细胞基质名词解释

合集下载

人教版高中生物必修1-3.2名词解释:细胞器的结构和功能

人教版高中生物必修1-3.2名词解释:细胞器的结构和功能
【内质网】
细胞质中由膜围成的分支小管、小囊或扁平囊状结构连通而成的管道系统,其周缘常分离出一种小泡状结构。电镜下观察,内质网膜厚度约为5μm~6μm,按形态结构的不同分为两个区域:一是粗面内质网,多为扁平囊状结构,膜上含有两种核糖体亲和蛋白,因而在膜的细胞质面上附着有核糖体;一是滑面内质网,多呈网状分布的小管,膜的细胞质面上不附着核糖体。滑面内质网不仅在一定部位与粗面内质网相通,而且有的与质膜或核外膜相连。内质网扩大了细胞质内的膜面积,在内质网膜上附有的多种酶,为生命活动的各种化学反应的正常进行创造有利条件。粗面内质网不仅是核糖体的支架,而且是在核糖体上合成的分泌蛋白的运输通道。此外,它还能够对核糖体合成的多肽链进行一定的改造,或用于自身的装配和生成。滑面内质网具有解毒、合成脂类和分解糖元的功能,还参与分泌性蛋白的运输蛋白。
【粗面内质网】
又叫颗粒型内质网,常见于蛋白质合成旺盛的细胞中,多为扁平囊状结构,在膜的细胞质面上附着有核糖体。粗面内质网既是新合成的蛋白质的运输通道,又是核糖体附着的支架。
【质体】
是真核细胞的细胞器。质体一般包括原质体、白色体、叶绿体和有色体。
【白色体】
是无色的质体,存在于分生组织和阳光照射不到部分的细胞中。可分为制造淀粉的造粉体和制造蛋白质的蛋白体和制造脂质的造油体等。
【有色体】
是含有胡萝卜素、叶黄素等色素,但不含叶绿素的质体,在光学显微镜下往往呈橘红色和橘黄色。它的形状有球形、椭圆形、线状、环状等。常见于花瓣、果实和肉质根的细胞中,使它们具有鲜艳的颜色。
【线粒体】
广泛存在于真核细胞的细胞质中的一种由双层单位膜围成的细胞器。是细胞呼吸产生ATP的主要场所。最早发现线粒体的是R.A.科里凯尔(1857年),C.贝尔于1897年命名为线粒体。线粒体被活体染色后,在光学显微镜下即可看到。线粒体一般呈圆形、近圆形、棒状或线状,大小约0.3μm~0.8μm×0.4μm~3μm。细胞内线粒体的数目和分布与供能活动有关,消耗能量较多的细胞内线粒体数目多,细胞内需能部位线粒体比较集中。植物细胞内线粒体数目比动物细胞少,因线粒体的某些功能已被叶绿体取代。电镜下观察,线粒体由两层单位膜围成。外膜厚约6nm,蛋白质与脂质含量比为1:1,膜的通透性很高。内膜厚约6nm~8nm,蛋白质与脂质含量比约为4:1,膜的通透性很低。内膜向内折叠成嵴,内膜和嵴的内表面上有许多有柄基粒。外膜上含有NADH一细胞色素C一还原酶系统,而内膜含有呼吸链和氧化磷酸化酶系。内外膜之间有宽约8.5nm的膜间腔,与嵴内腔形成一个连续的空间,其中充满液体,含有腺苷酸激酶和核苷二磷酸激酶。内膜包围的线粒体内腔中充满基质,内有小的核糖体、磷酸钙沉淀颗粒,少量的环状DNA和RNA,以及三羧酸循环和脂肪磷酸化酶系等。线粒体是细胞呼吸的主要场所,三羧酸循环在线粒体基质中完成,通过呼吸链的氧化磷酸化在内膜上完成。在线粒体中葡萄糖、脂肪和氨基酸氧化分解释放的能量,以高能磷酸键形式储存在ATP中,细胞生命活动需要的能量大约有95%来自线粒体中形成的ATP,故线粒体被称为化能转换器和细胞内能量供应的“动力工厂”。此外,线粒体还有储存Ca2+的作用。线粒体DNA能够复制,并有相应的蛋白质合成系统,但线粒体蛋白质大部分是由核控制。线粒体的增殖和生长是核基因和线粒体基因相互作用的结果。线粒体以分裂或出芽方式进行增殖。线粒体基因与细胞质遗传有一定关系。细胞中线粒体通过运动改变在细胞中的位置,不仅能够随着原生质流动而运动,而且能够向细胞需能更多的部位移动。线粒体基因指导合成蛋白质所用的遗传密码与种含有叶绿素等色素的质体,是植物细胞进行光合作用的场所。高等植物的叶绿体一般为椭圆形或卵圆形,平均直径为4μm~6μm。一个细胞中可能有10个~100个叶绿体,多在核周围或近壁处集中,并能随光线的强弱而移位。电镜下观察,叶绿体为封闭的双层膜结构,内外膜之间平均约为20nm的膜间隙。由叶绿体膜所围成的叶绿体腔中,充满液体基质和类囊体膜。每个类囊体膜是由周围闭合的双层膜组成的扁囊。基粒类囊体的直径约为0.25μm~0.8μm,厚约0.01μm,由5个~30个基粒类囊体叠置成一个基粒,每个叶绿体腔中约有60个~80个基粒。基质类囊体横贯基质,延伸出的分枝网管贯穿于两个以上的基粒之间。类囊体与基质接触的外表面有两种颗粒:一是含有RuBP羧化酶的方形颗粒;一是具有ATP酶活性的呈多角形的偶联因子I颗粒。类囊体膜中含有叶绿素和类胡萝卜素等各种光合色素,这些色素与专一蛋白质结合形成复合物颗粒:一是具有光系统I活性的小颗粒;一是具有光系统Ⅱ活性的大颗粒。类囊体膜中还有光反应的各种酶系。类囊体腔中充满水溶液。叶绿体腔内基质中,含有少量的环状DNA、RNA和小核糖体,以及大量的RuBP羧化酶颗粒和其他代谢活跃的物质等。叶绿体是光合作用的场所,光反应在类囊体部分进行,类囊体膜中的光合色素分子吸收和传递光能,在反应中心光能转化为化学能,形成ATP和NADPH,同时使水分解放氧;暗反应在叶绿体基质中进行,利用光反应形成的ATP和NADPH,同化CO2形成储能有机物。叶绿体DNA能以半保留方式复制,并有自己的蛋白质合成系统。叶绿体中重要的蛋白质,分别由核基因和叶绿体基因编码形成。此外,叶绿体基因与细胞质遗传有一定关系。在个体发育中,叶绿体是由前质体分化来的。发育中的幼龄叶绿体分裂能使叶绿体增殖。在光照条件下,白色体可变成具有正常结构和功能的叶绿体。

细胞生物学《第七章》

细胞生物学《第七章》

细胞生物学第七章-----07园艺生技1班刘小茜200730050616王鑫柔200730050620许欢200730050621一、名词解释1、细胞质基质2、细胞内膜系统3、内质网4、高尔基体5、溶酶体二、填空题1、研究内膜系统的有效技术主要包括:、、。

2、是蛋白质将要被降解的重要标志。

3、在糙面内质网合成并进入内质网腔的蛋白质发生的主要化学修饰作用有、、。

4、内质网中的蛋白质糖基化包括:、;高尔基体中的蛋白质糖基化是。

5.指导分泌性蛋白在糙面内质网上合成的决定因素是6.蛋白质分选的两条途径、7. 是高尔基体中间几层扁平膜壤的标志反应。

8.用反应,可辨认出不同形态与大小的溶酶体9.过氧化物酶体中常含有的两种酶、10.溶酶体中所有的酶都有的共同标志是____11. 膜间隙中标志酶为,线粒体的基质为三、判断题1、电镜下识别过氧化物酶体的主要特征是尿酸氧化酶等常形成的晶格状结构。

()2、N—连接的糖基化反应起始发生在光面内质网中。

()3、蛋白质在高尔基体中分选及其转运的信息仅存在于编码这个蛋白质的基因本身。

()4. 膜泡运输是蛋白质的一种特有的方式,普遍存在于真核细胞中。

()5.高尔基体是一种有极性的细胞器()6.在很多细胞中,高尔基体靠近细胞核的一面,膜壤常呈凹面,面向细胞质膜的一面常呈凸面。

()7.高尔基体是一个复杂的由许多功能不同的间隔说组成的完整体系()8.日冕病毒的组装发生在TGN上()9.某些“晚期”的蛋白质修饰发生在CGN中()四、单项选择题1、下列哪项是稳定的蛋白质()A、N端的第一个氨基酸是LeuB、N端的第一个氨基酸是MetC、N端的第一个氨基酸是IleD、N端的第一个氨基酸是Phe2、下列哪一项不是高尔基体标志细胞化学反应()A、嗜锇反应B、TPP酶的细胞化学反应C、NAD酶的细胞化学反应D、NADP酶的细胞化学反应3.下例组装方式中,哪一种不属于生物大分子向复杂的细胞结构及结构体系的组装方式()A.自我组装B.复合组装C.协助组装D.直接组装五、问答题1、细胞质基质在细胞生命活动中有哪些作用?2、溶酶体有哪些基本功能?3、例举出三种类型的有被小泡及其主要的运输作用。

第6章之(1)~(3)细胞质基质、核糖体、内膜系统资料

第6章之(1)~(3)细胞质基质、核糖体、内膜系统资料
细胞质基质
细胞质



细胞整体结构和功 能的重要组成部分。
第一节 细胞质基质
(cytoplasmic matrix or cytomatrix)

定义:指细胞质中除有形结构 (细胞器) 之外的无定 形胶状物质体系(P119)。
存在于细胞质基质中,具有 功能:六方面功能(自学,P120 ) 一定化学组成、一定形态结 构、执行特定生理功能,并 且为细胞所固有的有形结构 小体,统称为~~~。(P119)
3、防御保护功能
巨噬细胞具有发达的溶酶体,被吞噬的细菌和病毒,最 终在溶酶体的作用下杀灭,并分解消化。
4、参与某些腺体组织细胞分泌过程的调节 ——甲状腺素就是在溶酶体参与下形成的。
甲状腺滤泡 合成 甲状腺 分泌至 滤泡 碘化后 滤泡上 上皮细胞 球蛋白 腔内 重吸收 皮细胞
形 成
甲状腺素通 过细胞基部 进入血液
mRNA
二、核糖体的类型和理化特性
(一)类型
真核细胞质核糖体 真核细胞器核糖体 原核细胞核糖体
(二)理化特性
rRNA:60%,核糖体内部
蛋白质:40%,核糖体表面
23S rRNA
5S rRNA
~31种蛋白质
50S 70S核糖体 30S 16S rRNA ~21种蛋白质
28S rRNA 60S
5.8S rRNA
(四)新生肽链穿越内质网的转移机制 1975年,Blobel等提出信号(肽)假说 (signal hypothesis),用以解释两个问题:
①游离核糖体如何附着到内质网膜上?②新
生肽链如何落入到内质网腔?
获1999年诺贝尔生理医学奖。
信号(肽)假说的主要内容——
信号识别颗粒 mRNA AP 核糖体

细胞生物学 资料

细胞生物学 资料
Ca2+浓度的变化对运输小泡的形成起调节作用
10.5比较粗糙内质网和光面内质网的形态结构与功能
形态结构:粗糙:多呈扁囊状,排列较为整齐,膜表面分布着大量核糖体
光面:呈分支管状或小泡状,无核糖体附着
功能:粗面内质网:蛋白质的合成、修饰与加工;
光面内质网:脂的合成与转运、解毒作用、合成类固醇激素、Ca2+的调节作用——横纹肌的收缩。
2.下面哪一项和显微镜的分辨率无关?
A 光的波长;B 透镜的数值孔径;C 样品和透镜间介质的折射率; D 物镜的放大倍数
3.如果想检测细胞培养物是否在DNA合成期,可以在培养基中加入放射性胸苷,看它是否掺入DNA中。用下列哪种方法最容易检测到核DNA中被标记的脱氧核苷酸?
A双向凝胶电泳;B聚丙烯酰胺凝胶电泳;C琼脂糖凝胶电泳;D放射自显影术
11、 简述高尔基体的功能。P175-180
高尔基体的主要功能是参与细胞的分泌活动,将内质网合成的多种蛋白质进行加工、分类与包装,然后运送到细胞的特定部位或分泌到细胞外。是细胞内物质运输的交通枢纽。
(1)高尔基体与细胞的分泌作用——蛋白质的运输
(2)蛋白质的糖基化及其修饰
(3)蛋白质水解和其他加工过程
5、 生物膜的基本结构特征是什么?生物膜的结构与生理功能的关系?
(1) 具有极性头部和非极性尾部的磷脂分子在水相中具有自发形成封闭的膜系统的性质,以疏水性非极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,尚未发现在生物膜结构中起组织作用的蛋白。
(2) 蛋白分子以不同的方式镶嵌在脂双分子中或结合在其表面,蛋白的类型,蛋白分布的不对称性及其与脂分子的协同作用赋予生物膜具有各自的特性与功能。

名词解释:细胞器的结构和功能

名词解释:细胞器的结构和功能

细胞器的结构和功能【细胞质】在细胞膜以内和细胞核以外的部分称为细胞质。

包括细胞质基质、细胞器和内含物等。

细胞质基质是细胞质的基本成分,主要由水、无机盐、脂类、糖、蛋白质等组成,内含物是细胞生命活动中的代谢产物,如色素粒、分泌颗粒、脂肪滴和糖元等。

【细胞器】分布在细胞质中、具有特定的形态、结构和生理功能的小“器官”,称为细胞器。

如线粒体、质体、内质网、核糖体、高尔基体、溶酶体、中心体、液泡、微丝和微管等。

【线粒体】广泛存在于真核细胞的细胞质中的一种由双层单位膜围成的细胞器。

是细胞呼吸产生 ATP 的主要场所。

最早发现线粒体的是 R . A .科里凯尔 (1857 年 ) , C .贝尔于 1897 年命名为线粒体。

线粒体用詹姆斯绿稀溶液活体染色后,在光学显微镜下即可看到。

线粒体一般呈圆形、近圆形、棒状或线状,大小约 0 . 3μm ~ 0 . 8 μm × 0 . 4μm ~ 3μm 。

细胞内线粒体的数目和分布与供能活动有关,消耗能量较多的细胞内线粒体数目多,细胞内需能部位线粒体比较集中。

植物细胞内线粒体数目比动物细胞少,因线粒体的某些功能已被叶绿体取代。

电镜下观察,线粒体由两层单位膜围成。

外膜厚约 6 nm ,蛋白质与脂质含量比为 1 : 1 ,膜的通透性很高。

内膜厚约 6 nm ~ 8 nm ,蛋白质与脂质含量比约为 4 : 1 ,膜的通透性很低。

内膜向内折叠成嵴,内膜和嵴的内表面上有许多有柄基粒。

外膜上含有 NADH 一细胞色素 C 一还原酶系统,而内膜含有呼吸链和氧化磷酸化酶系。

内外膜之间有宽约 8 . 5 nm 的膜间腔,与嵴内腔形成一个连续的空间,其中充满液体,含有腺苷酸激酶和核苷二磷酸激酶。

内膜包围的线粒体内腔中充满基质,内有小的核糖体、磷酸钙沉淀颗粒,少量的环状 DNA 和 RNA ,以及三羧酸循环和脂肪磷酸化酶系等。

线粒体是细胞呼吸的主要场所,三羧酸循环在线粒体基质中完成,通过呼吸链的氧化磷酸化在内膜上完成。

组织学与胚胎学名词解释

组织学与胚胎学名词解释

组织学与胚胎学名词解释1、组织(tissue):由形态结构和生理功能相同或相似的细胞群和细胞外基质构成的人体结构单位称为组织。

人体的基本组织有四大类型,即上皮组织、结缔组织、肌组织、和神经组织。

2、细胞外基质(extracellular matrix):细胞外基质又称细胞间质,由细胞产生,主要由生物大分子构成,如蛋白多糖和糖蛋白等,是细胞生存的微环境,对细胞有支持、保护和营养等作用,对细胞的增殖分化、运动和信息传导也有重要影响。

3、免疫组织化学术(immunohistochemistry):根据免疫学抗原与抗体特异性结合的原理,检测组织和细胞中多肽和蛋白质等抗原物质的一种技术称为免疫组织化学术,这种方法特异性强、敏感度高、应用广泛。

4、内皮(endothelium):铺衬与心血管和淋巴管内表面的单层扁平上皮称为内皮,其表面光滑,利于血液和淋巴流动。

5、间皮(mesothelium):覆盖在胸膜、腹膜、和心包膜表面的单层扁平上皮称为间皮,其主要功能是保持器官表面光滑,减少器官间的摩擦。

6、微绒毛(microvillus):微绒毛是细胞游离面的细胞膜及细胞质向外突出而形成的微细指状突起,其主要生理功能是扩大细胞的表面积。

7、纤毛(cilium):纤毛是细胞游离面的细胞膜和细胞质向外伸出粗而长的突起,中轴有“9+2”规则排列的微管。

纤毛可定向摆动,从而将粘附于上皮表面的分泌物及有害物排出。

8、紧密连接(tight junction):紧密连接又称闭锁小带,单层柱状上皮中的紧密连接位于相邻细胞间隙的顶端,呈箍状环绕细胞顶端,该处相邻细胞膜呈间断融合,融合处细胞间隙消失,未融合处有极狭窄的细胞间隙存在。

紧密连接除有连接作用外,尚有屏障作用,可防止物质穿过细胞间隙。

9、中间连接(intermediate junction):中间连接又称黏着小带,多位于单层柱状上皮紧密连接的下方,呈带状环绕上皮细胞,此处相邻细胞间有15-20nm宽的间隙,间隙内充满细丝状物质,横向连接相邻细胞膜。

细胞学第7章复习题

细胞学第7章复习题

第七章真核细胞内膜系统、蛋白质分选与膜泡运输1一.名词解释1.细胞内膜系统:位于细胞质内,在结构、功能及发生上密切相关的内膜包绕形成的细胞器或细胞结构,是真核细胞特有的结构。

主要包括内质网、高尔基体和溶酶体等。

2.初级溶酶体:是指刚从高尔基体的边缘膨大分离出来,还未同消化物融合的潜伏状态,无活性。

3.次级溶酶体:是酶在进行或完全消化作用的溶酶体,内含水解酶和相应的底物。

根据自身消化物质得来源不同,分为自噬溶酶体和异噬溶酶体4. 细胞质基质:真核细胞的细胞质中除去可分辨的细胞器以外的胶状物质,主要含有与中间代谢有关的酶和维持细胞形态、胞内物质运输有关的细胞质骨架结构等。

二.填空题1.在内质网上合成的蛋白主要包括分泌蛋白、膜整合蛋白、细胞器驻留蛋白等。

2.蛋白质的糖基化修饰主要分为N-连接的糖基化修饰,指的是蛋白质上的天冬酰胺残基与N-乙酰葡萄糖胺直接连接,和O-连接的糖基化修饰,指的是蛋白质上的丝氨酸或苏氨酸残基与N-乙酰半乳糖胺直接连接。

3.肌细胞中的内质网异常发达,被称为肌质网。

4.原核细胞中核糖体一般结合在细胞质膜上,而真核细胞中则结合在粗面内质网上。

5.真核细胞中,光面内质网是合成脂类分子的细胞器。

6.内质网的标志酶是葡萄糖-6-磷酸酶。

7.细胞质中合成的蛋白质如果存在信号肽,将转移到内质网上继续合成。

如果该蛋白质上还存在停止转移序列,则该蛋白被定位到内质网膜上。

8.高尔基体的标志酶是糖基转移酶。

9.具有将蛋白进行修饰、分选并分泌到细胞外的细胞器是高尔基体。

10.被称为细胞内大分子运输交通枢纽的细胞器是高尔基体。

11.蛋白质的糖基化修饰中,N-连接的糖基化反应一般发生在内质网中,而O-连接的糖基化反应则发生在和高尔基体中。

12.蛋白质的水解加工过程一般发生在高尔基体中。

13.从结构上高尔基体主要由顺面膜囊、中间膜囊和反面膜囊和囊泡组成。

14.植物细胞中与溶酶体功能类似的结构是圆球体、中央液泡和糊粉粒。

(细胞生物学基础)第四章细胞质基质与细胞内膜系统

(细胞生物学基础)第四章细胞质基质与细胞内膜系统
三羧酸循环
在线粒体中,丙酮酸经过三羧酸 循环被彻底氧化分解,释放大量 能量并生成ATP。
03
内膜系统
内膜系统的组成
01
内质网
由扁平的膜囊和泡状的小管组成,分为粗面内质网和 光面内质网,是细胞内表面积最大的膜系统。
02 高尔基体 由扁平的囊和小泡组成,主要参与蛋白质的加工、分 类和运输。
03 溶酶体 含有多种水解酶,能够分解衰老的细胞器和外来微生 物等。
胞器的过程。这种转运方式在细胞内广泛存在,对于维持细胞的正常功
能至关重要。
03
跨膜运输
跨膜运输是指物质通过细胞膜的脂质双分子层进行运输的过程。细胞质
基质中的物质可以通过内膜系统中的膜蛋白进行跨膜运输,从而实现物
质在细胞内的定向流动。
信号转导
信号转导
细胞质基质和内膜系统中的各种分子和细胞器参与了信号转导过程。当细胞受到外界刺激 时,信号分子会与细胞表面的受体结合,引发一系列的生化反应,最终导致细胞反应的发 生。
氧化磷酸化
氧化磷酸化是能量代谢中的另一个重要过程,它涉及到线粒体中的电子传递和ATP合成。这个过程需要内 膜系统中各种酶和分子的参与和调控,以确保能量的正常产生和利用。
05
总结
本章重点回顾
细胞质基质的组成和功能
细胞质基质是由水、无机盐、 脂质、糖类、氨基酸、核苷酸 和多种酶等组成的复杂溶液, 具有维持细胞形态、提供能量 、参与物质合成和分解等作用 。
有机小分子
如氨基酸、核苷酸、糖类、脂 类等,参与细胞代谢和能量转 换。
酶类
参与细胞代谢和调节的酶类, 如蛋白质合成酶、分解酶等。
细胞质基质的功能
维持细胞的形态结构
细胞质基质提供了细胞骨架和膜结构的支撑,维 持细胞的形态和完整性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细胞基质名词解释
细胞基质是一种细胞外基质,包含在细胞周围的基质分子和细胞外膜,以及细胞所分泌的基质蛋白和其他细胞因子。

细胞基质对于细胞的生长、分裂、分化和功能发挥都有着重要的影响。

在细胞的生物学功能中,细胞外基质发挥着至关重要的作用。

细胞外基质中的胶原蛋白、弹性蛋白、纤维连接蛋白等分子能够增强细胞的弹性和韧性,保持细胞形态和结构。

细胞外基质还能够提供支持和屏障作用,保护细胞免受外界损伤和氧化应激的影响。

此外,细胞外基质还能够促进细胞间相互作用和细胞外信号的传递,从而调节细胞增殖、分化和死亡等生物学过程。

在肿瘤的生长和转移中,细胞外基质也发挥着重要的作用。

肿瘤组织中丰富的细胞外基质能够提供支持和营养,促进肿瘤细胞的增殖和分化。

细胞外基质中的基质金属蛋白(MFG)1和MFG3等分子还能够增强肿瘤的免疫逃逸能力,降低免疫细胞对肿瘤的杀伤作用。

除了对细胞的功能发挥有重要影响外,细胞外基质还对疾病的诊断和治疗有着重要的影响。

例如,在心血管疾病中,细胞外基质的过度表达会导致血管重构和狭窄,从而影响心脏的功能。

因此,通过检测细胞外基质的表达水平,可以诊断心血管疾病,并预测疾病的严重程度。

此外,细胞外基质的干预治疗也可以用于治疗心血管疾病,例如通过抑制细胞外基质中MFG1的表达,可以降低心血管疾病的风险。

细胞外基质是一种重要的细胞外膜和基质蛋白,对细胞的增殖、分化和功能发挥有着重要的影响。

在疾病的诊断和治疗中,细胞外基质的表达水平也具有重要的临床意义。

相关文档
最新文档