专家系统的一般结构
专家系统的基本结构

专家系统的基本结构
专家系统是一种模拟人类专家解决问题的计算机程序系统,其基本结构包括以下几个部分:
1.知识库:用于存储专家系统的知识,包括事实、规则、概念等。
2.推理机:用于根据知识库中的知识进行推理,得出结论。
3.解释器:用于解释推理过程和结论,向用户提供解释。
4.知识获取模块:用于从专家或其他来源获取知识,并将其添加到知识库中。
5.用户接口:用于用户与专家系统进行交互,包括输入问题、查看结论和解释等。
这些部分相互协作,共同实现专家系统的功能。
其中,知识库是专家系统的核心,它包含了专家的知识和经验,推理机则根据知识库中的知识进行推理,得出结论。
解释器则用于向用户解释推理过程和结论,以便用户理解和接受。
知识获取模块用于不断更新和完善知识库,以提高专家系统的性能和准确性。
用户接口则提供了用户与专家系统进行交互的方式,方便用户使用专家系统。
专家系统 系统结构

二、专家系统的实际结构
齿轮故障诊断专家系统
• 齿轮故障诊断专家系统 说明:自动诊断首先通过数据采集,然后对 测点信号进行数据处理,由特征获取模块当 前状态各种有效的特征值,并将这些特征值 存入数据库,然后由系统的概念结构
II. 专家系统的实际结构
一、专家系统的概念结构
6部分组成: 部分组成: 知识库 推理机 综合数据库 知识获取机制 解释器 人机交互界面
知识库: 以某种形式存储在计算机中的知识的结合。 一般包括专家知识、领域知识、元知识。 (元知识:关于调度和管理知识的知识。) 推理机: 实现机器推理的程序。 例如:A B
综合数据库: 综合数据库: 存放初始证据事实、推理结果、控制信息的 场所。 知识获取机制: 是专家系统的一种辅助功能,用于增加和修 改知识库中的知识,维持知识的一致性、 完整性。
解释器: 专门负责向用户解释专家系统的行为和结果, 如“why、how……
人机交互界面: 最终用户和专家系统的交互界面。
人工智能习题答案-第6章-专家系统

⼈⼯智能习题答案-第6章-专家系统第六章专家系统6-1 什么叫做专家系统?它具有哪些特点与优点?专家系统是⼀种模拟⼈类专家解决领域问题的智能计算机程序系统,其内部含有⼤量的某个领域专家⽔平的知识与经验,能够利⽤⼈类专家的知识和解决问题的⽅法来处理该领域问题。
也就是说,专家系统是⼀个具有⼤量的专门知识与经验的程序系统,它应⽤⼈⼯智能技术和计算机技术,根据某领域⼀个或多个专家提供的知识和经验,进⾏推理和判断,模拟⼈类专家的决策过程,以便解决那些需要⼈类专家处理的复杂问题。
特点:(1)启发性专家系统能运⽤专家的知识与经验进⾏推理、判断和决策(2)透明性专家系统能够解释本⾝的推理过程和回答⽤户提出的问题,以便让⽤户能够了解推理过程,提⾼对专家系统的信赖感。
(3) 灵活性专家系统能不断地增长知识,修改原有知识,不断更新。
优点:(1) 专家系统能够⾼效率、准确、周到、迅速和不知疲倦地进⾏⼯作。
(2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。
(3) 可以使专家的专长不受时间和空间的限制,以便推⼴珍贵和稀缺的专家知识与经验。
(4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够⼴泛有⼒地传播专家的知识、经验和能⼒。
(5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重⼤问题的能⼒,它拥有更渊博的知识、更丰富的经验和更强的⼯作能⼒。
(6) 军事专家系统的⽔平是⼀个国家国防现代化的重要标志之⼀。
(7) 专家系统的研制和应⽤,具有巨⼤的经济效益和社会效益。
(8) 研究专家系统能够促进整个科学技术的发展。
专家系统对⼈⼯智能的各个领域的发展起了很⼤的促进作⽤,并将对科技、经济、国防、教育、社会和⼈民⽣活产⽣极其深远的影响。
6-2 专家系统由哪些部分构成?各部分的作⽤为何?(1) 知识库(knowledge base)知识库⽤于存储某领域专家系统的专门知识,包括事实、可⾏操作与规则等。
产生式系统专家系统

人工智能生式规则简称产生式。
它是指形如α─→β或IFαTHENβ或其等价形式的一条规则,其中α称为产生式的左部或前件;β称为产生式的右部或后件。
①如果α、β分别代表需要注视的一组条件及其成立时需要采取的行动,那么称为条件-行动型产生式;②如果α、β分别代表前提及其相应的结论,那么称为前提-结论型产生式。
人工智能中的推理很多是建立在直观经验基础上的不精确推理,而产生式在表示和运用不精确知识方面具有灵活性,因此许多专家系统采用产生式系统为体系结构。
组成一个产生式系统由下列3部分组成:一个总数据库(global database),它含有与具体任务有关的信息。
υυ一套规则,它对数据库进行操作运算。
每条规则由左右两部分组成,左部鉴别规则的适用性或先决条件,右部描述规则应用时所完成的动作。
应用规则来改变数据库。
一个控制策略,它确定应该采用哪一条适用规则,而且当数据库的终止条件满足时,就停止计算。
υ自由帕斯卡中free pascal 中的产生式系统的组成产生式系统由一个综合数据库、一组产生式规则和一个控制系统三个基本要素组成。
其中:综合数据库是产生式系统所用的主要数据结构,它主要用来表示问题的状态,即初始状态、中间状态和目标状态等,以及状态之间的关系。
它不是固定不变的,在求解的过程中,它的内容将越来越多,状态之间的关系也越来越复杂。
经常用来表示数据库的数据结构有串、集合、数组、树、表、记录、队列等。
产生式规则是对数据库进行操作的一系列规则。
规则的一般形式是:IF 条件 THEN 操作即满足应用的先决条件后,就对数据库实行后面的操作。
控制策略规定了操作的顺序,即在任何条件下用什么规则进行操作,什么条件下停止运行,它规定了问题的求解的搜索策略和路线。
控制策略一般可分为不可撤回方式和试探法两大类,试探法又包括回溯法和图搜索法两种。
工作方式产生式是系统的单元程序,它与常规程序不同之处在于,产生式是否执行并不在事前硬性规定,各产生式之间也不能相互直接调用,而完全决定于该产生式的作用条件能否满足,即能否与全局数据库的数据条款匹配。
第五部分 专家控制(1)

三、知识的获取
1、知识获取的方式
(1)非自动知识获取
非自动知识获取方式分两步进行:①由知识 工程师从领域专家或有关的技术文献那里获取知识; ②由知识工程师用某种知识编辑软件输入到知识库 中,其工作方式如图所示。
非自动方式是专家系统建造中用得较为普遍的一 种知识获取方式。在非自动知识获取方式中,知识工 程师起着关键作用,知识工程师的主要任务是: ① 组织调查。以反复提问的方式启发领域专家 按知识处理的要求回答问题,并详细记录专家的答案。 ② 理解和整理材料。在充分理解的基础上对从 领域专家处或书本上得到的答案进行选择整理、分类、 汇集并形成用自然语言表达的知识条款。 ③ 修改和完善知识。把整理分类好的知识条款反 馈给领域专家,进行修改、完善和精化,最终的结果 要得到领域专家的认可。 ④ 知识的编码。把最终由专家认可的知识条款按 一定的表达方式或知识表示语言进行编码,得到知识 编辑器所能接受的知识条款。
专家系统是基于知识的系统,则建造专家系统 就涉及到知识获取、知识表示、知识的组织与管 理和知识的利用等一系列关于知识处理的技术和 方法,特别是一般知识库系统的建立,更加促进 了这些技术的发展。 关于知识处理的技术和方法已形成了一个称 为“知识工程”的学科领域。专家系统一方面促 使了知识工程的诞生和发展,另一方面知识工程 又是为专家系统服务的。由于二者的密切关系, “专家系统”与“知识工程”现在几乎已成为同 义语。
(1)按用途分类 可分为:诊断型、解释型、预测型、决策型、 设计型、规划型、控制型和调度型等几种。 (2)按输出结果分类 可分为:分析型、设计型、综合型专家系统。 (3)按知识表示分类 可分为:基于产生式规则的专家系统、基于一 阶谓词的专家系统、基于框架的专家系统以及 基于语义网络的专家系统。也存在相应的综合 型专家系统。
人工智能导论课件第6章第4-5节

6.5.2 振动故障诊断的专家系统
• VIBEX专家系统结合了决策表分析(DTA)和DT,决策表分析是通过已知案 例来构建的,而DT是为了做出分类,使用归纳式知识获取过程来构建。 VIBEX DT与机器学习技术相结合,比起ⅤIBEX(VIBration Expert)TBL方 法在处理振动原因和发生概率较高的案例时,其诊断更有效率。人类专家合作 构建DTA,这最终得到了由系统知识库组成的规则集。然后,人们使用贝叶斯 算法计算出规则的确定性因子。
6.5.2 振动故障诊断的专家系统
• 专家系统的重要作用之一是用于故障诊断。在昂贵、高速、关键机械运转的情 况下,故障的早期准确检测非常重要。在机械运转的情况下,异常情况的常见 指标是旋转机械的振动。检测到故障后,维护工程师能够识别症状信息,解释 各种错误信息和指示,并提出正确的诊断。换句话说,识别可能导致故障的组 件以及组件失败的原因。
人工智能导论
Introduction to artificial intelligence
• (1)规划——在这个阶段,根据所有可能的原子构型的集合中和质谱推导出 的约束一致的原子构型集合,还原出答案。应用约束,选择必须出现在最终结 构中的分子片段,剔除不能出现的分子片段。
• (2)生成——使用名为CONGEN的程序来生成可能的结构。“它的基础是组 合算法(具有数学证明的完整性以及非冗余生成性)。组合算法可以产生所有 在拓扑上合法的候选结构。通过使用‘规划’过程提供的约束进行裁剪,引导 生成合理的集合(即满足约束条件的集合),而不是巨大的合法集合。”
第8章 专家系统

2.专家系统的知识表示和推理
2.1 知识表示
知识表示是一种用来在专家系统的知识库中对知识编码的 方法。
2.1.1 知识的类型
◆过程性知识。描述如何解决问题,提供如何做事的建议。
◆陈述性知识。描述问题的相关已知信息,包括断定为真或 假的简单语句和一组更完整地描述一些对象或概念的语句。 ◆启发式 知识。描述引导推理过程的规则。它是经验性的, 并且表示专家通过求解过去问题的经验编译知识。专家将获 取有关问题的基本知识,如基本法则、函数关系等,并且把 它编译成简单的启发信息,以辅助问题求解。 ◆结构知识。描述知识的结构。这类知识描述专家对此问题 的整体智力模型。
(2)从处理问题的方法看,专家系统则是靠知识和 推理来解决问题(不像传统软件系统使用固定的算法 来解决问题),所以,专家系统是基于知识的智能问 题求解系统。
(3)从系统的结构来看,专家系统则强调知识与推 理的分离,因而系统具有很好的灵活性和可扩充性。
(4)专家系统一般还具有解释功能,即在运行过程 中一方面能回答用户提出的问题,另一方面还能对最后 的输出(结论)或处理问题的过程作出解释。
◆例子 :VAX计算机结构设计专家系统、花布立体感图 案设计和花布印染专家系统、大规模集成电路设计专 家系统以及齿轮加工工艺设计专家系统等。
规划专家系统
◆任务 :寻找出某个能够达到给定目标的动作序列或步 骤。
◆特点 :所要规划的目标可能是动态的或静态的,需要 对未来动作做出预测,所涉及的问题可能很复杂,要 求系统能抓住重点,处理好各子目标间的关系和不确 定的数据信息,并通过实验性动作得出可行规划 。
站进行被修设备的调整、测量与试验。在这方面的实 例还比较少见。
教学专家系统
◆任务:根据学生的特点、弱点和基础知识,以最适当的 教案和教学方法对学生进行教学和辅导。
专家系统简介

专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。
这种基于知识的系统设计方法是以知识库和推理机为中心而展开的,即专家系统 = 知识库 + 推理机它把知识从系统中与其他部分分离开来。
专家系统强调的是知识而不是方法。
很多问题没有基于算法的解决方案,或算法方案太复杂,采用专家系统,可以利用人类专家拥有丰富的知识,因此专家系统也称为基于知识的系统(Knowledge-Based Systems)。
一般说来,一个专家系统应该具备以下三个要素:(1)具备某个应用领域的专家级知识;(2)能模拟专家的思维;(3)能达到专家级的解题水平。
专家系统与传统的计算机程序的主要区别如表7.1所示。
表7.1 专家系统与传统的计算机程序的主要区别列项传统的计算机程序专家系统适用范围无限制封闭世界假设建造一个专家系统的过程可以称为“知识工程”,它是把软件工程的思想应用于设计基于知识的系统。
知识工程包括下面几个方面:(1)从专家那里获取系统所用的知识(即知识获取)(2)选择合适的知识表示形式(即知识表示)(3)进行软件设计(4)以合适的计算机编程语言实现。
专家系统的发展史1965年斯坦福大学的费根鲍姆(E.A. Feigenbaum)和化学家勒德贝格(J. Lederberg)合作研制DENDRAL 系统,使得人工智能的研究以推理算法为主转变为以知识为主。
20世纪70年代,专家系统的观点逐渐被人们接受,许多专家系统相继研发成功,其中较具代表性的有医药专家系统MYCIN、探矿专家系统PROSPECTOR等。
20世纪80年代,专家系统的开发趋于商品化,创造了巨大的经济效益。
1977年美国斯坦福大学计算机科学家费根鲍姆 (E.A.Feigenballm)在第五届国际人工智能联合会议上提出知识工程的新概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专家系统的一般结构
一、简介
专家系统是一种基于人类知识的计算机系统,它采取了人类专家的知识和经验作为计算机系统的智力决策依据,被用来解决困难的决策问题。
专家系统可以模拟专家的经验和行为,在给定的应用领域内,给出精确的结果,同时专家系统也能够克服一些传统计算机科学研究中的困难,比如,自然语言、模糊逻辑、概念表示等方面。
专家系统包括:知识库、推理机制、接口机制和终端用户界面。
知识库存储专家知识,推理机制利用专家知识进行问题求解,接口机制将系统和外部知识源相连接,而终端用户界面提供操作系统的人机交互方式和功能,允许终端用户调用和使用专家系统。
二、专家系统的一般结构
专家系统的一般结构包括:知识模型,推理模型,存储模型,规则模型,排序模型,输入/输出模型和用户界面。
1. 知识模型确定了专家系统建立的基本知识结构,它定义了文本体系、概念、属性和关系之间的关系,而系统实现的知识表示形式是有自己特定语言,这种特定的语言是由人工构建的,可以将专家知识进行抽象和概括,以满足系统的需要。
2. 推理模型是专家系统实现的核心,它的功能是使用知识模型中定义的知识,以及系统存储的知识,进行智能决策推理,以实现具体的决策任务。
3. 存储模型是实现专家系统的知识存储,它定义了系统当前的
知识状态,并存储系统的输入和输出信息。
4. 规则模型是实现专家系统的描述性知识,它定义了系统做出决策时所需要的一系列规则,这些规则可以通过推理模型进行描述性推理,规则模型通常以规则库的形式存在,包括前置条件、决策结果和推出规则等。
5. 排序模型是专家系统确定推理场景下的优先顺序,它利用系统中存储的专家知识,对出现的不同推理决策选项,进行价值比较,以便选出最优解,实现系统的决策。
6. 输入/输出模型是与外部系统进行通信时使用的接口,它使用标准语言将系统外部的信息和系统内部的信息进行编码和解码,实现系统和外部系统的交互。
7. 用户界面是专家系统提供给终端用户的界面,它是专家系统的外壳,包括文本框、按钮、菜单、视图等,实现了人机交互界面的功能,使终端用户能够处理自己的问题。