function of concentration. Adjust theretentate valve to hold TMP constant. The retentate valve may be fully open before the concentration step is finished. Adjust the pump to hold TMP constant. At higher concentrations the viscosity may become so high, it is not possible to control TMP with the pump. This is aconcentration end point for the fluid & membrane pair. If a higher concentration is still desired, it may be necessary to select a more open screen type.7.5 Once the concentration target is reached, open the retentate valve to full open. Stop the pump and close off the permeate isolation valve.8.1 Arrange the system flowpath to the Vacuum Diafiltration mode (Figure 8).8.1.1 If creating a vacuum is not possible with the equipment being used a second pump can be used to draw the DF buffer into the retentate vessel. The flowrate on the DF buffer pump must be set to match the flowrate of the permeate line. Adjustments to the flowrate of the DF buffer pump might be necessary throughout the process. This will ensure that the concentration within the system remains constantthroughout the diafiltration step.8.2 The amount of diavolumes used for purification of a target impurity is usually selected as the minimum amount of diavolumes required to achieve the purity target, plus a 2 diavolume safety factor. For example, if 6 diavolumes are required to achieve the purity target, then 8 diavolumes are used in the DF step. 1 diavolume is equivalent to the amount of fluid in the system (Vf+Vh-Vp). The number of diavolumes, N required for purification can be calculated by the following equation. Alternatively the figure in Appendix 1 can be used.Equation 4Cf = Ci e-S*NWhere: Cf = Final concentration of solute being diafiltered out Ci = Initial concentration of solute being diafiltered out S = sieving/passage coefficient = C permeate/C retentate)N = Number of diavolumesThe target permeate volume required to achieve the number of calculated diavolumes can be determined using equation 5.Equation 5N*Vs = VpWhere: N = Number of diavolumesVs = Volume in the system post concentrationVp = Target permeate volumeFigure 7.Vacuum Diafiltration ModeDiafiltration8.3 Mark the level in the vessel with a marker or piece of lab tape to be sure that the volume remains constant during diafiltration. Obtaina container with the required amount of DF buffer. Attach the DF line to the feed vessel. Cap off the vessel and pull a vacuum on thevessel headspace with a syringe to prime the diafiltration line.8.4 Start the pump. Adjust the TMP to match the TMP at the end of the concentration step. Record temperature, Feed pressure,Retentate pressure temperature, elapsed time and permeate weight (volume).8.5 When the diafiltration target volume has been reached, open the retentate valve, stop the pump, stop the agitator and close thepermeate isolation valve.9.1 The first step in the recovery operation is depolarization of the membrane. Polarization is a concentration gradient that occurs due to convective transport of protein towards the membrane wall. The depolarization step is recirculation under low feedflow and TMP conditions with the permeate isolation valve shut. Running with the permeate isolation valve closed can give rise to reverse pressure within the device. Limit the ΔP to </=20 psid for Pellicon® 3 devices and </=10 psid for Pellicon® 2 devices.9.2 Arrange the system flowpath to the Depolarization mode (Figure 8) by closing the permeate isolation valve, setting the retentate valve fullyopen and starting the pump. Operate the pump at low feedflow rates – low enough to avoid the ΔP limits outline in step 9.1.9.3 Recirculate the system in the depolarization mode for 5-10 min. Stop the pump after the recirculation time limit.9.4 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9. Pump the protein product out at low ΔP into an appropriate sized container. When air bubbles appear stop the pump. Do not allow the protein product to foam.9.5 Add to the feed vessel 1 minimum working volume of buffer. Start the pump and recover this pool separately in container. As before, when air bubbles appear stop the pump. Do not allow the protein product to foam. Add this buffer chase pool to the recovery pool to increase recovery if the pool can tolerate dilution.9.6 Set the system into the total recycle mode (Figure 3). Add to the feed vessel 1-2 diavolumes of buffer to the system. Set the retentate valve to fully open. Set the feed flowrate to 2-3 LMM and recirculate for 5-10 min.9.7 Set the system flowpath to the blowdown/recovery mode as shown in Figure 9 (next page). Pump the recirculated buffer out at low ΔP intoan appropriate sized container. When air bubbles appear stop the pump.3-Way Figure 8.Depolarization ModeRecovery Operations3-WayFigure 9.Recovery Mode10.1 Add 200-300 mL of recommended CIP / Sanitization (Table 1) solution to the feed vessel. Set the system flowpath to the total recyclemode (Figure 3).10.2 Recirculate at 5 LMM feed flowrate for 30-60 min. Set TMP to approximately 15psid.10.3 Stop the pump after the CIP time interval. Return the system flowpath to the SPFO mode (Figure 2). Start the pump again and pump the feedvessel out to the receiver vessel.10.4 Add purified water to the feed vessel and start the pump. Flush the system to drain back to neutral pH. A microcassette based systemwill require approximately 1 L of purified water. Monitor pH with a meter or pH paper that sensitive in the neutral range. Check both retentate and permeate lines separately to ensure the system is truly back to neutral pH. Stop the pump.11.1 Add additional purified water to the feed vessel if necessary to ensure that the NWP measurement can be made without entraining airinto the system.11.2 Set the system flowpath to the total recycle mode. Start the pump and manipulating the feedflow, set the system feed pressure to read 10 psigand the retentate pressure to read 5 psig.11.3 Allow the system to recirculate for a minute or two. Measure the temperature of the feed vessel contents. Set the system flowpath to theUF concentration mode (Figure 4) and measure the change in mass over an elapsed time of 1 min, to find the permeate flowrate.11.4 Calculate the post CIP Normalized Water Permeability as we did in Section 3 using equations 1 and 2.11.5 Compare the Base-line NWP to the post CIP NWP. The Post CIP NWP should be >/= 80% of the Base-line NWP. (Post Post NWP/Base-lineNWP * 100%). If the comparison is less than 80%, then the membrane can be re-cleaned. CIP at an elevated temperature may be more effective at restoring NWP. NWP is a single indicator of membrane cleaning success. Data such as batch to batch process time, product quality and carryover studies should be used to determine criteria for successful membrane CIP processes.12.1 Arrange the system flowpath into the Single-Pass, Filtrate Open mode (Figure 2). Open the permeate isolation valve.12.2 Fill the feed vessel with 4 diavolumes of 0.1N NaOH solution.12.3 Set the pump to supply 5 LMM feed flow rate. Set the retentate pressure to 5 psig by restricting retentate flow with the retentate valve.Collect ~ 2 diavolumes into the receiver.12.4 Fully open retentate valve, then stop the pump and place the system into the total recycle mode (Figure 3).12.5 Start the pump, recirculate the remaining 2 diavolumes at 5 LMM for 5-10 min. Set TMP to approximately 15 psid.12.6 Remove membrane and store in 0.1N NaOH in a 2-8º C refrigerator.% S o l u t e R e m a i n i n g# of Diafiltration VolumesSolute Remaining vs. # of Diafiltration Volumes% Solute Passed = 100 - % Solute1001010.1Figure 10.Solute remaining versus number of diafiltration volumes To Place an Order or Receive Technical AssistanceIn Europe, please call Customer Service: France: 0825 045 645Germany: 01805 045 645Italy: 848 845 645Spain: 901 516 645 Option 1 Switzerland: 0848 645 645United Kingdom:***********For other countries across Europe, please call: +44 (0) 115 943 0840Or visit: /offices For Technical Service visit:/techserviceMerck Millipore, the M logo, Ultracel, Biomax, Labscale and Pellicon are registered trademarks of Merck KGaA, Darmstadt, Germany.Masterflex and StableTemp are registered trademarks of Cole-Palmer Instrument Company. Luer-Lok is a trademark of Becton Dickinson.MICROMETER is a registered trademark of RMFPT, Inc.Nalgene is a registered trademark of Nalge Nunc International Corporation.Lit No. RF1159EN00 Ver. 3.0 4/2016© 2016 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.。

sybgreen说明书

sybgreen说明书

终浓度 1× 0.2 μM*1 0.2 μM*1 1×
PCR Forward Primer(10 μM) PCR Reverse Primer(10 μM) ROX Reference Dye(50×)or ROX Reference Dye II(50×)*2 DNA 模板*3 dH2O(灭菌蒸馏水) Total 范围内调整引物浓度。
● 操作方法
*请按照不同仪器的操作手册提供的方法操作。 ◆ 应用 Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System 和 StepOnePlusTM Real-Time PCR System 的操作方法 1. 按下列组份配制 PCR 反应液(反应液配制请在冰上进行) 。 试剂
● 试剂盒原理
本制品使用了 TaKaRa Ex Taq HS 进行 PCR 扩增,通过检测反应液中 SYBR® Green I 的荧光强度,达 到监控 PCR 产物扩增量的目的。 1. PCR PCR 法是以微量 DNA 进行目的片段扩增的方法。通过 DNA 链的热变性、引物退火、DNA 聚合酶作 用下引物的延伸三个步骤循环往复,可在短时间内扩增 DNA 达 100 万倍以上。 本制品中的 DNA 聚合酶由于使用了 TaKaRa Ex Taq HS,从而抑制在调制反应液等低温条件下由引 物产生的非特异性退火或引物二聚体引起的非特异性扩增,大大提高 PCR 扩增灵敏度。 2. 嵌合荧光检测法 SYBR® Green I 与双链 DNA 结合后发出荧光,所以可以通过检测反应体系中的 SYBR® Green I 荧 光强度,达到检测 PCR 产物扩增量的目的。 具体原理见下图。通过 PCR 反应生成双链 DNA,SYBR® Green I 与双链 DNA 结合发出荧光,通过 检测 PCR 反应液中的荧光信号强度,可以对目的基因进行准确定量,同时还可以测定扩增的目的 DNA 片段的融解温度。

软骨染色液(阿利新蓝法,pH2.5)说明书

软骨染色液(阿利新蓝法,pH2.5)说明书
软骨染色液(阿利新蓝法,pH2.5)利用染液的不同 pH 值可区分粘液物质的类属,pH 为 1 时, 羧基(COOH)不着色,硫酸基(OSO3H)着色;pH 为 2.5 时,羧基染色良好而硫酸粘液着色不佳, 使硫酸黏蛋白和唾液黏蛋白着色。该试剂仅用于科研领域,不适用于临床诊断或其他用途。
产品组成:
产品名称 软骨染色液(阿利新蓝法,pH2.5)
软骨染色液(阿利新蓝法,pH2.5)说明书
本产品仅供体外研究使用,不得用于临床诊断
产品简介: 阿利新蓝(Alcian)又称爱先蓝或阿尔辛蓝等,是一种类铜钛花青共轭染料,最初用于纺织纤 维染色,这种阳离子染料与酸性基团结合,也即阿利新蓝与组织内含有的阴离子基团如羧基 和硫酸根形成不溶性复合物,阿利新蓝由中央含铜的酞菁环与四个异硫脲基通过硫醚键相连 而成,该异硫脲基呈中度碱性,使阿利新蓝带阳离子。pH 值为 2.5 时,组织内的羧基电离, 带有一个负电荷,与阿利新蓝中的阳离子形成盐键,使带有羧基的酸性黏液物质(硫酸黏蛋 白和唾液黏蛋白)染色;pH 值为 1.0 时,组织内的硫酸根电离,带有一个负电荷,与阿利 新蓝中的阳离子形成盐键,使带有硫酸根的组织(如硫酸黏液物质)染色。
试剂(A): Alcian 酸化液 试剂(B): Alcian 染色液(pH2.5)
规格 2×50ml
50ml 50ml
保存条件 RT RT RT
说明书 1份 1份 1份
有效期 1年 1年 1年
自备材料: 1、系列乙醇 2、蒸馏水
操作步骤(仅供参考): 1、常规脱钙,二甲苯或 脱蜡透明液脱蜡,通过梯度乙醇后,入蒸馏水再水化。 2、入 Alcian 酸化液浸泡 3min。 3、入 Alcian 染色液染色 30min。 4、流水冲洗 5min。 5、梯度乙醇脱水,二甲苯或 脱蜡透明液透明,中性树胶封片。

水乙二醇抗燃液压液使用说明

水乙二醇抗燃液压液使用说明

水一乙二醇抗燃液压液概述??? 在工业生产中,许多设备的液压系统是工作在火焰、高温或熔融金属的附近。

日常的泄漏或管道、接头的破裂等突发事件时有发生。

在这种情况下,以传统的矿物基液压油做为传动介质,使火焰的危险时刻伴随着生产过程,对设备及操作人员的生命安全构成严重的威胁。

火灾事故所造成的损失难以估量。

??? 宜兴市德利冶金设备有限公司生产的DL水一乙二醇抗燃液压液是一种由水、乙二醇、润滑剂、气液相防锈剂和消泡剂等多种专用添加剂配制而成的,具有抗燃特性的液压介质。

适宜的粘度、良好的润滑特性、高的粘度指数及好的化学稳定性等近似于矿物油的特性,使水一乙二醇抗燃液压液被广泛用于冶金、机械、矿山以及舰船等工业领域。

一、产品使用范围??? 随着现代工业的发展,液压设备的使用越来越普遍。

在液压设备中起传递动力作用的液压介质过去主要是矿物质基液压油,但矿物质液压油的最大缺陷就是易燃,由于矿物液压油从高压管路中喷出以及矿物液压油从设备中泄漏到附近的高温物体或被周围的明火引燃而引发火灾事故可以说屡见不鲜的。

??? 水一乙二醇抗燃液压液的发明应用给液压设备的使用的企业扫去了火灾隐患的阴影。

由于水一乙二醇抗燃液压液具有优异的抗燃性和很长的使用寿命等许多突出的优点,因而在国内外冶金、矿山、机械、化工及铸造等许多行业得到了越来越广泛的使用。

为企业的人员和设备安全、维护环境以及保护生产的顺利进行发挥了重要作用。

??? 目前国内外使用水一乙二醇抗燃液压液的主要设备有:冶金行业的连铸机(钢回转台、钢包车、液压剪、滑动水口、翻钢机、推钢机等)铸锭设备(钢包滑动水口、脱锭吊车等);转炉烟罩升降;电炉(炉盖和电极升降、炉体倾动等),高炉(炉顶液压站、泥泡等);炼焦炉(炉门、推焦机、装煤机、拦焦机等),轧钢机(热轧设备);煤碳和矿山行业的连续采煤机、矿井液压支架、钻车、凿岩机、挖掘机、巷道运输机械、联轴节、变矩器等。

??? 铁合金行业的矿热炉(电极升降等);有色金属行业的铝材、铜材生产设备(挤压机压铸机等);机械行业和铸锻设备(锻压机、铸造机等);化工行业的高温反应釜等;建材行业和各种高温窑炉,玻璃给料成型设备等,汽车行业的自动电焊机等。

EvaGreenqPCR染料

EvaGreen qPCR 染料适于qPCR 和HRM 最佳(没有之一)荧光染料图1. EvaGreen® dye binds to dsDNA via a “release-on-demand”mechanism.图2. EvaGreen无毒,无致突变性,对水生生物无危害性。

EvaGreen 是一种用于实时定量PCR (qPCR )的DNA 结合染料。

该染料的诸多优点使它远胜于SYBR Green I 。

除了有相似的光谱特性,EvaGreen 有三个主要特点使它区别于SYBR Green I 。

首先,EvaGreen 对PCR 的抑制性远小于SYBR Green I 。

因此,使用EvaGreen 进行的qPCR 实验可以使用快速PCR 步骤。

同时,EvaGreen 在实验中可以使用较高的浓度,从而获得远强于SYBR Green I 扩增信号(图3)。

较高浓度的EvaGreen 也消除了“染料重分布”的缺陷,使EvaGreen 既可用于多重PCR ,也可用于高分辨率(高清晰)熔解曲线分析(HRM )(图4 )。

该分析正被越来越多的用于PCR 后的基因分型和异源双链分析。

由于SYBR Green I 对PCR 的抑制性,从而要求其使用浓度必须很低,因此SYBR Green I 无法解决由低浓度造成的染料重分布问题,既不能用于多重PCR 也不能用于HRM 。

同时,染料重分布问题也可能影响常规熔解曲线的可靠性,因为低熔点的DNA 链可能由于这种原因而无法检测到。

特性:极高的灵敏度∙在推荐浓度下使用时可以获得最强的PCR 扩增信号。

PCR 抑制性极小∙智能化的“按要求释放”DNA 结合技术使得EvaGreen 对PCR 的抑制远小于SYBR GreenI 。

和快速PCR 兼容∙对PCR 干扰极小,从而极大的缩短了PCR 延伸时间。

非常适合HRM 分析∙无“染料重分布”缺陷,兼容PCR 后的高分辨率熔解曲线(HRM )分析。

环保型除藻剂使用说明书

万消灵牌环保型除藻剂【规格】1KG/瓶【产品特点】1、使用本品时,不会导致池水产生泡沫。

2、本品能自然降解,对人体及环境无害。

3、本品不含硫酸铜或络合铜。

4、本品配伍性好。

5、使用浓度低,药效持续时间长。

6、溶解性好,与水完全混溶。

7、适用范围广,pH值在3~10对杀菌灭藻效果均无影响。

8、本品为双阳离子杀藻剂,较普通的阳离子杀藻剂功效强一倍。

【产品说明】本品是一种国际上公认的广谱、高效、低毒、非氧化性新型杀藻剂,对游泳池、温泉、桑拿、SPA常见细菌、真菌、藻类等具有很强的抑制和杀灭作用。

【适用范围】适用于游泳池、温泉、SPA、桑拿池藻类、菌类的杀灭。

【使用方法】当池水出现藻类时,将本品稀释1-5倍后泼洒于池面,作用时间8-12小时,即可完全杀灭藻类,建议本品添加量为8克/吨水,用户可视池水藻类生长严重程度酌情增减用量。

投加本品半小时后,再投放万消灵牌消毒片,效果更佳。

本品作为水质维护使用时,可预防池水藻类生长(使用方法同上),建议每月投加1-3次、一般500吨水使用1瓶。

与万消灵牌消毒片等强氧化型杀菌剂同时使用。

效果更佳。

该产品还有澄清功能,配合万消灵牌酵素澄清剂一起使用时,协助提高澄清度。

【有效期】18个月【注意事项】1、不得口服,置于儿童不易触及处。

2、本品对人的皮肤及眼睛有较强的刺激作用,使用时应注意,不要接触皮肤。

若不慎溅入眼内,可用大量清水或稀亚硫酸氢钠溶液冲洗,严重时应立即送医院处理。

3、本品溶于水后反应剧烈,在接触本产品时,必须做好防护。

南宁市万消灵消毒药业有限公司。

铵基酸水溶肥料一喷绿使用说明书

铵基酸水溶肥料一喷绿使用说明书含氨基酸水溶肥料-一喷绿-稼得宝生物
黄叶变绿叶●小叶变大叶
弱苗变壮苗●病叶变健叶
保花又保果
产品特点:
果树蔬菜在生长过程中经常会出现黄叶症状,应该说是一种生理性的病态,但原因很多,本品溶合多种造成黄叶的原因,创造产品。

本品内含作物生长所需要的多肽蛋白酶、氨基酸、多种丰富的微量元素。

辅以数种天然植物生长素及抑菌剂精心熬合,用后能迅速植物抗逆因子,补充营养,促进细胞愈合,加快细胞分裂,提高作物对养分的吸收和运转能力,增强光合作用,提高叶绿素含量。

对作物的黄叶,新叶发黄有很好的防治作用。

产品功效:
使用本品提高吸收养分效率,增强光合作用,提高作物对气候和环境变化的适应能力,迅速变绿,小叶变大叶,黄叶变绿叶,薄叶变厚叶,植株健壮,提前作物采收时间,膨果靓果着色,延长采收期和保鲜期。

使用本品,增强作物的抗病虫害能力,对缺素引起的烂根、死苗、不生新根、花打顶、瓜打顶、花而不实、花果畸形等症状,及低温弱光高温干旱、阴雨涝害水伤药害、肥伤、干热风等造成的生长障碍,快速修复作物受损细胞,调节正常。

适用作物:
黄瓜、丝瓜、甜瓜、西瓜、西红柿、辣椒、茄子、芸豆、苹果、梨、桃、大樱桃、草莓、大姜、大蒜各种经济作物及花卉粮食作物。

使用方法及用量
使用本品800-1000倍液均匀喷施于叶片,喷施叶面正反面,喷至刚刚滴水为好。

在作物整个生长期(苗期、生长期、花前期、果实膨大期)均可喷施。

BMF 环保浓缩去污剂-20L 化学品安全技术说明书

版本4.0修订日期:2019-08-21SDS编号:250556-00002前次修订日期: 2018-11-16最初编制日期: 2015-02-251. 化学品及企业标识产品名称: BMF环保浓缩去污剂-20L产品代码: 0893 118 3制造商或供应商信息制造商或供应商名称: 伍尔特(中国)有限公司地址: 上海浦东新区康桥东路1159弄51号5 号楼邮编:201315电话号码: ************应急咨询电话: *************电子邮件地址: *******************推荐用途和限制用途推荐用途: 清洁剂清洁剂2. 危险性概述紧急情况概述外观与性状: 液体颜色: 黄色气味: 特征的可能造成皮肤过敏反应。

造成严重眼损伤。

对水生生物有害。

GHS危险性类别严重眼睛损伤/眼睛刺激性: 类别 1皮肤过敏: 类别 1急性(短期)水生危害: 类别 3GHS标签要素象形图:版本4.0修订日期:2019-08-21SDS编号:250556-00002前次修订日期: 2018-11-16最初编制日期: 2015-02-25信号词: 危险危险性说明: H317可能造成皮肤过敏反应。

H318造成严重眼损伤。

H402对水生生物有害。

防范说明:预防措施:P261避免吸入烟雾或蒸气。

P272受沾染的工作服不得带出工作场地。

P273避免释放到环境中。

P280戴防护手套/戴防护眼罩/戴防护面具。

事故响应:P302 + P352如皮肤沾染:用水充分清洗。

P305 + P351 + P338 + P310如进入眼睛:用水小心冲洗几分钟。

如戴隐形眼镜并可方便地取出,取出隐形眼镜。

继续冲洗。

立即呼叫急救中心/医生。

P333 + P313如发生皮肤刺激或皮疹:求医/就诊。

P362+P364脱掉沾污的衣服,清洗后方可重新使用。

废弃处置:P501将内装物/容器送到批准的废物处理厂处理。

物理和化学危险根据现有信息无需进行分类。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Super EvaGreen(20×水溶液)使用说明
货号:S7270-5
规格:1mL×5
产品说明:
Super EvaGreen是一种用于实时定量PCR(qPCR)的DNA结合染料。

该染料的诸多优点使它远胜于SYBR Green I。

除了有相似的光谱特性,Super EvaGreen有三个主要特点使它区别于SYBR Green I。

首先,Super EvaGreen对PCR的抑制性远小于SYBR Green I。

因此,使用Super EvaGreen 进行的qPCR实验可以使用快速PCR步骤。

同时,Super EvaGreen在实验中可以使用较高的浓度,从而获得远强于SYBR Green I扩增信号。

较高浓度的Super EvaGreen也消除了“染料重分布”的缺陷,使Super EvaGreen既可用于多重PCR,也可用于高分辨率(高清晰)熔解曲线分析(HRM)。

该分析正被越来越多的用于PCR后的基因分型和异源双链分析。

由于SYBR Green I对PCR的抑制性,从而要求其使用浓度必须很低,因此SYBR Green I无法解决由低浓度造成的染料重分布问题,既不能用于多重PCR也不能用于HRM。

同时,染料重分布问题也可能影响常规熔解曲线的可靠性,因为低熔点的DNA链可能由于这种原因而无法检测到。

第二,Super EvaGreen的稳定性极强。

在正常的储存、操作和PCR过程中不会被破坏。

在缓冲溶液中的染料可以安全的储存在室温或冰箱里,也可以反复冻融。

与之相反,SYBR Green I不稳定而且降解后对PCR抑制性更强。

第三:Super EvaGreen降低了细胞膜透性,因而比SYBR Green1更加安全。

独立实验室的测试结果显示,Super EvaGreen既没有诱变性也没有细胞毒性。

相反,虽然SYBR Green I 本身诱变性很弱,但它在细胞中可能抑制了正常DNA的修复机制,使其有诱变增强作用。


虑到PCR的广泛使用,其安全性应该足够重视。

应用范围:实时定量PCR、高分标率溶解曲线。

使用方法:
1.如下建立实验体系:
名称体积
10×的无镁离子聚合酶缓冲液5μL
50mM MgCl2 2.5μL
2mM dNTP5μL
20×Super EvaGreen 2.5μL
Taq DNA polymerase1-5units
Primers0.1-1μM
dH2O to a final volume of50μL 2.执行实时定量PCR程序,采集荧光信号。

相关文档
最新文档