高中数学必修二期末测试题一及答案
高中数学必修二 期末模拟卷01(含答案)

期末模拟试卷1一、单项选择题1. 若复数(1)(z m m i m =+-∈)R 的虚部为1,则z 在复平面对应的点的坐标为()A. (2,1)-B. (2,1)C. (2,1)-D. ( 2.1)--【答案】A 【解析】 【分析】本题考察复数的概念,共轭复数和复数的几何意义,属于基础题. 根据虚部为1求出m ,再根据共轭复数定义写出答案. 【解答】 解:(1)()z m m i m R =+-∈的虚部为1,11m ∴-=得2m =,所以2z i =+,2z i =-,故z 在复平面对应的点的坐标为(2,1)-, 故答案选.A2. “幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是()A. 7B. 7.5C. 8D. 9【答案】C 【解析】 【分析】本题考查一组数据的百分数问题,属于基础题.把该组数据从小到大排列,计算680%⨯,从而找出对应的第80百分位数; 【解答】解:该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=, 故选:.C3. 设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是()A. 若//a α,//b α,则//a bB. 若a α⊥,//a b ,则b α⊥C. 若a α⊥,b a ⊥,则//b αD. 若//a α,b a ⊥,则b α⊥【答案】B 【解析】 【分析】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. 利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解. 【解答】解:若//a α,//b α,则a 与b 相交、平行或异面,故A 错误; 若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确; 若a α⊥,b a ⊥,则//b α或b α⊂,故C 错误;若//a α,b a ⊥,则//b α,或b α⊂,或b 与α相交,故D 错误. 故选:.B4. 在平行四边形ABCD 中,BE =13BC ,DF =12DC ,则EF = A. -23B. -12+23C.13-34D. -13+34【答案】B 【解析】【分析】本题考查平面向量的加减运算,属于基础题.利用向量的加法表示出EF ,再利用共线转化可得到答案. 【解答】解:因为13BE BC =,12DF DC =, 所以2112.3223EF EC CF BC CD AB AD =+=+=-+故答案选.B5. 已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为()A.3B. C.23π D. 2π【答案】A 【解析】 【分析】本题主要考查圆的面积、周长、圆锥的侧面积及体积等知识点,考查运算求解能力,属于基础题型.设圆锥的底面半径为r ,高为h ,母线为l ,根据其表面积为3π,得到23rl r +=,再由它的侧面展开图是一个半圆,得到2r l ππ=,联立求得半径和高,利用体积公式求解. 【解答】解:设圆锥的底面半径为r ,高为h ,母线为l , 因为其表面积为3π,所以23rl r πππ+=,即23rl r +=,又因为它的侧面展开图是一个半圆, 所以2r l ππ=, 即2l r =,所以1,2,r l h ====所以此圆锥的体积为211.33V r h ππ=== 故选:.A6. 《史记》中讲述了田忌与齐王赛马的故事,其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马,若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.56B.23C.13D.16【答案】C 【解析】 【分析】本题考查古典概型,是基础题.本题先将所有的基本事件都列出来共9种,再将田忌的马获胜的事件选出共3种,最后计算概率即可. 【解答】解:设田忌的上等马为1A ,中等马为:2A ,下等马为3A , 齐王的上等马为1B ,中等马为:2B ,下等马为3B , 双方各自随机选1匹马进行1场比赛产生的基本事件为:11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,31A B ,32A B ,33A B ,共9种;其中田忌的马获胜的事件为:12A B ,13A B ,23A B ,共3种, 所以田忌的马获胜的概率为:31.93P == 故选:.C7. 雕塑成了大学环境不可分割的一部分,有些甚至能成为这个大学的象征,在中国科学技术大学校园中就有一座郭沫若的雕像.雕像由像体AD 和底座CD 两部分组成.如图,在Rt ABC 中,70.5ABC ︒∠=,在Rt DBC 中,45DBC ︒∠=,且 2.3CD =米,求像体AD 的高度()(最后结果精确到0.1米,参考数据:sin 70.50.943︒≈,cos70.50.334︒≈,tan 70.5 2.824)︒≈A. 4.0米B. 4.2米C. 4.3米D. 4.4米【答案】B 【解析】 【分析】本题考查解三角形的实际应用中的高度问题的求解,属于基础题. 在Rt BCD 和Rt ABC 中,利用正切值可求得AC ,进而求得.AD 【解答】解:在Rt BCD 中, 2.3(tan CDBC DBC==∠米),在Rt ABC 中,tan 2.3 2.824 6.5(AC BC ABC =∠≈⨯≈米),6.5 2.3 4.2(AD AC CD ∴=-=-=米).故选:.B8. 如图,在平面直角坐标系xOy 中,原点O 为正八边形12345678PP P P P P P P 的中心,18PP x ⊥轴,若坐标轴上的点(M 异于点)O 满足j 0(i OM OP OP ++=其中1,8i j ,且i 、*)j N ∈,则满足以上条件的点M 的个数为()A. 2B. 4C. 6D. 8【答案】D 【解析】 【分析】本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题. 分点M 在x 、y 轴进行分类讨论,可得出点i P 、j P 关于坐标轴对称,由此可得出点M 的个数. 【解答】解:分以下两种情况讨论:①若点M 在x 轴上,则i P 、()*j 1,8,,P i j i j N∈关于x 轴对称,由图可知,1P 与8P 、2P 与7P 、3P 与6P 、4P 与5P 关于x 轴对称, 此时,符合条件的点M 有4个;②若点M 在y 轴上,则i P 、()*j 1,8,,P i j i j N∈关于y 轴对称,由图可知,1P 与4P 、2P 与3P 、5P 与8P 、6P 与7P 关于y 轴对称, 此时,符合条件的点M 有4个.综上所述,满足题中条件的点M 的个数为8. 故选:.D二、多项选择题9. 已知复数z 满足(1)2i z i -=,则下列关于复数z 的结论正确的是()A. ||z =B. 复数z 的共轭复数为1z i =--C. 复平面内表示复数z 的点位于第二象限D. 复数z 是方程2220x x ++=的一个根【答案】ABCD 【解析】 【分析】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【解答】解:因为(1)2i z i -=,所以22(1)2211(1)(1)2i i i i z i i i i +-+====-+--+,所以||z ==A 正确;所以1z i =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)222220i i i i -++-++=--++=,所以D 正确. 故选:.ABCD10. 某市教体局对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则下面叙述正确的是()A. 样本中女生人数多于男生人数B. 样本中B 层人数最多C. 样本中E 层次男生人数为6人D. 样本中D 层次男生人数多于女生人数【答案】ABC 【解析】 【分析】本题考查了统计图表,意在考查学生的计算能力和应用能力. 根据直方图和饼图依次判断每个选项的正误得到答案. 【解答】解:样本中女生人数为:924159360++++=,男生数为1006040-=,A 正确; 样本中A 层人数为:94010%13+⨯=;样本中B 层人数为:244030%36+⨯=;样本中C 层人数为:154025%25+⨯=;样本中D 层人数为:94020%17+⨯=; 样本中E 层人数为:34015%9+⨯=;故B 正确; 样本中E 层次男生人数为:4015%6⨯=,C 正确;样本中D 层次男生人数为:4020%8⨯=,女生人数为9,D 错误. 故选:.ABC11. 已知事件A ,B ,且()0.5P A =,()0.2P B =,则下列结论正确的是()A. 如果B A ⊆,那么()0.2P A B =,()0.5P AB = B. 如果A 与B 互斥,那么()0.7P A B ⋃=,()0P AB = C. 如果A 与B 相互独立,那么()0.7P A B ⋃=,()0P AB = D. 如果A 与B 相互独立,那么()0.4P AB =,()0.4P AB =【答案】BD 【解析】 【分析】本题考查在包含关系,互斥关系,相互独立的前提下的和事件与积事件的概率,是基础题.A 选项在B A ⊆前提下,计算出()0.5P AB =,()0.2P AB =,即可判断;B 选项在A 与B 互斥前提下,计算出()0.7P A B ⋃=,()0P AB =,即可判断;C 、D 选项在A 与B 相互独立前提下,计算出()0.7P A B ⋃=,()0.1P AB =,()()()0.4P AB P A P B =⋅=,()()()0.4P AB P A P B =⋅=,即可判断.【解答】解:A 选项:如果B A ⊆,那么()0.5P AB =,()0.2P AB =,故A 选项错误;B 选项:如果A 与B 互斥,那么()0.7P A B ⋃=,()0P AB =,故B 选项正确;C 选项:如果A 与B 相互独立,那么()0.7P A B ⋃=,()0.1P AB =,故C 选项错误;D 选项:如果A 与B 相互独立,那么()()()0.4P AB P A P B =⋅=,()()()0.4P AB P A P B =⋅=,故D 选项正确.故选:.BD12. 如图,正方体ABCD A B C D -''''的棱长为1,则下列四个命题正确的是()A. 若点M ,N 分别是线段A A ',A D ''的中点,则//MN BC 'B. 点C 到平面ABC D ''的距离为2C. 直线BC 与平面ABC D ''所成的角等于4πD. 三棱柱AA D BB C ''-''的外接球的表面积为3π【答案】ACD 【解析】 【分析】本题考查命题真假的判断,通过线线平行、点到面的距离、线面角,以及外接球的知识点来考查,解题时要注意空间思维能力的培养,是中档题. A 选项:通过平行的传递性得到结论;B 选项:根据点C 到平面ABCD ''的距离为CE ,进一步得到答案;C 选项:根据直线BC 与平面ABCD ''所成的角为CBC ∠',进一步得出结论; D 选项:根据三棱柱AA D BB C ''-''的外接球的半径为正方体ABCD A B C D -''''体对角线的一半,进一步得到答案.【解答】解:A 选项:若点M ,N 分别是线段A A ',A D ''的中点,则//MN AD '又//BC AD '' 所以//MN BC ',故A 正确;B 选项:连接CB '交BC '于点E ,由题易知点C 到平面ABCD ''的距离为CE ,正方体ABCD A B C D -''''的棱长为1,22CE ∴=,故B 错误;C 选项:易知直线BC 与平面ABCD ''所成的角为CBC ∠',4CBC π∴∠'=,故C 正确;D 选项:易知三棱柱AA D BB C ''-''的外接球的半径为正方体ABCD A B C D -''''体对角线的一半,3R ∴= ∴表面积为2234=4=32R πππ⎛⎫ ⎪ ⎪⎝⎭,故D 正确.故选:.ACD三、填空题13. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =__________.【答案】2π 【解析】 【分析】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦,属于基础题.根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得.A【解答】解:cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得.2A π= 故答案为:.2π14. 已知数据1x ,2x ,3x ,…,n x 的平均数为10,方差为2,则数据121x -,221x -,321x -,…,21n x -的平均数为__________,方差为__________.【答案】198【解析】【分析】本题考查了平均数与方差的计算,考查了运算求解能力,属于基础题.由题意结合平均数公式和方差公式计算即可得解.【解答】 解:由已知条件可得12310n x x x x n++++=, ()()()()2222123101010102n x x x x n -+-+-++-=,所以数据121x -、221x -、321x -、、21n x -的平均数为()()()()12321212121n x x x x x n -+-+-++-=()12321210119n x x x x n++++=-=⨯-=,方差为 ()()()()222212322119211921192119n x x x x s n --+--+--++--⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦=()()()()2222123220*********n x x x x n -+-+-++-=22221234[(10)(10)(10)(10)]428n x x x x n-+-+-++-==⨯=,故答案为:19;8.15. 已知||3a =,||2b =,(2)(3)18a b a b +⋅-=-,则a 与b 的夹角为__________.【答案】3π 【解析】 【分析】本题考查运用向量数量积的定义与运算求向量的夹角,是基础题.先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为.3π 【解答】解:||3a =,2b =,22||9a a ∴==,22||4b b ==,||||cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,(2)(3)18a b a b +⋅-=-,22696cos ,6418a a b b a b ∴-⋅-=-<>-⨯=-,整理得:1cos ,2a b <>=, a ∴与b 的夹角为:.3π 故答案为:3π16. 如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是__________.【答案】34【解析】【分析】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出二面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【解答】解:取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =,所以,二面角V AB C --的平面角为VOC ∠, 由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为3.4故答案为:3.4四、解答题17. 已知向量(2,1)a =,(3,1).b =-(1)求向量a 与b 的夹角;(2)若(3,)()c m m R =∈,且(2)a b c -⊥,求m 的值【答案】解:()(1)2,1a =,()3,1b =-,()23115a b ∴⋅=⨯+⨯-=,由题得2||21a =+2||3(b =+=设向量a 与b 的夹角为θ,则5cos 2||||5a b a b θ⋅===⨯, []0,θπ∈,所以4πθ=, 即向量a 与b 的夹角为.4π ()(2)2,1a =,()3,1b =-,()24,3a b ∴-=-,()2a b c -⊥,()20a b c ∴-⋅=,()3,c m =,()4330m ∴-⨯+=,解得 4.m =【解析】本题考查了向量的夹角公式,向量的坐标运算和向量的垂直的条件,属于中档题.(1)根据向量的坐标运算和向量的夹角公式即可求出.(2)根据向量的坐标运算先求出()24,3a b -=-,再由垂直的条件得到()4330m -⨯+=,解得即可.18. 已知a 、b 、c 分别为ABC 三个内角A 、B 、C 的对边,且a =1c =,2.3A π=(1)求b 及ABC 的面积S ;(2)若D 为BC 边上一点,且,______,求ADB ∠的正弦值.从①1AD =,②6CAD π∠=这两个条件中任选一个,补充在上面问题中,并作答. 【答案】解:(1)由余弦定理得2222cos a b c bc A =+-, 整理得260b b +-=, 0b >,2b ∴=,1133sin 212222S bc A ∴==⨯⨯⨯=; (2)选①,如下图所示:在ABC 中,由正弦定理得2sin sin 3AC BC B π=∠, 可得2sin213sin 7AC B BC π∠==, 在ABD 中,AD AB =,则ADB B ∠=∠,21sin sin ADB B ∴∠=∠=选②,在ABC 中,由正弦定理得2sin sin 3AB BC C π=∠, 可得2sin213sin AB C BC π∠== 由于C ∠为锐角,则257cos 1sin 14C C ∠=-∠=,6ADB C π∠=∠+, sin sin ()6ADB C π∴∠=∠+ 31sin cos 22C C =∠+∠ 32115727+.2142147=⨯⨯= 【解析】本题考查利用正、余弦定理解三角形以及三角形面积的计算,同时也考查了三角恒等变换,考查计算能力,属于中档题.(1)利用余弦定理可得出关于b 的二次方程,可解出b 的值,进而可求得ABC 的面积S ;(2)选①,在ABC 中,利用正弦定理可求得sin B ∠的值,再由AD AB =可得出ADB B ∠=∠,进而可求得ADB ∠的正弦值;选②,利用正弦定理求得sin C ∠的值,由同角三角函数的基本关系可求得cos C ∠,再利用两角和的正弦公式可求得sin ADB ∠的值.19. 在四面体A BCD -中,点E ,F ,M 分别是AB ,BC ,CD 的中点,且2BD AC ==,1.EM =(1)求证://EF 平面ACD ;(2)求异面直线AC 与BD 所成的角.【答案】解:(1)由题意,点E ,F 分别是AB ,BC 的中点,所以//EF AC , 因为EF ⊂/平面ACD ,AC ⊂平面ACD ,所以//EF 平面ACD ;(2)由(1)知//EF AC ,因为点F ,M 分别是BC ,CD 的中点,可得//FM BD ,所以EFM ∠即为异面直线AC 与BD 所成的角(或其补角).在EFM 中,1EF FM EM ===,所以EFM 为等边三角形,所以60EFM ︒∠=, 即异面直线AC 与BD 所成的角为60.︒【解析】本题主要考查了线面平行的判定与证明,以及异面直线所成角的求解.(1)由点E ,F 分别是AB ,BC 的中点,得到//EF AC ,结合线面平行的判定定理,即可求解;(2)由(1)知//EF AC 和//FM BD ,得到EFM ∠即为异面直线AC 与BD 所成的角,在EFM 中,即可求解.20.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为123,,234,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.【答案】解:(1)记“甲队总得分为3分”为事件A,记“甲队总得分为1分”为事件B,甲队得3分,即三人都回答正确,其概率为()2228 33327P A=⨯⨯=,甲队得1分,即三人中只有1人回答正确,其余两人都答错,其概率为()2222222222(1)(1)(1)(1)(1)(1). 3333333339P B=⨯-⨯-+-⨯⨯-+-⨯-⨯=∴甲队总得分为3分与1分的概率分别为827,2.9(2)记“甲队得分为2分”为事件C,记“乙队得分为1分”为事件D,事件C即甲队三人中有2人答对,其余1人答错,则()2222222224(1)(1)(1) 3333333339P C=⨯⨯-+⨯-⨯+-⨯⨯=,事件D即乙队3人中只有1人答对,其余2人答错,则()1231231231(1)(1)(1)(1)(1)(1) 2342342344P D=⨯-⨯-+-⨯⨯-+-⨯-⨯=,由题意得事件C与事件D相互独立,∴甲队总得分为2分且乙队总得分为1分的概率:()()()411.949P CD P C P D ==⨯= 【解析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B ,甲队得3分,即三人都回答正确,甲队得1分,即三人中只有1人回答正确,其余两人都答错,由此利用相互独立事件概率乘法公式能求出甲队总得分为3分与1分的概率.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D ,事件C 即甲队三人中有2人答对,其余1人答错,事件D 即乙队3人中只有1人答对,其余2人答错,由题意得事件C 与事件D 相互独立,由此利用相互独立事件概率乘法公式能求出甲队总得分为2分且乙队总得分为1分的概率.21. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,2PA AB BC ===,点D 为线段AC 的中点,点E 为线段PC 上一点.(1)求证:平面BDE ⊥平面.PAC(2)当//PA 平面BDE 时,求三棱锥P BDE -的体积.【答案】解:(1)证明:因为PA ⊥底面ABC ,且BD ⊂底面ABC ,所以.PA BD ⊥因为AB BC =,且点D 为线段AC 的中点,所以.BD AC ⊥又PA AC A =,所以BD ⊥平面.PAC又BD ⊂平面BDE ,所以平面BDE ⊥平面.PAC(2)解:因为//PA 平面BDE ,PA ⊂平面PAC ,平面PAC平面BDE ED =,所以//.ED PA因为点D 为AC 的中点,所以点E 为PC 的中点.法一: 由题意知点P 到平面BDE 的距离与点A 到平面BDE 的距离相等,所以P BDE A BDE V V --=1124E ABD E ABC P ABC V V V ---=== 111222432=⨯⨯⨯⨯⨯ 1.3= 所以三棱锥P BDE -的体积为1.3法二:因为//PA 平面BDE ,由题意知点P 到平面BDE 的距离与点A 到平面BDE 的距离相等.所以P BDE A BDE V V --=,又AC =AD =BD =1DE =,由(1)知,AD BD ⊥,又AD DE ⊥,且BD DE D ⋂=,所以AD ⊥平面BDE , 所以13A BDE BDE V AD S -=⋅1111.323=⨯= 所以三棱锥P BDE -的体积为1.3法三:又AC =AD =BD =1DE =,由(1)知:BD ⊥平面PDE ,且111222PDE S DE AD =⋅=⨯= 所以P BDE B PDE V V --=13PDE BD S =⋅11.323== 所以三棱锥P BDE -的体积为1.3【解析】本题考查面面垂直的证明,三棱锥的体积,是中档题.(1)先证明PA BD ⊥,再证明BD AC ⊥,从而证明BD ⊥平面PAC ,最后证明平面BDE ⊥平面PAC ;(2)先判断点E 为PC 的中点,再判断三棱锥P BDE -的体积等于三棱锥A BDE -的体积,最后求体积即可.22.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“33”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;()i求物理、化学、生物三科总分成绩的中位数;()ii估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【答案】解:(1)由(0.0020.00950.0110.01250.00750.0025)201a ++++++⨯=, 得0.005a =;(2)()i 因为(0.0020.00950.011)200.450.5++⨯=<,(0.0020.00950.0110.0125)200.70.5+++⨯=>,所以中位数在[220,240),设中位数为x ,所以(220)0.01250.05x -⨯=,解得224x =,所以物理、化学、生物三科总分成绩的中位数为224;()ii 这100名学生的物理、化学、生物三科总分成绩的平均数为(0.0021700.00951900.0112100.01252300.0075250⨯+⨯+⨯+⨯+⨯0.0052700.0025290)20(0.34 1.805 2.31 2.875 1.875 1.350.725)+⨯+⨯⨯=++++++20⨯11.2820225.6=⨯=(3)物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中的人数分别为:0.01252010025⨯⨯=人,0.0052010010⨯⨯=人,根据分层随机抽样可知,从成绩在[220,240)的组中应抽取25752510⨯=+人,记为,,,,a b c d e , 从成绩在[260,280)的组中应抽取2人,记为,f g ,从这7名学生中随机抽取2名学生的所有基本事件为:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a d a e a f a g b c b d b e b f b g c d c e c f c g ,(,),(,),(,),(,),(,),(,)d e d f d g e f e g f g ,共有21种,其中这2名学生来自不同组的共有10种,根据古典概型的概率公式可得所求概率为10.21【解析】本题考查了利用频率分布直方图求中位数、平均数,考查了分层抽样,考查了古典概型的概率公式,属于中档题.(1)根据7组频率和为1列方程可解得结果;(2)()i 根据前三组频率和为0.450.5<,前四组频率和为0.70.5>可知中位数在第四组,设中位数为x ,根据(220)0.01250.05x -⨯=即可解得结果;()ii 利用各组的频率乘以各组的中点值,再相加即可得解;(3)根据分层抽样可得从成绩在[220,240)的组中应抽取5人,从成绩在[260,280)的组中应抽取2人,再用列举法以及古典概型的概率公式可得解.。
高中数学必修二期末考试试卷(含答案)

高中数学必修一期末考试试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.下面多面体中有12条棱的是()A.四棱柱B.四棱锥C.五棱锥D.五棱柱2.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形3.如图,Rt△O′A′B′是一平面图的直观图,斜边O′B′=2,则这个平面图形的面积是()A.22 B.1C. 2D.2 24.如图,正方形ABCD的边长为1,CE所对的圆心角∠CDE=90°,将图形ABCE绕AE所在直线旋转一周,形成的几何体的表面积为()A.5πB.4πC.3πD.2π5.以长为8 cm,宽为6 cm的矩形的一边为旋转轴旋转而成的圆柱的底面面积为()A.64π cm2B.36π cm2C.64π cm2或36π cm2D.48π cm26.将若干毫升水倒入底面半径为2 cm的圆柱形器皿中,量得水面高度为6 cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面高度为()A.6 3 cmB.6 cmC.2318 cmD.3312 cm7.如图所示,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC 是等腰直角三角形D.△ABC 是等边三角形8.过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( ) A.316 B.916 C.38 D.9329.如图,圆锥形容器的高为h ,圆锥内水面的高为h 1,且h 1=13h ,,若将圆锥形容器倒置,水面高为h 2,则h 2等于( )A.23hB.1927hC.363h D.3193h 10.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( ) A.23 B.16 C.56 D.1311.若三棱锥的三条侧棱两两垂直,且其长度分别为1,2,3,则此三棱锥的外接球的表面积为( ) A.3π B.6π C.18πD.24π12.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛二、填空题(本大题共4小题,每小题5分,共20分)13.若一个圆台的母线长为l ,上、下底面半径分别为r 1,r 2,且满足2l =r 1+r 2,其侧面积为8π,则l =________. 14.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点.记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.15.一块正方形薄铁皮的边长为4,以它的一个顶点为圆心,剪下一个最大的扇形,用这块扇形铁皮围成一个圆锥,则这个圆锥的容积为________.(铁皮厚度忽略不计)16.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________.三、解答题(本大题共6小题,共70分)17.(10分)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.18.(12分)如图所示,在多面体FE-ABCD中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,求该多面体的体积V.19.(12分)如图所示是一个圆台形的纸篓(有底无盖),它的母线长为50 cm,两底面直径分别为40 cm和30 cm.求纸篓的表面积.20.(12分)有一盛满水的圆柱形容器,内壁底面半径为5,高为2,现将一个半径为3的玻璃小球缓慢浸没于水中.(1)求圆柱的体积;(2)求溢出水的体积.21.(12分)如图所示,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.22.(12分)如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由P沿棱柱侧面经过棱CC1到M的最短路线为29.设这条最短路线与CC1的交点为N,求:(1)该三棱柱的侧面展开图的对角线的长;(2)PC和NC的长.高中数学必修一期末考试试卷(一)答案(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.答案 A解析 ∵n 棱柱共有3n 条棱,n 棱锥共有2n 条棱,∴四棱柱共有12条棱;四棱锥共有8条棱;五棱锥共有10条棱;五棱柱共有15条棱.故选A. 2.答案 A解析 三棱锥的侧面和底面均为三角形. 3.答案 D解析 ∵Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2, ∴直角三角形的直角边长是2, ∴直角三角形的面积是12×2×2=1,∴原平面图形的面积是1×22=2 2.故选D. 4.答案 A解析 由题意知,形成的几何体是组合体:上面是半球、下面是圆柱, ∵正方形ABCD 的边长为1,∠CDE =90°, ∴球的半径是1,圆柱的底面半径是1,母线长是1,∴形成的几何体的表面积S =π×12+2π×1×1+12×4π×12=5π.5.答案 C解析 分别以长为8 cm ,宽为6 cm 的边所在的直线为旋转轴,即可得到两种不同大小的圆柱,显然C 选项正确. 6.答案 B解析 设圆锥中水的底面半径为r cm ,由题意知 13πr 2×3r =π×22×6, 得r =23,∴水面的高度是3×23=6(cm). 7.答案 C 8.答案 A解析 设球的半径为R ,所得的截面为圆M ,圆M 的半径为r . 画图可知(图略),R 2=14R 2+r 2,∴34R 2=r 2.∴S 球=4πR 2,截面圆M 的面积为πr 2=34πR 2,则所得截面的面积与球的表面积的比为34πR 24πR 2=316.故选A.9.答案 D解析 设圆锥形容器的底面积为S , 则未倒置前液面的面积为49S ,∴水的体积V =13Sh -13×49S (h -h 1)=1981Sh ,设倒置后液面面积为S ′,则S ′S =⎝⎛⎭⎫h 2h 2,∴S ′=Sh 22h2.∴水的体积V =13S ′h 2=Sh 323h 2,∴1981Sh =Sh 323h2, 解得h 2=319h3,故选D. 10.答案 C解析 易知V =1-8×13×12×12×12×12=56.11.答案 B解析 将三棱锥补成边长分别为1,2,3的长方体,则长方体的体对角线是外接球的直径,所以2R =6,解得R =62,故S =4πR 2=6π. 12.答案 B解析 米堆的体积即为四分之一的圆锥的体积, 设圆锥底面半径为r ,则14×2πr =8,得r =16π,所以米堆的体积为13×14πr 2×5≈3209(立方尺),3209÷1.62≈22(斛). 二、填空题(本大题共4小题,每小题5分,共20分) 13.答案 2解析 S 圆台侧=π(r 1+r 2)l =2πl 2=8π,所以l =2. 14.答案 14解析 如图,设点C 到平面P AB 的距离为h ,则点E 到平面P AD 的距离为12h .∵S △DAB =12S △P AB ,∴V1V2=13S△DAB·12h13S△PAB·h=13×12S△P AB·12h13S△P AB·h=14.15.答案15π3解析如图所示,剪下最大的扇形的半径即圆锥的母线长l等于正方形的边长4,扇形的弧长=14×(2π×4)=2π,即为圆锥的底面周长,设圆锥的底面半径为r,高为h,则2πr=2π,所以r=1,所以h=l2-r2=15,所以圆锥的容积为13πr2h=15π3.16.答案48 3解析设球的半径为r,则43πr3=323π,得r=2,柱体的高为2r=4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V=34×(43)2×4=48 3.三、解答题(本大题共6小题,共70分)17.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.故S四边形A1EHA=12×(4+10)×8=56,S四边形EB1BH=12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).18.解如图所示,分别过A,B作EF的垂线AG,BH,垂足分别为G,H.连接DG,CH,容易求得EG=HF =12.所以AG =GD =BH =HC =32, S △AGD =S △BHC =12×22×1=24,V =V E -ADG +V F -BHC +V AGD -BHC =⎝⎛⎭⎫13×12×24×2+24×1=23.19解 根据题意可知,纸篓底面圆的半径r ′=15 cm ,上口的半径r =20 cm ,设母线长为l , 则纸篓的表面积S =πr ′2+(2πr ′+2πr )l2=π(r ′2+r ′l +rl )=π(152+15×50+20×50)=1 975π(cm 2).20.(12分)有一盛满水的圆柱形容器,内壁底面半径为5,高为2,现将一个半径为3的玻璃小球缓慢浸没于水中.(1)求圆柱的体积; (2)求溢出水的体积.解 (1)∵内壁底面半径为5,高为2,∴圆柱体积V =π×52×2=50π. (2)溢出水的体积为43×π×33=36π.21解 由题图可知半球的半径为4 cm , 所以V 半球=12×43πR 3=12×43π×43=1283π(cm 3),V 圆锥=13πR 2h =13π×42×12=64π(cm 3).因为V 半球<V 圆锥,所以如果冰淇淋融化了,不会溢出杯子. 22.解 (1)该三棱柱的侧面展开图是宽为4,长为9的矩形, 所以对角线的长为42+92=97.(2)将该三棱柱的侧面沿棱BB 1展开,如图所示. 设PC 的长为x ,则MP 2=MA 2+(AC +x )2.因为MP =29,MA =2,AC =3,所以x =2(负值舍去),即PC 的长为2. 又因为NC ∥AM ,所以PC P A =NC AM ,即25=NC 2,所以NC =45.。
新人教A版 高中数学必修2 期末测试题与答案

期末测试题考试时间:90分钟试卷满分:100分一、选择题1.点(1,-1)到直线x -y +1=0的距离是(). A .21B .23C .22D .2232.过点(1,0)且与直线x -2y -2=0平行的直线方程是(). A .x -2y -1=0 B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03.下列直线中与直线2x +y +1=0垂直的一条是(). A .2x ―y ―1=0B .x -2y +1=0 C .x +2y +1=0D .x +21y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是(). A .2x -y -1=0B .2x +y +1=0 C .2x -y +1=0D .2x +y -1=05.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为().A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台 6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是(). A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于(). A .-1B .-2C .-3D .0(4)(3)(1)(2)8.圆A : x 2+y 2+4x +2y +1=0与圆B : x 2+y 2―2x ―6y +1=0的位置关系是(). A .相交B .相离C .相切D .内含9.已知点A (2,3,5),B (-2,1,3),则|AB |=(). A .6B .26C .2D .2210.如果一个正四面体的体积为9dm 3,则其表面积S 的值为(). A .183dm 2B .18 dm 2C .123dm 2D .12 dm 211.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成角余弦值是().A .515B .22C .510D .0 12.正六棱锥底面边长为a ,体积为23a 3,则侧棱与底面所成的角为(). A .30°B .45°C .60°D .75°13.直角梯形的一个内角为45°,下底长为上底长的23,此梯形绕下底所在直线旋转一周所成的旋转体表面积为(5+2)π,则旋转体的体积为().A .2πB .32 + 4πC .32 + 5πD .37π 14.在棱长均为2的正四棱锥P -ABCD 中,点E 为PC 的中点,则下列命题正确的是().A .BE ∥平面P AD ,且BE 到平面P AD 的距离为3B .BE ∥平面P AD ,且BE 到平面P AD 的距离为362C .BE 与平面P AD 不平行,且BE 与平面P AD 所成的角大于30° D .BE 与平面P AD 不平行,且BE 与平面P AD 所成的角小于30° 二、填空题PABCDE (第14题)(第11题)15.在y 轴上的截距为-6,且与y 轴相交成30°角的直线方程是______________. 16.若圆B : x 2+y 2+b =0与圆C : x 2+y 2-6x +8y +16=0没有公共点,则b 的取值范围是________________.17.已知△P 1P 2P 3的三顶点坐标分别为P 1(1,2),P 2(4,3)和P 3(3,-1),则这个三角形的最大边边长是__________,最小边边长是_________.18.已知三条直线ax +2y +8=0,4x +3y =10和2x -y =10中没有任何两条平行,但它们不能构成三角形的三边,则实数a 的值为____________.19.若圆C : x 2+y 2-4x +2y +m =0与y 轴交于A ,B 两点,且∠ACB =90º,则实数m 的值为__________.三、解答题 20.求斜率为43,且与坐标轴所围成的三角形的面积是6的直线方程.21.如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱P A 与底面ABCD 所成的角的正切值为26. (1)求侧面P AD 与底面ABCD 所成的二面角的大小;(2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值;(3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由.(第21题)BP22.求半径为4,与圆x 2+y 2―4x ―2y ―4=0相切,且和直线y =0相切的圆的方程.参考答案一、选择题1.D2.A3.B4.B5.C6.D7.B8.C9.B 10.A11.D12.B13.D14.D 二、填空题15.y =3x -6或y =―3x ―6. 16.-4<b <0或b <-64. 17.17,10. 18.-1. 19.-3. 三、解答题20.解:设所求直线的方程为y =43x +b ,令x =0,得y =b ;令y =0,得x =-34b ,由已知,得21 34 - ⎪⎭⎫⎝⎛b b ·=6,即32b 2=6,解得b =±3.故所求的直线方程是y =43x ±3,即3x -4y ±12=0. 21.解:(1)取AD 中点M ,连接MO ,PM , 依条件可知AD ⊥MO ,AD ⊥PO ,则∠PMO 为所求二面角P -AD -O 的平面角. ∵PO ⊥面ABCD ,∴∠P AO 为侧棱P A 与底面ABCD 所成的角. ∴tan ∠P AO =26. MDBACOEP(第21题(1))设AB =a ,AO =22a , ∴PO =AO ·tan ∠POA =23a , tan ∠PMO =MOPO=3. ∴∠PMO =60°.(2)连接AE ,OE , ∵OE ∥PD ,∴∠OEA 为异面直线PD 与AE 所成的角. ∵AO ⊥BD ,AO ⊥PO ,∴AO ⊥平面PBD .又OE 平面PBD ,∴AO ⊥OE .∵OE =21PD =2122 + DO PO =45a ,∴tan ∠AEO =EOAO =5102.(3)延长MO 交BC 于N ,取PN 中点G ,连BG ,EG ,MG . ∵BC ⊥MN ,BC ⊥PN ,∴BC ⊥平面PMN . ∴平面PMN ⊥平面PBC .又PM =PN ,∠PMN =60°,∴△PMN 为正三角形.∴MG ⊥PN .又平面PMN ∩平面PBC =PN ,∴MG ⊥平面PBC .取AM 中点F ,∵EG ∥MF ,∴MF =21MA =EG ,∴EF ∥MG .∴EF ⊥平面PBC .点F 为AD 的四等分点.22.解:由题意,所求圆与直线y =0相切,且半径为4, 则圆心坐标为O 1(a ,4),O 1(a ,-4).又已知圆x 2+y 2―4x ―2y ―4=0的圆心为O 2(2,1),半径为3, ①若两圆内切,则|O 1O 2|=4-3=1.即(a -2)2+(4-1)2=12,或(a -2)2+(-4-1)2=12. 显然两方程都无解.②若两圆外切,则|O 1O 2|=4+3=7.即(a -2)2+(4-1)2=72,或(a -2)2+(-4-1)2=72.MDBACOEP(第21题(2))M DBACOE PN G F(第21题(3))解得a=2±210,或a=2±26.∴所求圆的方程为(x―2―210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16;或(x―2―26)2+(y+4)2=16或(x―2+26)2+(y+4)2=16.。
高中数学选择性必修二 北京市朝阳区高二上学期期末考试数学试题(含答案)

故答案为:①③④
16.把正奇数列按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,则在第n(n∈N*)组里有________个数;第9组中的所有数之和为________.
【答案】①. ②.2465
【解析】
②函数 在 和 分别单调递减,故②错误;
③因为 ,则当 时, ,故 时的瞬时速度是10 m/s,故③正确;
④ , ,由 解得 ,由 解得 ,
所以当 时, 的图象更“陡峭”,当 时, 的图象更“陡峭”,故④错误.
故选:A.
8.如图,将边长为4的正方形折成一个正四棱柱的侧面,则异面直线AK和LM所成角的大小为()
点 在抛物线上,
所以 ,
则 ,又 ,
所以直线 方程为 ,
联立抛物线方程 得到 ,
解得 或 ,
因为点 在 轴下方,所以 ,
由焦半径公式得: ,
故选:D.
7.下列有四个说法:
①若直线与抛物线相切,则直线与抛物线有且只有一个公共点:
②函数 在定义域上单调递减;
③某质点沿直线运动,位移 (单位:m)与时间t(单位:s)满足关系式 则 时的瞬时速度是10 m/s;
(II)选①:当直线 斜率不存在时, 的方程为 ,恰好与圆相切,满足题意;
当直线 斜率存在时,设 的方程为 ,即 ,
则圆心到直线 的距离为 ,解得 ,
此时直线 的方程为 ,即 ,
综上,直线 的方程为 或 ;
选②,可得 在圆上,即 为切点,
则切点与圆心连线斜率为 ,则切线斜率为 ,
所以直线 的方程为 ,即 .
故选:B.
10.如图,在三棱锥O-ABC中,三条侧棱OA,OB,OC两两垂直,且OA,OB,OC的长分别为a,b,c.M为△ABC内部及其边界上的任意一点,点M到平面OBC,平面OAC,平面OAB的距离分别为a0,b0,c0,则 ()
【易错题】高中必修二数学下期末试卷及答案

【易错题】高中必修二数学下期末试卷及答案一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 3.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .432⎛ ⎝⎭,B .432⎡⎢⎣⎦,C .432⎡⎢⎣⎭,D .43⎛ ⎝⎦4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .45.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .266.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .7.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增9.函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.在ABC ∆中,2cos (,b,22A b ca c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.设a >0,b >0,若3是3a 与3b的等比中项,则11a b+的最小值是__. 15.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________16.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 .17.函数()2sin sin 3f x x x =+-的最小值为________.18.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______.19.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.20.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 三、解答题21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程.22.已知2()sin cos f x x x x =+ (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小.25.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围. 26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v =,221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.2.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 4.B 解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.5.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=, 则()323266663213132?25a b a b a b a b a b ba b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【压轴题】高中必修二数学下期末试题(含答案)

D.
D. 7 8
8.已知函数
f
(x)
x
a x
1
(x 1)
x2 2x (x 1)
A. 0,1
B. 0,1
在 R 上单调递增,则实数 a 的取值范围是
C. 1,1
D. 1,1
9.函数 f (x) xlg | x | 的图象可能是( )
A.
B.
C.
D.
10.已知 a log0.6 0.5 , b ln 0.5 , c 0.60.5 ,则( )
位圆上所有点组成的集合,集合 B 表示直线 y x 上所有的点组成的集合,又圆
x2 y2 1 与直线 y x 相交于两点
2, 2
2 2
,
2 , 2
2 2
,则
A
B 中有 2 个元
素.故选 B.
【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和
化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解
由余弦定理得
,
解得
(
舍去),故选 D.
【考点】 余弦定理 【名师点睛】 本题属于基础题,考查内容单一,根据余弦定理整理出关于 b 的一元二次方程,再通过解方程 求 b.运算失误是基础题失分的主要原因,请考生切记!
2.A
解析:A
【解析】
a1
a3
a5
3a3
3, a3
1,
S5
5 2
(a1
a5 )
5 2
2a3
2
[ , 5 ]上的最大值为__. 6 12
15.已知 ABC , B 135 , AB 2 2,BC 4 ,求 AB AC ______.
【压轴题】高中必修二数学下期末试题(含答案)

【压轴题】⾼中必修⼆数学下期末试题(含答案)【压轴题】⾼中必修⼆数学下期末试题(含答案)⼀、选择题1.△ABC 的内⾓A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5B .7C .9D .113.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满⾜条件A CB ??的集合C 的个数为()A .1B .2C .3D .44.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为() A .3B .2C .1D .05.某三棱锥的三视图如图所⽰,则该三棱锥的体积为()A .20B .10C .30D .606.设正项等差数列的前n 项和为,若,则的最⼩值为 A .1 B .C .D .7.已知1sin 34πα??-= ,则cos 23πα??+= ()A .58-B .58C .78-D .788.已知函数21(1)()2(1)a x x f x x x x x ?++>?=?-+≤在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.函数()lg ||f x x x =的图象可能是()A .B .C .D .10.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则() A .a c b >> B .a b c >>C .c a b >>D .c b a >>11.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .1212.如图,在△ABC 中, 13AN NC =u u u v u u u v ,P 是BN 上的⼀点,若29AP m AB AC ??→??→??→=+,则实数m 的值为( )A .B .C .19D .⼆、填空题13.在ABC △中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________. 14.已知函数()3sin(2)cos(2)(||)2 f x x x π=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最⼤值为__. 15.已知ABC V ,135B o∠=,22,4AB BC ==,求AB AC ?=u u u r u u u r______.16.函数()12x f x =-的定义域是__________. 17.如图,在矩形中,为边的中点,1AB =,2BC =,分别以A 、D 为圆⼼,1为半径作圆弧EB 、EC (在线段AD 上).由两圆弧EB 、EC 及边所围成的平⾯图形绕直线旋转⼀周,则所形成的⼏何体的体积为 .18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的⽅程为____________.19.若()1,x ∈+∞,则131y x x =+-的最⼩值是_____. 20.在△ABC 中,85a b ==,,⾯积为12,则cos 2C =______.三、解答题21.设ABC ?的内⾓A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值;(2)当ABC ?的⾯积为3时,求a+c 的值. 22.已知x ,y ,()0,z ∈+∞,3x y z ++=.(1)求111x y z++的最⼩值(2)证明:2223x y z ≤++.23.已知数列{}n a 是等⽐数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 24.已知数列{}n a 满⾜11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等⽐数列,并说明理由;(3)求{}n a 的通项公式.25.以原点为圆⼼,半径为r 的圆O 222:()0O x y r r +=>与直线380x --=相切. (1)直线l 过点(6)-且l 截圆O 所得弦长为43l l 的⽅程;(2)设圆O 与x 轴的正半轴的交点为M ,过点M 作两条斜率分别为12,k k 12,k k 的直线交圆O 于,A B 两点,且123k k ?=-,证明:直线AB 恒过⼀个定点,并求出该定点坐标.26.如图,平⾏四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表⽰DE u u u v 、BF u u uv 、CG u u u v .【参考答案】***试卷处理标记,请不要删除⼀、选择题 1.D 解析:D 【解析】【分析】【详解】由余弦定理得,解得(舍去),故选D.【考点】余弦定理【名师点睛】本题属于基础题,考查内容单⼀,根据余弦定理整理出关于b 的⼀元⼆次⽅程,再通过解⽅程求b.运算失误是基础题失分的主要原因,请考⽣切记!2.A解析:A【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=?==,选A. 3.D解析:D 【解析】【分析】【详解】求解⼀元⼆次⽅程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ??,所以根据⼦集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的⼦集个数,即有224=个,故选D. 【点评】本题考查⼦集的概念,不等式,解⼀元⼆次⽅程.本题在求集合个数时,也可采⽤列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极⾼.4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表⽰以()0,0为圆⼼,1为半径的单位圆上所有点组成的集合,集合B 表⽰直线y x =上所有的点组成的集合,⼜圆221x y +=与直线y x =相交于两点,22? ??,22??-- ? ???,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较⼤,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满⾜互异性.5.B解析:B 【解析】【分析】根据三视图还原⼏何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得⼏何体直观图如下图所⽰:可知三棱锥⾼:4h =;底⾯⾯积:1155322S == ∴三棱锥体积:1115410332V Sh ==??=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原⼏何体,从⽽准确求解出三棱锥的⾼和底⾯⾯积. 6.D解析:D 【解析】【分析】先利⽤等差数列的求和公式得出,再利⽤等差数列的基本性质得出,再将代数式和相乘,展开后利⽤基本不等式可求出的最⼩值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成⽴,因此,的最⼩值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应⽤,考查利⽤基本不等式求最值,解题时要充分利⽤定值条件,并对所求代数式进⾏配凑,考查计算能⼒,属于中等题。
高中数学必修二 北京市丰台区 — 学年度 高一下学期期末练习数学试题(含答案)

【答案】
【解析】
【分析】
先求解出分层抽样的抽样比,然后根据每一层入样的个体数等于该层个体数乘以抽样比,由此可计算出结果 .
【详解】因为分层抽样的抽样比为 ,
9.如图所示,在复平面内,复数 , 所对应的点分别为A,B,则 ()
A. B. C. D.
【答案】C
【解析】
【分析】
根据 并结合复数的几何意义得到 的表示.
【详解】因为 , 与 对应, 与 对应,
所以 ,
故选:C.
【点睛】本题考查复数的几何意义的简单运用,难度较易.复数 和复平面内的点 一一对应,同时复数 和平面向量 也一一对应.
丰台区2019~2020学年度第二学期期末练习
高一数学
注意事项:
1.答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色字迹签字笔填写清楚,并认真核对条形码上的准考证号、姓名,在答题卡的“条形码粘贴区”贴好条形码.
2.本次考试所有答题均在答题卡上完成.选择题必须使用2B铅笔以正确填涂方式将各小题对应选项涂黑,如需改动,用橡皮擦除干净后再选涂其它选项.非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、字迹清楚.
【答案】D
【解析】
【分析】
根据球与正方体位置关系,分析出球 半径,由此球的体积可求.
【详解】因为球内切于正方体,所以球的半径等于正方体棱长的 ,
所以球的半径为 ,所以球的体积为 ,
故选:D.
【点睛】本题考查根据正方体与球的相切关系求球的体积,难度较易.当球内切于正方体时,球的半径为正方体棱长的 ;当球外接于正方体时,球的半径为正方体棱长的 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:BG7531400019813488897SX 创作者: 别如克*高中数学必修二期末测试题一一、选择题(本大题共2道小题,每小题5分,共60分。
)1、下图(1)所示的圆锥的俯视图为 ( )2、直线30l y ++=的倾斜角α为 ( )A 、30;B 、60;C 、120;D 、150。
3、边长为a 正四面体的表面积是 ( )A 、34; B 、312a ; C 、24a ; D2。
4、对于直线:360l x y -+=的截距,下列说法正确的是 ( )A 、在y 轴上的截距是6;B 、在x 轴上的截距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截距是3-。
5、已知,a b αα⊂//,则直线a 与直线b 的位置关系是 ( )A 、平行;B 、相交或异面;C 、异面;D 、平行或异面。
6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为 ( )图(1)ABCDA 、12-; B 、12; C 、2-; D 、2。
7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。
若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为( )A 2;B 2;C 2;D 2。
8、已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( )A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径r =; C 、圆心()1,3P -,半径10r =; D 、圆心()1,3P -,半径r =。
9、下列叙述中错误的是 ( )A 、若P αβ∈且l αβ=,则P l ∈;B 、三点,,A BC 确定一个平面;C 、若直线a b A =,则直线a 与b 能够确定一个平面;D 、若,A l B l ∈∈且,A B αα∈∈,则l α⊂。
10、两条不平行的直线,其平行投影不可能是 ( )A 、两条平行直线;B 、一点和一条直线;C 、两条相交直线;D 、两个点。
11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( )A 、25π;B 、50π;C 、125π;D 、都不对。
12、四面体P ABC -中,若PA PB PC ==,则点P 在平面ABC 内的射影点O 是ABC 的 ( )A 、外心;B 、内心;C 、垂心;D 、重心。
二、填空题(本大题共4道小题,每小题4分,共16分。
)13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14、命题:一条直线与已知平面相交,则面内不过该交点的直线与已知直线为异面直线。
用符号表示为 ;15、点()2,1M 直线l y --=的距离是 ;16、已知,a b 为直线,,,αβγ为平面,有下列三个命题:(1) a b αβ////,,则a b // (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α⊂//,则a α//; (4) ,a b a α⊥⊥,则b α//; 其中正确命题是 。
三、解答题(本大题共6道小题,共74分。
解答应写出文字说明、证明过程或演算步骤)17、(本小题满分12分)如下图(2),建造一个容积为316m ,深为2m ,宽为2m 的长方体无盖水池,如果池底的造价为120m 2/元,池壁的造价为80m 2/元,求水池的总造价。
18、(本小题满分12分)如下图(3),在四棱锥P ABCD -中,四边形ABCD 是平行四边形,,M N 分别是,AB PC 的中点,求证:MN PAD //平面 。
创作编号:BG7531400019813488897SX创作者: 别如克*2m2m图(2)CDNP19、(本小题满分12分)如下图(4),在正方体1111ABCD A B C D -中, (1)画出二面角11A B C C --的平面角; (2)求证:面11BB DD ⊥面1AB C创作编号:BG7531400019813488897SX创作者: 别如克*20、(本小题满分12分)光线自点()2,3M 射到点()1,0N 后被x 轴反射,求该光线图1A1B1D1CCABD及反射光线所在的直线方程。
(请用直线的一般方程表示解题结果)21、(本小题满分12分)已知三角形ABC 的三个顶点是()()()4,0,6,7,0,8A B C (1) 求BC 边上的高所在直线的方程; (2) 求BC 边上的中线所在直线的方程。
22、(本小题满分14分)如下图(5),在三棱锥A BCD -中,,O E 分别是,BD BC 的中点,2CA CB CD BD ====,AB AD ==(1) 求证:AO ⊥平面BCD ;(2) 求异面直线AB 与CD 所成角的余弦值;A(3)求点E到平面ACD的距离。
高中数学必修2综合测试题一(答案卷)一、选择题(本大题共2道小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)2m2m图(2)二、填空题(本大题共4道小题,每小题4分,共16分。
把答案填在题中横线上)13、3a π或32a π; 14、 ,a P b αα=∀⊂,且P b ∉,则a 与b 互为异面直线; 15、12; 16、(2)。
三、解答题(本大题共6道小题,共74分。
解答应写出文字说明、证明过程或演算步骤)17、(本小题满分12分)如下图(2),建造一个容积为316m ,深为2m ,宽为2m 的长方体无盖水池,如果池底的造价为120m 2/元,池壁的造价为80m 2/元,求水池的总造价。
解:分别设长、宽、高为,,am bm hm ;水池的总造价为y 元16,2,2V abh h b ====,4a m ∴=—————————————3分 则有2428S m =⨯=底————————6分()2224224S m =⨯+⨯=壁—————9分12080120880242880y S S =⨯+⨯=⨯+⨯=底壁(元)————————————12分18、(本小题满分12分)如下图(3),在四棱锥CDNPEP ABCD -中,四边形ABCD 是平行四边形,,M N 分别是,AB PC 的中点,求证:MN PAD //平面 。
证明:如图,取PD 中点为E ,连接,AE EN ———1分,E N 分别是,PD PC 的中点12EN DC ∴//———————————————4分 M 是AB 的中点 12AM DC ∴// ——————7分EN AM ∴// ∴四边形AMNE 为平行四边形 —9分AE MN ∴// ———————————————11分又AE APD⊂面MN APD⊄面∴MN PAD//平面 。
————————12分19、(本小题满分12分)如下图(4),在正方体1111ABCD A B C D -中,(1)画出二面角11A B C C --的平面角; (2)求证:面11BB DD ⊥面1AB C解:(1)如图,取1B C 的中点E ,连接1,AE EC 。
11,,AC AB B C 分别为正方形的对角线 11AC AB B C ∴==E 是1B C 的中点1AE B C∴⊥——————————————2分 又在正方形11BB C C 中11EC B C ∴⊥ ——————————————3分 ∴1AEC ∠为二面角11A B C C --的平面角。
图(4)1A 1B1D1CCABD E—————————————————4分 (2) 证明: 1D D ABCD ⊥面,AC ABCD ⊂面 1D D AC ∴⊥ —————6分 又在正方形ABCD中AC BD ∴⊥—————————————————8分1D DBD D=11AC DD B B ∴⊥面———————————————10分 又1AC AB C ⊂面 ∴面11BB DD ⊥面1AB C ——————————————12分20、(本小题满分12分)光线自点()2,3M 射到点()1,0N 后被x 轴反射,求该光线及反射光线所在的直线方程。
(请用直线的一般方程表示解题结果)解:如图,设入射光线与反射光线分别为1l 与2l , 11,M l N l ∈∈由直线的两点式方程可知:1030:121y l x --=--——3分 化简得:1:330l x y --=——————4分其中13k =, 由光的反射原理可知:12∠=∠213k k ∴=-=-,又2N l ∈ —————8分由直线的点斜式方程可知:()2:031l y x -=-- —————————————————————————10分化简得:2:330l x y +-= ——————————————————————12分(21、(本小题满分12分)已知三角形ABC 的三个顶点是()()()4,0,6,7,0,8A B C(1) 求BC 边上的高所在直线的方程; (2) 求BC 边上的中线所在直线的方程。
解:(1)如图,作直线AD BC ⊥,垂足为点D 。
781606BC k -==-- —————2分BC AD ⊥ 16AD BCk k ∴=-= 4分由直线的点斜式方程可知直线AD 的方程为:()064y x -=-化简得: 624y x =- ——6分(2)如图,取BC 的中点()00,E x y ,连接AE 。
由中点坐标公式得000632871522x y +⎧==⎪⎪⎨+⎪==⎪⎩,即点153,2E ⎛⎫ ⎪⎝⎭ ———————————9分由直线的两点式方程可知直线AE 的方程为:1502430y x --=-- ——————————11分 化简得:5102y x =- ——————————————————————————12分22、(本小题满分14分)如下图(5),在三棱锥A BCD -中,,O E 分别是,BD BC 的中点,2CA CB CD BD ====,AB AD ==(1) 求证:AO ⊥平面BCD ; (2) 求异面直线AB 与BC 所成角的余弦值;(3) 求点E 到平面ACD 的距离。
(1)证明:连接OC,BO DO AB AD ==AO BD∴⊥———————————1分 ,BO DO BC CD ==CO BD∴⊥—————————————2分在AOC中,由已知可得:1,AO CO ==而2222,AC AO CO AC =∴+=90AOC ∴∠=,即AO OC ⊥ ———————4分BD OC O =AO BCD ∴⊥平面——————————————————5分(2)解:取AC 的中点M ,连接,,OM ME OE由E 为BC 的中点知,ME AB OE DC ////∴直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角。