幂函数的图像与性质
2.3 幂函数图像与性质

(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6
意
2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2
幂函数图像与性质

a=1
解:(1)y= x0.8在(0,+∞)内是增函数,
0<a<1
∵5.2<5.3 ∴ 5.20.8 < 5.30.8
a=0
(2)y=x0.3在(0,∞)内是增函数 ∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数 ∵2.5<2.7∴ 2.5-2/5>2.7-2/5
(1)1与 比较时,可将1化为
,
即要么与数同底,要么与数同指
若能化为同指数,则用幂函数的单调性; 若能化为同底数,则用指数函数的单调性;
例3
若m
4
1 2
3
2m
1 2
,
则求m的取值范围.
解
:Q
幂函数f
(x)
x
1
2的定义域是(0,
)
且在定义域上是减函数,
0 3 2m m 4
1 m 3 ,即为m的取值范围. 32
(-1,1)
(1,1)
y=x-1
2、在第一象限内, α >0,在(0,+∞)上为增函数;
-4
-2
2
4
6 α <0,在(0,+∞)上为减函数.
-1
(-1,-1)
3、α为奇数时,幂函数为奇函数,
-2
α为偶数时,幂函数为偶函数.
-3
-4
幂函数在第一象限内的图像与性质
0< <1
>1
<0
图
象y
y
y
特1 点 o1
(1)y 3x;
(2) y
1 x2
;
(3) y 2x2;
幂函数的图像及性质

函数,∴由 (a ?1)3 ? (3? 2a)3 ,得a-1<3+2a 即a>-4 .
∴所求a的取值范围是 (-4,+∞).
幂函数的图像及性质
【变形训练】
1、已知幂函数 y ? (mm2 ? ? 1)xm2?2m?3 ,当x∈
(0,+ ∞)时为减函数,则该幂函数的解析式是什么 ?奇偶性如何?单调性如何?
(2)由(1)知,f(x)的单调减区间为 (0,+∞), ∴函数 f(x) 在[1,+ ∞)上是减函数, ∴函数f(x)在[1,+∞)上的最大值为 f(1)=2.
幂函数的图像及性质
【典型例题】
2、已知幂函数 y=xp-3 (p∈N*)的图象关于 y轴
对称,且在 (0,+∞)上是减函数,求满足
p
p
(a ? 1) 3 ? (3 ? 2a ) 3 的a的取值范围 .
解:函数 f(x)在(0,+∞)上是减函数. 证明如
下:
任f(x取1)-x1、f(xx22)∈=(0x,212 +? x∞222),? 且2(xxx21122<?xx2x22,12)
?
2(x1
? x2)(x2 x12 x22
?
x1)
幂函数的图像及性质
【典型例题】
∵0<x 1<x2,∴ x1+x2>0,x2-x1>0, x12x22>0. ∴f(x1)-f(x2)>0,即f(x1)>f(x2). ∴函数f(x)在(0,+∞)上是减函数 .
解:∵函数 y=xp-3在(0,+∞)上是减函数,
∴p -3<0,即 p<3 ,
又∵ p ∈N*,∴ p =1,或 p =2.
∵函数y=xp-3的图象关于 y轴对称,∴ p-3是偶数,
幂函数知识点总结

幂函数知识点总结幂函数是数学中常见的一类函数,它的形式可以表示为f(x) = x^a,其中a为常数。
幂函数的特点是变量x的指数是常数,因此它的图像通常呈现出一种非常特殊的形状。
1.幂函数的定义域和值域:幂函数的定义域为实数集R,即它对于任意实数x都有定义。
而值域则取决于幂函数的指数a的取值范围。
当a为正数时,幂函数的值域为正实数集(0, +∞),即函数的值始终大于0;当a为负数时,幂函数的值域为负实数集(-∞, 0),即函数的值始终小于0;当a为0时,幂函数的值域只包含一个点1,即函数的值始终等于1。
2.幂函数的图像:幂函数的图像形状取决于指数a的正负和大小。
当a为正数时,幂函数的图像呈现出从左下方无限趋近于x轴的曲线,且经过点(0,0)。
随着a的增大,曲线的增长速度越来越快。
当a为负数时,幂函数的图像呈现出从右上方无限趋近于x轴的曲线,且经过点(0,0)。
随着a的减小,曲线的增长速度越来越慢。
当a为0时,幂函数的图像为一条水平直线,过点(0,1)。
3.幂函数的性质:•幂函数是奇函数还是偶函数取决于指数a的奇偶性。
当a为奇数时,幂函数是奇函数;当a为偶数时,幂函数是偶函数。
•当指数a为正整数时,幂函数的增长速度越来越快,当a为负整数时,幂函数的增长速度越来越慢。
•当指数a大于1时,幂函数的增长速度超过线性函数;当指数a介于0和1之间时,幂函数的增长速度介于线性函数和指数函数之间。
•幂函数的导数为f’(x) = a * x^(a-1),其中a为指数。
当指数a为正数时,导数始终大于0,说明幂函数在整个定义域上是递增的;当指数a为负数时,导数始终小于0,说明幂函数在整个定义域上是递减的。
综上所述,幂函数是一种常见的函数形式,它的图像和性质都受到指数a的影响。
通过对幂函数的研究,我们可以更好地理解函数的变化规律和特点。
第四单元_第三节_幂函数的图像及其性质

像 及
正向逐渐上升;当 0时,幂函数 y x 的图
性
像沿 x 轴的正向逐渐下降。
质
函数性质:(1) x 1时, y 1。
(2)当 0 时,幂函数 y x 在 (0, ) 上单调增加;
当 0时,幂函数 y x 在 (0, ) 上单调减少。
作业布置 巩固练习
巩固练习
2.53 2.63
1
逐渐下降。
新课探究 启发解疑
图像性质
(1) x 1时, y 1。
(2)当 0时,幂函数 y x 在(0, ) 上单 调增加;当 0时,幂函数 y x 在(0, )上
单调减少。
温馨提示 小结反思
知识点小结
函 图像性质:(1)图像都经过点 (1,1) 。
数 图
(2)当 0 时,幂函数 y x 的图像沿 x 轴的
1 x2
,所以
y
x2的定义域为,0 (0, ) 。
列表如下:
x … 2 1 1 1 1 2 … 22
y…1
1
4
4
1
1
…
4
4
以表中的每一组 x , y 的值为点的坐标, 描出相应的点,用光 滑的曲线联结这些 点,得到函数 y x2 的图像,如图所示。
新课探究 启发解疑
归纳提升
仿例 1、例 2 在同一坐标系中画出函数 y x3、 y x2 、y x 、
1
3.7 5 3.8 5
比较下列每组中两个数的大小:
(1)2.53和2.63; 答案
(2)3.7
1 5
和3.8
1 5
;
答案
1
1
7.53 7.63
1
1
(3)7.53 和7.63;
幂函数图像及其性质

幂函数图像及其性质幂函数是一种常见的数学函数形式,它的数学表达式为f(x)=ax^b,其中a和b是实数,且a不等于零。
幂函数的图像展示了函数的特性和行为,这对我们进一步了解和应用幂函数有着重要意义。
一、幂函数的图像及其特征通过观察幂函数的图像,我们可以得到以下几个基本特征:1. 幂函数的图像总是通过点(0,0)。
当x等于零时,幂函数的结果总是零。
2. 当b为正数时,幂函数的图像从左上方向右下方斜率逐渐减小,渐近于x轴。
这是因为幂函数中的x不断增大时,幂函数的值以一个较小的速度增加。
3. 当b为负数时,幂函数的图像从右上方斜率逐渐减小,渐近于x 轴。
这是因为幂函数中的x不断减小时,幂函数的值以一个较小的速度增加。
4. 当b为偶数时,幂函数的图像在第一象限和第三象限均为正,且有一个最小值点或者最大值点。
这是由于幂函数的平方等于0或者正数。
5. 当b为奇数时,幂函数的图像在第一象限和第三象限均为正,且没有最小值点或者最大值点。
这是由于幂函数的绝对值在整个定义域内都为正。
二、幂函数图像的变化规律1. 当a大于0时,幂函数的图像在整个定义域内为正。
随着b的增大,幂函数的图像变得平缓,斜率逐渐减小;随着b的减小,幂函数的图像变得陡峭,斜率逐渐增大。
2. 当a小于0时,幂函数的图像在整个定义域内交替在x轴上方和下方。
随着b的增大或减小,幂函数的图像也会随之变化。
3. 当a等于1时,幂函数的图像变成了恒等函数的图像y=x。
即幂函数退化为y=x的特例。
三、幂函数的性质1. 定义域和值域:幂函数的定义域是实数集R,值域取决于a和b 的取值范围。
2. 奇偶性:当b为偶数时,幂函数是偶函数,关于y轴对称;当b 为奇数时,幂函数是奇函数,关于原点对称。
3. 单调性:当b大于0时,幂函数在整个定义域内是单调递增的;当b小于0时,幂函数在整个定义域内是单调递减的。
4. 渐近线和交叉点:当b大于0时,幂函数的图像会渐近于x轴;当b小于0时,幂函数的图像会与x轴交叉于一个点,并渐近于x 轴。
幂函数图象及其性质

1.7
,∴ 1 1.52
1
1.7 2
( 2 ) ∵ y x3 在 R 上 是 增 函 数 , 1.2 1.25 , ∴
(1.2)3 (1.25)3
( 3 ) ∵ y x1 在 (0,) 上 是 减 函 数 , 5.25 5.26 , ∴
Where there is a will,there is a way.
幂函数 y=xα 有下列性质:(1)单调性:当 α
>0 时,函数在(0,+∞)上单调递增;当 α<0
时,函数在(0,+∞)上单调递减.(2)奇偶性:幂
函数中既有奇函数,又有偶函数,也有非奇非偶
函数,可以用函数奇偶性的定义进行判断.
例
3.已知幂函数
y
( xm2 2m3
mZ
)的图象与
x
轴、
y 轴都无交点,且关于原点对称,求 m 的值.
B.y x3
C.y 2x
D.y x1
答案:C
例 2.已知函数 f x m2 m 1 x5m3 ,当 m 为何值时, f x: (1)是幂函数;(2)是幂函数,且是 0, 上的 增函数;(3)是正比例函数;(4)是反比例函数;
(5)是二次函数;
简解:(1)m 2 或 m 1(2)m 1(3)m 4(4)m 2
幂函数图象及其性质
幂函数图象及其性质
幂函数的图像与性质
1、幂函数的定义 形如 y=xα(a∈R)的函数称为幂函数,其中 x
是自变量,α为常数
注:幂函数与指数函数有本质区别在于自变量的
位置不同,幂函数的自变量在底数位置,而指数
函数的自变量在指数位置。
例题、(1). 下列函数中不是幂函数的是( )
A.y x
幂函数的像与性质

幂函数的像与性质幂函数是高中数学中一个重要的函数概念,它在数学分析、微积分和图像绘制等领域中有着广泛的应用。
在本文中,我们将探讨幂函数的像以及其性质。
一、幂函数的定义和基本形式幂函数的定义如下:f(x) = x^a其中,a为实数,x为定义域内的数值。
幂函数的基本形式有两种:1. 正幂函数:当a>0时,幂函数f(x) = x^a是递增函数,即随着x的增大,f(x)也随之增大。
这种幂函数的图像呈现单调递增的趋势,且过原点(0,0)。
2. 负幂函数:当a<0时,幂函数f(x) = x^a是递减函数,即随着x的增大,f(x)反而减小。
这种幂函数的图像则在第一象限和第三象限之间交替,过原点(0,0)。
二、1. 正幂函数的像正幂函数f(x) = x^a,当a>0时,其像为正实数集(0,+∞),即函数的取值范围为所有大于零的实数。
2. 负幂函数的像负幂函数f(x) = x^a,当a<0时,其像为(0, +∞)的一个区间,不包括0。
也就是说,负幂函数的取值范围是大于零的实数,但不包括0。
3. 幂函数的奇偶性幂函数f(x) = x^a的奇偶性与a的正负有关。
当a为偶数时,函数f(x)为偶函数,即关于y轴对称;当a为奇数时,函数f(x)为奇函数,即关于原点对称。
4. 幂函数的增减性正幂函数f(x) = x^a在定义域内是递增的。
对于a>1,函数的增长趋势会更为迅速;而当0<a<1时,函数f(x)的增长速度会减弱,趋于缓慢增长。
负幂函数f(x) = x^a在定义域内则是递减的。
5. 幂函数的图像幂函数的图像与a的取值密切相关。
当a>1时,幂函数的图像会向上迅速弯曲;当0<a<1时,图像会向下迅速弯曲;而当a<0时,图像在不同象限间变化。
三、幂函数在实际问题中的应用幂函数在实际问题中有广泛的应用。
以经济增长为例,经济学家常常使用幂函数模型来描述生产、消费和投资等经济变量之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
-4
x -3 -2 y x1 -1/3 1/2
- 1 2 3 1 - 1 1/ 1/ 1 2 3
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
∵5.2<5.3
∴ 5.20.8 < 5.30.8
a<0
a=0
a>1
(2)y=x0.3在(0,∞)内是增函数 ∵0.2<0.3∴ 0.20.3 <0.30.3 (3)y=x-2/5在(0,∞)内是减函数 ∵2.5<2.7∴ 2.5-2/5>2.7-2/5
a=1
0<a<1
a=0
例2 用不等号填空:
> (1)5.1-2 ____ 5.9-2; > 1.73.5 ____ 1.73; ( 2) > 0。 (3)若3a>2a,则a ____ > (4)1.30.5 ____ 0.51.3;
x
答案(2)(6)(8)
联系旧知 形成区别 指数函数与幂函数的对比 自变量在指 数位置
指数函数:y=a (a>0且a 1)
x
幂函数:y=x ( R)
自变量在 底数位置
快速反应
y 0.2
x
yx
1 2
(指数函数)
(幂函数)
yx
1
y 5
5
x
(幂函数) x
(指数函数)
y 3
y x
(3) 函数式前的系数都是1;
(4) 形式都是
yx
,其中 是常数.
练习:判断下列函数哪几个是幂函数?
1 () 1 y 3 ; (2) y 2 ; (3) y 2 x 2 ; x 1 2 (4) y x 1; (5) y 1; (6) y ; x (7) y ( x 1) 2 (8) y x 0 (9) y x 3
2
又因为f ( x)是偶函数
m 1不符合题意 , 舍去 m 2
yx y x 练 习 I 5 G 3
y x3 y x2
y
1 2
2 3
yx
E
4 3
yx
B
3
yx
C
2
yx
J
X y
yx
D
X
1 3
yx
Fy
O X
1 2
A
O X
H
y O
y
O
O
X
(A)
y O X
(B)
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
x
0
1 2
1
2
4
-3
yx
0
1
2
2
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
(2,4) y=x2 y=x
3
2
1
(-1,1)
-6 -4 -2
(1,1)
2 4 6
-1
(-1,-1)
-2
-3
x -3 -2 -1 0 1 2 3 y=x -27 -8 -1 0 1 8 3 27
C4 C2 C3 C1 应图象依次为:________
1
范例讲解
例1. 利用单调性判断下列各值的大小。 (1)5.20.8 与 5.30.8 (2)0.20.3 与 0.30.3
(3) 解:(1)y= x0.8在(0,+∞)内是增函数,
-2 -2 2.5 5 与 2.7 5
a<0
a>1
a=1
0<a<1
1 2
范例讲解
例2.如果函数 f ( x) (m m 1) x 是幂函数,求满足条件的实数m的值.
2
m2 2 m 3
解:由题意有
m2 m 1 1
m2 m 2 0
m 2或m 1
三、五个常用幂函数的 图象和性质
2 3 y x (1) (2) y x (3) y x
1 2
解: 幂函数f ( x) x 的定义域是(0,) 且在定义域上是减函数 , 0 3 2m m 4 1 3 m ,即为m的取值范围 . 3 2
1 2
范例讲解
例4.如果函数 f ( x) (m m 1) x 是幂函数,且在区间(0,+∞)内是减函数,
(-2,4)
4
y=x3
(2 (4,2)
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
(-1,-1)
-2
当a为奇数时,幂函数为奇函数, 当a为偶数时,幂函数为偶函数.
-3
-4
0< <1
图 象 特 点 性 质
y y
>1
y
<0
1 o 1 x
2
m2 2 m 3
求满足条件的实数m的值.
m2 m 1 1 解:由题意有 2 m 2m 3 0 m2 m 2 0 m 2 或 m 1 2 2 m 2m 3 0 m 2m 3 0
m 2
yx
\ \ \ 0 1 1
27 …
2
3 …
…
y x … -1/3
1
-1 \ 1/2
1/ 1/2 3
4
3
2
1
(1,1)
2 4 6
-6
-4
-2
-1
(-1,-1)
-2
-3
-4
-3 -2 -1 0 1 2 3 y=x 9 4 1 0 1 4 2 9
x
4
3
y=x
2
1
(1,1)
2 4 6
-6
-4
-2
1 o
1
1
x
o
1
x
都经过定点(1,1) 在[0,+∞)为 在[0,+∞)为 在(0,+∞)为 单调增函数. 单调增函数. 单调减函数.
(慢增)
(快增)
(慢减)
幂函数在第一象限的图像
幂函数图象在第一象限的分布情况:
1
0
=1
0 1
★所有的幂函数在(0,+∞)都有定 义,并且函数图象都通过点(1,1). ★如果a>0,则幂函数的图象过 点(0,0),(1,1)并在[0,+∞) 上为增 函数.
R R
R
[0,+∞)
R [0,+∞)
R [0,+∞)
{x|x≠0}
{y|y≠0}
奇 增
偶
x∈[0,+∞)时,增 x∈(-∞,0]时,减
奇 增
(1,1) (0,0)
非奇非偶
奇
x∈[0,+∞)时,减 x∈(-∞,0]时,减
增
(1,1) (0,0)
(1,1) 公共点 (0,0)
(1,1) (0,0)
(1,1)
幂函数
问题引入
我们先看几个具体问题:
(1) 如果回收旧报纸每公斤1元,某班每年卖旧报纸 yx x公斤,所得价钱y是关于x的函数 (2) 如果正方形的边长为x,面积y,这里y是关于 2 x的函数; yx (3) 如果正方体的边长为x, 正方体的体积为y, 3 这里y是关于x函数; yx (4)如果一个正方形场地的面积为x, 这个正方形的 1 边长为y,这里y是关于x的函数; y x2 (5)如果某人x秒内骑车行驶了1km,他骑车的平 1 均速度是y,这里y是关于x的函数. yx 以上各题目的函数关系分别是什么?
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4 6
-1
(-1,-1)
-2
-3
-4
(-2,4)
4
y=x3
(2,4) y=x2 y=x (4,2)
1
3
y=x 2
2
1
(-1,1)
-6 -4 -2
(1,1)
2
y=x-1
4
y=x0
6
-1
(-1,-1)
-2
-3
-4
二、新课讲解
y=x 定义域 值域 奇偶性 单调性 y=x2 y=x3 y=x1/2 y=x-1
从而有 f ( x) x +∞)内是减函数.