2013莆田中考数学试题(解析版)

合集下载

数学:中考2013年各地数学试题解析(齐齐哈尔、黑河、莆田)

数学:中考2013年各地数学试题解析(齐齐哈尔、黑河、莆田)

黑龙江省齐齐哈尔、黑河、大兴安岭2013年中考数学试卷一、单项选择题(每题3分,满分30分)1.(3分)(2013•齐齐哈尔)下列数字中既是轴对称图形又是中心对称图形的有几个()A.1个B.2个C.3个D.4个考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:第一个数字不是轴对称图形,是中心对称图形,不符合题意;第二个数字即是轴对称图形,又是中心对称图形,符合题意;第三个数字既是轴对称图形,又是中心对称图形.符合题意;第四个数字是轴对称图形,不是中心对称图形,不符合题意.共2个既是轴对称图形又是中心对称图形.故选B.点评:掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.2.(3分)(2013•齐齐哈尔)下列各式计算正确的是()A.a2+a2=2a4B.=±3C.(﹣1)﹣1=1D.(﹣)2=7考点:负整数指数幂;算术平方根;合并同类项;二次根式的乘除法.分析:分别进行合并同类项、二次根式的化简、负整数指数幂、乘方等运算,然后结合选项选出正确答案即可.解答:解:A、a2+a2=2a2,原式计算错误,故本选项错误;B、=3,原式计算错误,故本选项错误;C、(﹣1)﹣1=﹣1,原式计算错误,故本选项错误;D、(﹣)2=7,原式计算正确,故本选项正确;故选D.点评:本题考查了合并同类项、二次根式的化简、负整数指数幂、乘方等知识,属于基础题,掌握各知识点的运算法则是解题的关键.3.(3分)(2013•齐齐哈尔)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()A.B.C.D.考点:函数的图象.分析:由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.解答:解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;故选B.点评:主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.(3分)(2013•齐齐哈尔)CD是⊙O的一条弦,作直径AB,使AB⊥CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8B.2C.2或8D.3或7考点:垂径定理;勾股定理.专题:计算题.分析:连结OC,根据垂径定理得到CE=4,再根据勾股定理计算出OE=3,分类讨论:当点E在半径OB上时,BE=OB﹣OE;当点E在半径OA上时,BE=OB+OE,然后把CE、OE的值代入计算即可.解答:解:如图,连结OC,∵直径AB⊥CD,∴CE=DE=CD=×8=4,在Rt△OCE中,OC=AB=5,∴OE==3,当点E在半径OB上时,BE=OB﹣OE=5﹣3=2,当点E在半径OA上时,BE=OB+OE=5+3=8,∴BE的长为2或8.故选C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.5.(3分)(2013•齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S甲2=1.4,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲对;故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.(3分)(2013•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种考点:二元一次方程的应用.分析:设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可.解答:解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,答:有3种不同的安排.故选:C.点评:此题主要考查了二元一次方程的应用,解答此题的关键是,根据题意,设出未知数,列出不定方程,再根据不定方程的未知数的特点解答即可.7.(3分)(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.则其中正确结论的序号是()A.①②B.②③C.①②④D.①②③④考点:二次函数图象与系数的关系.分析:由于抛物线过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴相交,则得到抛物线开口向下,对称轴在y轴右侧,于是可判断a<0,b>0,c>0,所以abc<0;利用抛物线与x轴有两个交点得到b2﹣4ac>0,即b2>4ac;由于x=2时,y=0,即4a+2b+c=0,变形得2a+b+=0,则根据0<c<2得2a+b+1>0;根据根与系数的关系得到2x1=,即x1=,所以﹣2<<﹣1,变形即可得到2a+c>0.解答:解:如图,∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴相交,∴a<0,c>0,对称轴在y轴右侧,即x=﹣>0,∴b>0,∴abc<0,所以①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以②正确;当x=2时,y=0,即4a+2b+c=0,∴2a+b+=0,∵0<c<2,∴2a+b+1>0,所以③错误;∵二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),∴方程ax2+bx+c=0(a≠0)的两根为x1,2,∴2x1=,即x1=,而﹣2<x1<﹣1,∴﹣2<<﹣1,∵a<0,∴﹣4a>c>﹣2a,∴2a+c>0,所以④正确.故选C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.(3分)(2013•齐齐哈尔)下列说法正确的是()A.相等的圆心角所对的弧相等B.无限小数是无理数C.阴天会下雨是必然事件D.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k考点:位似变换;无理数;圆心角、弧、弦的关系;随机事件.分析:根据圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质分别判断得出答案即可.解答:解:A、根据同圆或等圆中相等的圆心角所对的弧相等,故此选项错误;B、根据无限不循环小数是无理数,故此选项错误;C、阴天会下雨是随机事件,故此选项错误;D、根据位似图形的性质得出:在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,故此选项正确;故选:D.点评:此题主要考查了圆周角定理以及无理数的定义和随机事件的定义和位似图形的性质等知识,熟练掌握相关性质是解题关键.9.(3分)(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是()A.0<x0<1B.1<x0<2C.2<x0<3D.﹣1<x0<0考点:二次函数的图象;反比例函数的图象专题:数形结合.分析:建立平面直角坐标系,然后利用网格结构作出函数y=x2+1与y=的图象,即可得解.解答:解:如图,函数y=x2+1与y=的交点在第一象限,横坐标x0的取值范围是1<x0<2.故选B.点评:本题考查了二次函数图象,反比例函数图象,准确画出大致函数图象是解题的关键,此类题目利用数形结合的思想求解更加简便.10.(3分)(2013•齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE②BG⊥CE③AM是△AEG的中线④∠EAM=∠ABC,其中正确结论的个数是()A.4个B.3个C.2个D.1个考点:全等三角形的判定与性质;正方形的性质.分析:根据正方形的性质可得AB=AE,AC=AG,∠BAE=∠CAG=90°,然后求出∠CAE=∠BAG,再利用“边角边”证明△ABG和△AEC全等,根据全等三角形对应边相等可得BG=CE,判定①正确;设BG、CE相交于点N,根据全等三角形对应角相等可得∠ACE=∠AGB,然后求出∠CNG=90°,根据垂直的定义可得BG⊥CE,判定②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,根据同角的余角相等求出∠ABH=∠EAP,再利用“角角边”证明△ABH和△EAP全等,根据全等三角形对应角相等可得∠EAM=∠ABC判定④正确,全等三角形对应边相等可得EP=AH,同理可证GQ=AH,从而得到EP=GQ,再利用“角角边”证明△EPM和△GQM 全等,根据全等三角形对应边相等可得EM=GM,从而得到AM是△AEG的中线.解答:解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∵在△ABG和△AEC中,,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,∴∠CNG=360°﹣(∠NCF+∠NGF+∠F)=360°﹣(180°+90°)=90°,∴BG⊥CE,故②正确;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=180°﹣90°=90°,∴∠ABH=∠EAP,∵在△ABH和△EAP中,,∴△ABH≌△EAP(AAS),∴∠EAM=∠ABC,故④正确,EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,,∴△EPM≌△GQM(AAS),∴EM=GM,∴AM是△AEG的中线,故③正确.综上所述,①②③④结论都正确.故选A.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,在解答时作辅助线EP⊥HA的延长线于P,过点G作GQ⊥AM于Q构造出全等三角形是难点,运用全等三角形的性质是关键.二、填空题(每题3分,满分30分)11.(3分)(2013•齐齐哈尔)某种病毒近似于球体,它的半径约为0.00000000495米,用科学记数法表示为 4.95×10﹣9米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000000495米用科学记数法表示为4.95×10﹣9.故答案为:4.95×10﹣9.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2013•齐齐哈尔)小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是.考点:几何概率.分析:根据概率的意义解答即可.解答:解:∵飞镖盘被平均分成8分,阴影部分占3块,∴小明能获得奖品的概率是.故答案为:.点评:本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x的取值范围是x≥0且x≠3且x≠2.考点:函数自变量的取值范围;零指数幂.分析:根据被开方数大于等于0,分母不等于0,零指数幂的底数不等于0列式计算即可得解.解答:解:根据题意得,x≥0且x﹣3≠0且x﹣2≠0,解得x≥0且x≠3且x≠2.故答案为:x≥0且x≠3且x≠2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数;零指数幂的底数不等于零.14.(3分)(2013•齐齐哈尔)圆锥的母线长为6cm,底面周长为5πcm,则圆锥的侧面积为15πcm2.考点:圆锥的计算.分析:•2πr•l=πrl,代入计算即可.圆锥的侧面积:S侧=解答:•2πr•l=5π×6=15πcm2.解:S侧=故答案为:15πcm2.点评:本题考查了圆锥的计算,解答本题的关键是熟练记忆圆锥侧面积的计算方法.15.(3分)(2013•齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD(填一个即可)考点:相似三角形的判定.专题:开放型.分析:根据相似三角形的判定:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似,进行添加即可.解答:解:∵∠B=∠B(公共角),∴可添加:∠C=∠BAD.此时可利用两角法证明△ABC与△DBA相似.故答案可为:∠C=∠BAD.点评:本题考查了相似三角形的判定,注意掌握相似三角形判定的三种方法,本题答案不唯一.16.(3分)(2013•齐齐哈尔)若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.考点:分式方程的解分析:将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得:x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.故答案为:a且a.点评:此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x﹣1≠0这个隐含条件.17.(3分)(2013•齐齐哈尔)如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由6或7或8个正方体搭成的.考点:由三视图判断几何体分析:易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二、三层立方体的可能的个数,相加即可.解答:解:综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有1个,最多有2个,第三层最少有1个,最多有2个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+1+1=6个,至多需要小正方体木块的个数为:4+2+2=8个,即这个几何体可能是由6或7或8个正方体搭成的.故答案为:6或7或8.点评:此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.18.(3分)(2013•齐齐哈尔)请运用你喜欢的方法求tan75°=2+.考点:解直角三角形.专题:计算题.分析:先作△BCD,使∠C=90°,∠DBC=30°,延长CB到A,使AB=BD,连接AD,得出∠ADC=75°,设CD=x,用含x的代数式表示出AB、BD、BC,进一步表示出AC.根据tan∠ADC=tan75°=AC:CD求解.解答:解:如图,作△BCD,使∠C=90°,∠DBC=30°,延长CB到A,使AB=BD,连接AD.∵AB=BD,∴∠A=∠ADB.∵∠DBC=30°=2∠A,∴∠A=15°,∠ADC=75°.设CD=x,∴AB=BD=2CD=2x,BC=CD=x,∴AC=AB+BC=(2+)x,∴tan∠ADC=tan75°=AC:CD=2+.故答案为2+.点评:此题考查了解直角三角形的知识,解题的关键是作出含75°角的直角三角形,然后在直角三角形中求解,要求学生有较强逻辑推理能力和运算能力.19.(3分)(2013•齐齐哈尔)正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为或.考点:相似三角形的判定与性质;正方形的性质专题:分类讨论.分析:由EF与线段BD相交,可知点E、F位于直线BD的两侧,因此有两种情形,需要分类讨论.以答图1为例,首先证明△EMG≌△FDG,得到点G为Rt△AEF斜边上的中点,则求出EF=2AG=2;其次,在Rt△AEF中,利用勾股定理求出BE或DF的长度;然后在Rt△DFK中解直角三角形求出DK的长度,从而得到CK的长度,由AB∥CD,列比例式求出AH的长度;最后作HN∥AE,列出比例式求出EH的长度.解答:解:由EF与线段BD相交,可知点E、F位于直线BD的两侧,因此有两种情形,如下:①点E在线段AB上,点F在线段AD延长线上,依题意画出图形,如答图1所示:过点E作EM⊥AB,交BD于点M,则EM∥AF,△BEM为等腰直角三角形,∵EM∥AF,∴∠EMG=∠FDG,∠GEM=∠F;∵△BEM为等腰直角三角形,∴EM=BE,∵BE=DF,∴EM=DF.在△EMG与△FDG中,∴△EMG≌△FDG(ASA),∴EG=FG,即G为EF的中点,∴EF=2AG=2.(直角三角形斜边上的中线长等于斜边长的一半)设BE=DF=x,则AE=3﹣x,AF=3+x,在Rt△AEF中,由勾股定理得:AE2+AF2=EF2,即(3﹣x)2+(3+x)2=(2)2,解得x=1,即BE=DF=1,∴AE=2,AF=4,∴tan∠F=.设EF与CD交于点K,则在Rt△DFK中,DK=DF•tan∠F=,∴CK=CD﹣DK=.∵AB∥CD,∴,∵AC=AH+CH=3,∴AH=AC=.过点H作HN∥AE,交AD于点N,则△ANH为等腰直角三角形,∴AN=AH=.∵HN∥AE,∴,即,∴EH=;②点E在线段AB的延长线上,点F在线段AD上,依题意画出图形,如答图2所示:同理可求得:EH=.综上所述,线段EH的长为或.故答案为:或.点评:本题是几何综合题,考查相似三角形的综合运用,难度较大.解题关键是:第一,读懂题意,由EF与线段BD相交,可知点E、F位于直线BD的两侧,因此有两种情形,需要分类讨论,分别计算;第二,相似三角形比较多,需要理清头绪;第三,需要综合运用相似三角形、全等三角形、正方形、勾股定理、等腰直角三角形的相关性质.20.(3分)(2013•齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是k=(n=3,4,6)或k=2+(n=3,4,6)(写出n的取值范围)考点:正多边形和圆;多边形内角与外角.专题:规律型;分类讨论.分析:先根据n边形的内角和为(n﹣2)•180°及正n边形的每个内角相等,得出α=,再代入360=kα,即可求出k关于边数n的函数关系式,然后根据k为正整数求出n的取值范围.解答:解:∵n边形的内角和为(n﹣2)•180°,∴正n边形的每个内角度数α=,∵360=kα,∴k•=360,∴k=.∵k===2+,k为正整数,∴n﹣2=1,2,±4,∴n=3,4,6,﹣2,又∵n≥3,∴n=3,4,6.即k=(n=3,4,6).故答案为k=(n=3,4,6).点评:本题考查了n边形的内角和公式,正n边形的性质及分式的变形,根据正n边形的性质求出k关于边数n的函数关系式是解题的关键.三、解答题(满分60分)21.(5分)(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:把括号内的异分母分式通分并相减,然后把除法转化为乘法运算并进行约分,再根据非负数性质列式求出a、b的值,然后代入化简后的式子进行计算即可得解.解答:解:÷(a﹣),=÷,=•,=,∵|a﹣2|+(b﹣)2=0,∴a﹣2=0,b﹣=0,解得a=2,b=,所以,原式==2+.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.22.(6分)(2013•齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)考点:作图-旋转变换;作图-平移变换.分析:(1)根据平移的性质得出对应点坐标即可得出答案;(2)根据旋转的性质得出对应点坐标,进而利用弧长公式求出即可.解答:解:(1)如图所示:△O1A1B1,即为所求;(2)如图所示:△OA2B2,即为所求,∵AO==,∴点A旋转到A2所经过的路径长为:=π.点评:此题主要考查了旋转变换以及平移变换和弧长计算公式,根据图形变化性质得出对应点坐标是解题关键.23.(6分)(2013•齐齐哈尔)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)(1)求此二次函数的解析式;(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l 的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.考点:二次函数综合题.分析:(1)因为抛物线y=﹣x2+bx+c过点A(﹣4,0),B(﹣1,3),C(﹣3,3)代入求出其解析式即可;(2)由题可知,M、N点坐标分别为(﹣4﹣m,n),(m+4,n),根据四边形OAPF 的面积为20,从而求出其m,n的值.解答:解:(1)将A(﹣4,0),B(﹣1,3),C(﹣3,3)代入y=ax2+bx+c得:解得:a=﹣1,b=﹣4,c=0故此二次函数的解析式为y=﹣4x2﹣4x;(2)由题可知,M、N点坐标分别为(﹣4﹣m,n),(m+4,n).四边形OAPF的面积=(OA+FP)÷2×|n|=20,即4|n|=20,∴|n|=5.∵点P(m,n)在第三象限,∴n=﹣5,所以﹣m2﹣4m+5=0,解答m=﹣5或m=1(舍去).故所求m、n的值分别为﹣5,﹣5.点评:此题主要考查二次函数的综合知识,此题是一道综合题,注意第二问难度比较大.24.(7分)(2013•齐齐哈尔)齐齐哈尔市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成绩(最低分为53分)分别绘制了如下统计表和统计图.(如图)分数59.5分以下59.5分以上69.5分以上79.5以上89.5以上人数34232208(1)被抽查的学生为45人.(2)请补全频数分布直方图.(3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)(4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?.考点:频数(率)分布直方图;用样本估计总体;中位数分析:(1)根据图中所列的表,参加测试的总人数为59.5分以上和59.5分以下的和;(2)根据直方图,再根据总人数,即可求出在76.5﹣84.5分这一小组内的人数;(3)根据成绩优秀的学生所占的百分比,再乘以4500即可得出成绩优秀的学生数;(4)根据中位数的定义得出78分以上的人数,再根据图表得出89.5分以上的人数,两者相减即可得出答案.解答:解:(1)∵59.5分以上的有42人,59.5分以下的3人,∴这次参加测试的总人数为3+42=45(人);(2)∵总人数是45人,∴在76.5﹣84.5这一小组内的人数为:45﹣3﹣7﹣10﹣8﹣5=12人;补图如下:(3)根据题意得:×4500=2000(人),答:成绩优秀的学生约有2000人.(4)∵共有45人,中位数是第23个人的成绩,中位数为78分,∴78分以上的人数是9+8+5=22(人),∵89.5分以上的有8人,∴78.5~89.5分之间的人数最多有22﹣8=14(人).故答案为:45.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(8分)(2013•齐齐哈尔)甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.(1)A、B两地的距离560千米;乙车速度是100km/h;a表示.(2)乙出发多长时间后两车相距330千米?考点:一次函数的应用.专题:分类讨论.分析:(1)根据图象,甲出发时的S值即为A、B两地间的距离;先求出甲车的速度,然后设乙车的速度为xkm/h,再利用相遇问题列出方程求解即可;然后求出相遇后甲车到达B地的时间,再根据路程=速度×时间求出两车的相距距离a即可;(2)设直线BC的解析式为S=k1t+b1(k1≠0),利用待定系数法求出直线BC的解析式,再令S=330,求出t的值,减去1即为相遇前乙车出发的时间;设直线CD的解析式为S=k2t+b2(k2≠0),利用待定系数法求出直线CD的解析式,再令S=330,求出t的值,减去1即为相遇后乙车出发的时间.解答:解:(1)t=0时,S=560,所以,A、B两地的距离为560千米;甲车的速度为:(560﹣440)÷1=120km/h,设乙车的速度为xkm/h,则(120+x)×(3﹣1)=440,解得x=100;相遇后甲车到达B地的时间为:(3﹣1)×100÷120=小时,所以,a=(120+100)×=千米;(2)设直线BC的解析式为S=k1t+b1(k1≠0),将B(1,440),C(3,0)代入得,,解得,所以,S=﹣220t+660,当﹣220t+660=330时,解得t=1.5,所以,t﹣1=1.5﹣1=0.5;直线CD的解析式为S=k2t+b2(k2≠0),点D的横坐标为+3=,将C(3,0),D(,)代入得,,解得,所以,S=220t﹣660,当220t﹣660=330时,解得t=4.5,所以,t﹣1=4.5﹣1=3.5,答:乙出发多长0.5小时或3.5小时后两车相距330千米.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,准确识图并获取信息是解题的关键,(2)要分相遇前和相遇后两种情况讨论.26.(8分)(2013•齐齐哈尔)已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)考点:全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形.分析:(1)首先对结论作出否定,写出猜想FN﹣MF=BE,连接AD,根据M、N分别是DE、AE的中点,可得MN=AD,再根据题干条件证明△ACD≌△BCE,得出AD=BE,结合MN=FN﹣MF,于是证明出猜想.(2)连接AD,根据M、N分别是DE、AE的中点,可得MN=AD,再根据题干条件证明△ACD≌△BCE,得出AD=BE,结合MN=FM﹣FN,得到结论MF﹣FN=BE.解答:(1)答:不成立,猜想:FN﹣MF=BE,理由如下:证明:如图2,连接AD,∵M、N分别是DE、AE的中点,∴MN=AD,又∵在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∵MN=FN﹣MF,∴FN﹣MF=BE;(2)图3结论:MF﹣FN=BE,证明:如图3,连接AD,∵M、N分别是DE、AE的中点,∴MN=AD,∵在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∴MN=BE,∵MN=FM﹣FN,∴MF﹣FN=BE.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是会用类比的方法去解决问题,本题难度不是很大,答题的时候需要一定的耐心.27.(10分)(2013•齐齐哈尔)在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设甲队每天修路x米,乙队每天修路y米,然后根据两队修路的长度分别为200米和350米两个等量关系列出方程组,然后解方程组即可得解;(2)根据甲队抽调m人后两队所修路的长度不小于4000米,列出一元一次不等式,然后求出m的取值范围,再根据m是正整数解答;(3)设甲工程队修a天,乙工程队修b天,根据所修路的长度为4000米列出方程整理并用a表示出b,再根据0≤b≤30表示出a的取值范围,再根据总费用等于两队的费。

莆田市初中数学八年级下期中经典题(含答案)(1)

莆田市初中数学八年级下期中经典题(含答案)(1)

一、选择题1.(0分)[ID :9932]下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.(0分)[ID :9931]下列命题中,真命题是( )A .四个角相等的菱形是正方形B .对角线垂直的四边形是菱形C .有两边相等的平行四边形是菱形D .两条对角线相等的四边形是矩形3.(0分)[ID :9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80 人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是( )A .85,90B .85,87.5C .90,85D .95,904.(0分)[ID :9893]如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .35.(0分)[ID :9884]如图,直线y x m =-+与3yx 的交点的横坐标为-2,则关于x的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16.(0分)[ID :9881]如图,在正方形OABC 中,点A 的坐标是()3,1-,则C 点的坐标是( )A .()1,3B .()2,3C .()3,2D .()3,17.(0分)[ID :9865]如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<8.(0分)[ID :9844]在水平地面上有一棵高9米的大树, 和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行( )A .12米B .13米C .9米D .17米 9.(0分)[ID :9924]如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120°10.(0分)[ID :9923]如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF,则CF 的长为( )A .95B .185C .165D .12511.(0分)[ID :9917]如图所示,▱ABCD 的对角线AC ,BD 相交于点O ,AE EB =,3OE =,5AB =,▱ABCD 的周长( )A.11B.13C.16D.2212.(0分)[ID:9839]为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45°B.AC=BDC.BD的长度变小D.AC⊥BD13.(0分)[ID:9838]小带和小路两个人开车从A城出发匀速行驶至B城.在整个行驶过程中,小带和小路两人车离开A城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有()A.①②③④B.①②④C.①②D.②③④14.(0分)[ID:9885]如图,ABC中,CD AB⊥于,D E是AC的中点.若6,5,AD DE==则CD的长等于()A.5B.6C.8D.1015.(0分)[ID :9915]菱形周长为40cm ,它的条对角线长12cm , 则该菱形的面积为( )A .24B .48C .96D .36二、填空题16.(0分)[ID :10031]对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =+-a b a b ,如3※2=32532+=-.那么12※4=_____. 17.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 18.(0分)[ID :10022]一组数据1,2,a 的平均数为2,另一组数据﹣1,a ,1,2,b 的唯一众数为﹣l ,则数据﹣1,a ,1,2,b 的中位数为 _________.19.(0分)[ID :10012]已知菱形的周长为20㎝ ,两条对角线的比为3:4,则菱形的面积为___________.20.(0分)[ID :9994]在Rt ABC ∆中,a ,b ,c 分别为A ∠,B ,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.21.(0分)[ID :9972]已知211a a a a--=,则a 的取值范围是________ 22.(0分)[ID :9956]如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点A 作AE ⊥BD ,垂足为点E ,若∠EAC =2∠CAD ,则∠BAE =__________度.23.(0分)[ID :9955]如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.24.(0分)[ID :9947]如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .25.(0分)[ID :9966]如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=_____度.三、解答题26.(0分)[ID :10129]如图,正方形网格中的每个小正方形边长都是l ,每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)画出一个平行四边形,使其面积为6;(2)画出一个菱形,使其面积为4.(3)画出一个正方形,使其面积为5.27.(0分)[ID :10122]二次根式中也有这种相辅相成的“对子”.如:(23)(23)1+=,52)(52)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理333333==⨯23(23)(23)74323(23)(23)+++==+-+-分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)37的有理化因式是_________25-的分母有理化得__________; (2)计算: ①已知:331x =-,331y =+22x y +的值;②1111... 12233420192020 ++++++++.28.(0分)[ID:10120]我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图1).图2是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解题过程,请你根据图形补充完整.解:设每个直角三角形的面积为SS1﹣S2=(用含S的代数式表示)①S2﹣S3=(用含S的代数式表示)②由①,②得,S1+S3=因为S1+S2+S3=10,所以2S2+S2=10.所以S2=103.29.(0分)[ID:10100]计算:(56215)15⨯-÷.30.(0分)[ID:10084]如图,在ABCD中,边AB的垂直平分线交AD于点E,交CB 的延长线于点F,连接,AF BE求证:四边形AFBE是菱形【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.A3.B4.C5.C6.A7.C8.B9.D10.B11.D12.B13.C14.C15.C二、填空题16.【解析】试题解析:根据题意可得:故答案为17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少18.1【解析】【分析】根据平均数求得a的值然后根据众数求得b的值后再确定新数据的中位数【详解】试题分析:∵一组数据12a的平均数为2∴1+2+a=3×2解得a=3∴数据﹣la12b的唯一众数为﹣l∴b=19.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm设两条对角线长分别为3x4x根据勾股定理可得()2+(2x)2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故20.4【解析】【分析】设每份为x则根据勾股定理即可求出x的值然后求出a的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题21.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数22.5°【解析】【分析】【详解】四边形ABCD是矩形AC=BDOA=OCOB=ODOA=OB═OC∠OAD=∠ODA∠OAB=∠OBA∠AOE=∠OAD+∠ODA=2∠OAD ∠EAC=2∠CAD∠EAO23.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD 是菱形AC=8BD=6∴AO24.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A25.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数根据平角定义求出即可【详解】解:设∠BAE=三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C进行判断;根据分母有理化和二次根式的性质对D进行判断.【详解】A2,所以A选项错误;B、原式=B选项错误;C、原式=2,所以C选项错误;=,所以D选项正确.D3故选D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.A解析:A【解析】分析:根据菱形的判断方法、正方形的判断方法和矩形的判断方法逐项分析即可.详解:A选项:∵四个角相等的菱形,∴四个角为直角的菱形,即为正方形,故是真命题;B选项:对角线垂直的四边形可能是梯形,故对角线垂直的四边形是菱形是假命题;C选项:当相等的边是对边时,它不是菱形,故有两边相等的平行四边形是菱形是假命题;D选项:两条对角线相等的四边形可能是等腰梯形,故两条对角线相等的四边形是矩形是假命题;故选A.点睛:考查的是命题与定理,熟知正方形、菱形、矩形的判定定理与性质是解答此题的关键,用举反例来证明命题是假命题是判断命题真假的常用方法.3.B解析:B【解析】试题解析:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B .考点:1.众数;2.中位数4.C解析:C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则=;∴AC+BC=(m.答:树高为(故选C.5.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.6.A解析:A【解析】【分析】作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,由AAS 证明△AOE ≌△OCD ,得出AE=OD ,OE=CD ,由点A 的坐标是(-3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C (1,3)即可.【详解】解:如图所示:作CD ⊥x 轴于D ,作AE ⊥x 轴于E ,则∠AEO=∠ODC =90°,∴∠OAE+∠AOE=90°,∵四边形OABC 是正方形,∴OA=CO ,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD ,在△AOE 和△OCD 中,AEO ODC OAE COD OA CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OCD (AAS ),∴AE=OD ,OE=CD ,∵点A 的坐标是(-3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C (1,3),故选:A .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解题的关键.7.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3). ∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .8.B解析:B【解析】【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=12m,AE=AB-EB=9-4=5m,在Rt△AEC2222==.++51213AE EC m故小鸟至少飞行13m.故选:B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.D解析:D【解析】【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,即可得出∠CFE.【详解】∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°,∴∠CFE=180°-∠BFC=120°故选:D.【点睛】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.10.B解析:B【解析】【分析】连接BF ,由折叠可知AE 垂直平分BF ,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=125,即可得BF=245,再证明∠BFC=90°,最后利用勾股定理求得CF=185. 【详解】 连接BF ,由折叠可知AE 垂直平分BF ,∵BC=6,点E 为BC 的中点,∴BE=3,又∵AB=4, ∴222243AB BE +=+=5, ∵1122AB BE AE BH ⋅=⋅, ∴1134522BH ⨯⨯=⨯⨯, ∴BH=125,则BF=245, ∵FE=BE=EC ,∴∠BFC=90°, ∴CF=2222246()5BC BF -=-185 . 故选B .【点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键. 11.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.12.B解析:B【解析】【分析】根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.C解析:C【解析】【分析】观察图象可判断①②,由图象所给数据可求得小带、小路两车离开A城的距离y与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【详解】由图象可知A,B两城市之间的距离为300 km,小带行驶的时间为5 h,而小路是在小带出发1 h后出发的,且用时3 h,即比小带早到1 h,∴①②都正确;设小带车离开A城的距离y与t的关系式为y小带=kt,把(5,300)代入可求得k=60,∴y小带=60t,设小路车离开A城的距离y与t的关系式为y小路=mt+n,把(1,0)和(4,300)代入可得0 4300 m nm n+=⎧⎨+=⎩解得100100 mn=⎧⎨=-⎩∴y小路=100t-100,令y小带=y小路,可得60t=100t-100,解得t=2.5,即小带和小路两直线的交点横坐标为t=2.5,此时小路出发时间为1.5 h,即小路车出发1.5 h后追上甲车,∴③不正确;令|y小带-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,当100-40t=50时,可解得t=54,当100-40t=-50时,可解得t=154,又当t=56时,y小带=50,此时小路还没出发,当t=256时,小路到达B城,y小带=250.综上可知当t的值为54或154或56或256时,两车相距50 km,∴④不正确.故选C.【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.14.C解析:C【解析】【分析】先根据直角三角形的性质求出AC的长,再根据勾股定理即可得出结论.【详解】解:∵ABC中,CD AB⊥于D,∴∠ADC=90°,则ADC为直角三角形,∵E是AC的中点,DE=5,∴AC=2DE=10,在Rt ADC中,AD=6,AC=10,∴22221068CD AC AD=-=-=,故选:C.【点睛】本题考查的是直角三角形斜边上的中线,熟知在直角三角形中,斜边上的中线等于斜边的一半是解答此题的关键.15.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题16.【解析】试题解析:根据题意可得:故答案为解析:1 2【解析】试题解析:根据题意可得:41 124.124882 ====-※故答案为1 . 217.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.18.1【解析】【分析】根据平均数求得a的值然后根据众数求得b的值后再确定新数据的中位数【详解】试题分析:∵一组数据12a的平均数为2∴1+2+a=3×2解得a=3∴数据﹣la12b的唯一众数为﹣l∴b=解析:1【解析】【分析】根据平均数求得a的值,然后根据众数求得b的值后再确定新数据的中位数.【详解】试题分析:∵一组数据1,2,a的平均数为2,∴1+2+a=3×2解得a=3∴数据﹣l,a,1,2,b的唯一众数为﹣l,∴b=﹣1,∴数据﹣1,3,1,2,b的中位数为1.故答案为1.【点睛】本题考查了平均数、众数及中位数的定义,解题的关键是正确的利用其定义求得未知数的值.19.【解析】【分析】【详解】解:已知菱形的周长为20㎝可得菱形的边长为5cm 设两条对角线长分别为3x4x 根据勾股定理可得()2+(2x )2=102解得x=2则两条对角线长分别为6cm8所以菱形的面积为故解析:224cm .【解析】【分析】【详解】解:已知菱形的周长为20㎝ ,可得菱形的边长为5cm ,设两条对角线长分别为3x ,4x , 根据勾股定理可得(32x )2+( 2x )2=102, 解得,x=2, 则两条对角线长分别为6cm 、8,所以菱形的面积为2168242cm ⨯⨯=. 故答案为:224cm .【点睛】本题考查菱形的性质;勾股定理. 20.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.21.【解析】【分析】根据二次根式得非负性求解即可【详解】解:∵成立则有:并且即:∴故答案为:【点睛】本题考查的是二次根式的取值范围在二次根式里被开方数必须是非负数解析:01a <≤【解析】【分析】根据二次根式得非负性求解即可.【详解】=成立, 则有:10a ->,0a ≠ , 10aa ,即:0a >,∴01a <≤,故答案为:01a <≤.【点睛】本题考查的是二次根式的取值范围,在二次根式里被开方数,必须是非负数. 22.5°【解析】【分析】【详解】四边形ABCD 是矩形AC=BDOA=OCOB=ODOA=OB ═OC ∠OAD=∠ODA ∠OAB=∠OBA ∠AOE=∠OAD+∠O DA=2∠OAD ∠EAC=2∠CAD ∠EAO解析:5°【解析】 【分析】【详解】四边形ABCD 是矩形,∴AC=BD ,OA=OC ,OB=OD ,∴OA=OB═OC ,∴∠OAD=∠ODA ,∠OAB=∠OBA ,∴∠AOE=∠OAD+∠ODA=2∠OAD ,∠EAC=2∠CAD ,∴∠EAO=∠AOE ,AE ⊥BD ,∴∠AEO=90°,∴∠AOE=45°,∴∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.23.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB,∴4×6=5×DH,∴DH=245,∴222465⎛⎫- ⎪⎝⎭=185.【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键. 24.8【解析】【分析】设A′C=xcm先根据已知利用AAS证明△A′BC≌△DCE 得出A′C=DE=xcm则BC=AD=(9+x)cmA′B=AB=15cm然后在Rt△A′BC中由勾股定理可得BC2=A解析:8【解析】【分析】设A ′C=xcm ,先根据已知利用AAS 证明△A ′BC ≌△DCE ,得出A ′C=DE= xcm ,则BC=AD=(9+x )cm ,A ′B=AB=15cm ,然后在Rt △A ′BC 中,由勾股定理可得BC 2=A ′B 2+A ′C 2,即可得方程,解方程即可求得答案【详解】解:∵四边形ABCD 是矩形,∴AB=CD=15cm ,∠A=∠D=90°,AD ∥BC ,AD=BC ,∴∠DEC=∠A ′CB ,由折叠的性质,得:A ′B=AB=15cm ,∠BA ′E=∠A=90°,∴A ′B=CD ,∠BA ′C=∠D=90°,在△A ′BC 和△DCE 中,BA C D A CB DEC A B CD ∠=∠⎧⎪∠=∠=''⎨'⎪⎩∴△A ′BC ≌△DCE (AAS ),∴A ′C=DE ,设A ′C=xcm ,则BC=AD=DE+AE=x+9(cm ),在Rt △A ′BC 中,BC 2=A ′B 2+A ′C 2,即(x+9)2=x 2+152,解得:x=8,∴A ′C=8cm .故答案为:8.【点睛】此题考查了矩形的性质、全等三角形的判定与性质、勾股定理以及折叠的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系. 25.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED 的度数根据平角定义求出即可【详解】解:设∠BAE=解析:45【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD ,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED 的度数,根据平角定义求出即可.【详解】解:设∠BAE =x °.∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD.∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°﹣∠BAE)=90°﹣12x°,∠DAE=90°﹣x°,∠AED=∠ADE=12(180°﹣∠DAE)=12[180°﹣(90°﹣x°)]=45°+12x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣12x°)﹣(45°+12x°)=45°.故答案为45.点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.三、解答题26.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)平行四边形面积为6,则可以为底边长为3,高为2,具体图形如下;(2)菱形面积为4,则对角线长度为2和4,据此可画出菱形;(3)要使正方形面积为5,则正方形的边长为5.【详解】(1)图形如下:(2)图形如下:(3)图形如下:【点睛】本题考查根据条件绘制四边形,注意在绘制前,需要根据四边形的特点,适当进行分析,以辅助完成绘图.27.(1)7(或-37),-6-52)①14,②25051【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x 与y 分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(37)(7=9-7=2,(37)(-37)=7-9=-2∴37的有理化因式是7(或-37) 25-()()3256352525++=-+5故答案为:7(或-37);5(2)①当()()231432323131x +===+-+()()2313142323313131y --====++-x 2+y 2=(x +y )2−2xy=(2+2−2×(2=16−2×1=14. ...++1...-+1.=【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.28.4S ;4S ;2S 2.【解析】【分析】设每个直角三角形的面积为S ,根据图形的特征得出S 1-S 2=4S ,S 2-S 3=4S ,两者相减得到S 1+S 3=2S 2,再代入S 1+S 2+S 3=10即可求解.【详解】解:设每个直角三角形的面积为S ,S 1﹣S 2=4S (用含S 的代数式表示)①S 2﹣S 3=4S (用含S 的代数式表示)②由①,②得,S 1+S 3=2S 2,因为S 1+S 2+S 3=10,所以2S 2+S 2=10.所以S 2=103. 故答案为:4S ;4S ;2S 2.【点睛】此题主要考查了勾股定理的证明,图形面积关系,根据已知得出S 1+S 3=2S 2,再利用S 1+S 2+S 3=10求出是解决问题的关键.29.2【解析】【分析】直接利用无理数的混合运算法则计算得出答案.【详解】原式2==【点睛】此题主要考查了实数运算,正确化简各数是解题关键.30.见解析【解析】【分析】由平行四边形的性质得出AD∥BC,得出∠EAG=∠FBG,由AAS证明△AGE≌△BGF,得出AE=BF,由AD∥BC,可证四边形AFBE是平行四边形,由EF⊥AB,即可得出结论.【详解】证明:四边形ABCD是平行四边形,// ,AE BF∴,EAG FBG∴∠=∠EF是AB的垂直平分线,,AG BG∴=在AGE∆和BGF∆中,EAG FBGAG BGAGE BGF∠=∠⎧⎪=⎨⎪∠=∠⎩()AGE BGF ASA∴∆≅∆AE BF∴=又//AE BF∴四边形AFBE是平行四边形EF是AB的垂直平分线AF BF∴=AFBE∴是菱形【点睛】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.。

(中考数学复习)第18讲-二次函数综合应用-课件-解析

(中考数学复习)第18讲-二次函数综合应用-课件-解析
图18-7 (1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值 范围);
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理 由; (3)若球一定能越过球网,又不出边界,求h的取值范围. 解:(1)把x=0,y=2,及h=2.6代入到y=a(x-6)2+h中,
B.4 s
C.3 s
D.2 s
B
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考 B
图18-1
基础知识 · 自主学习 题组分类 · 深度剖 课堂回顾 · 巩固提升
浙派名师中考

4.(2013·宁波)如图18-2所示,二次函数y=ax2+bx+c的图象
开口向上,对称轴为直线x=1,图象经过(3,0),下列结论
中,正确的一项是
( D )
图18-2 A.abc<0 B.2a+b<0 C.a-b-c<0 D.4ac-b2<0
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
5.某公园草坪的防护栏是由100段形状相同的抛物线组成 的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈 钢的支柱,防护栏的最高点距底部0.5 m(如图18-3所示), 则这条防护栏需要不锈钢支柱的总长度至少为 ( C )
函数图象得
∴函数关系式为y=-x+180.
基础知识 · 自主学习 题组分类 · 深度剖
课堂回顾 · 巩固提升
浙派名师中考
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是 商场负责人,会将售价定为多少,来保证每天获得的利润最 大,最大利润是多少? 解: W=(x-100)y=(x-100)(-x+180) =-x2+280x-18 000 =-(x-140) 2+1 600, 当售价定为140元,W最大=1 600. ∴售价定为140元/件时,每天最大利润W=1 600元.

福建省莆田市中考数学试卷含答案解析

福建省莆田市中考数学试卷含答案解析

2016年福建省莆田市中考数学试卷一、精心选一选:本大题共10小题,每小题4分,共40分1.的绝对值是()A.B. C.2 D.﹣22.下列运算正确的是()A.3a﹣a=0 B.a•a2=a3C.a4÷a3=a2 D.(a3)2=a53.一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.64.图中三视图对应的几何体是()A. B.C.D.5.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD7.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.10.如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线C.双曲线D.双曲线的一支二、细心填一填:本大题共6小题,每小题4分,共24分11.莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为______.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度得到的点的坐标是______.13.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2=______.14.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为______人.15.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为______(结果保留π).16.魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中BF=1,CF=2,则AE的长为______.三、耐心做一张:本大题共10小题,共86分17.计算:|﹣3|﹣+.18.先化简,再求值:﹣÷,其中x=﹣1.19.解不等式组:.20.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)21.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.22.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.23.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.24.如图,反比例函数y=(x>0)的图象与直线y=x交于点M,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A,B,四边形OAMB的面积为6.(1)求k的值;(2)点P在反比例函数y=(x>0)的图象上,若点P的横坐标为3,∠EPF=90°,其两边分别与x轴的正半轴,直线y=x交于点E,F,问是否存在点E,使得PE=PF?若存在,求出点E的坐标;若不存在,请说明理由.25.若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为h a,h b,h c,各边上的内接正方形的边长分别记为x a,x b,x c(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证: +=;(2)特殊应用:若∠BAC=90°,x b=x c=2,求+的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断x b与x c的大小,并说明理由.26.如图,抛物线C1:y=﹣x2+2x的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.2016年福建省莆田市中考数学试卷参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分1.的绝对值是()A.B. C.2 D.﹣2【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣的绝对值是.故选:A.【点评】本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列运算正确的是()A.3a﹣a=0 B.a•a2=a3C.a4÷a3=a2 D.(a3)2=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据合并同类项、同底数幂的乘除法和幂的乘方分别计算即可得出答案.【解答】解:A、3a﹣2a=a,故A不正确;B、a•a2=a3,故B正确;C、a4÷a3=a,故C不正确;D、(a3)2=a6,故D不正确;故选B.【点评】本题主要考查幂的运算,掌握同底数幂的运用性质是解题的关键.3.一组数据3,3,4,6,8,9的中位数是()A.4 B.5 C.5.5 D.6【考点】中位数.【专题】统计与概率.【分析】根据题目中的数据,可以求得这组数据的中位数.【解答】解:数据3,3,4,6,8,9的中位数是:=5,故选B.【点评】本题考查中位数,解题的关键是明确中位数的定义,可以将一组数据按照从小到大的顺序排列,找出这组数据的中位数.4.图中三视图对应的几何体是()A. B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图可判断出此上面是圆柱体,由此即可得出结论.【解答】解:由主视图可以推出这个几何体是上下两个大小不同柱体,从主视图推出这两个柱体的宽度相同,从俯视图推出上面是圆柱体,直径等于下面柱体的宽.由此可以判断对应的几何体是C.故选C.【点评】不同考查三视图,用到的知识点为:由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.5.菱形具有而一般平行四边形不具有的性质是()A.对边相等 B.对角相等C.对角线互相平分D.对角线互相垂直【考点】菱形的性质;平行四边形的性质.【分析】由菱形的性质可得:菱形的对角线互相平分且垂直;而平行四边形的对角线互相平分;则可求得答案.【解答】解:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.【点评】此题考查了菱形的性质以及平行四边形的性质.注意菱形的对角线互相平分且垂直.6.如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD【考点】角平分线的性质;全等三角形的判定.【分析】要得到△POC≌△POD,现有的条件为有一对角相等,一条公共边,缺少角,或着是边,根据全等三角形的判定定理即可得到结论.于是答案可得.【解答】解:A.PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理成立,B.OC=OD,根据SAS判定定理成立,C.∠OPC=∠OPD,根据ASA判定定理成立,D.PC=PD,根据SSA无判定定理不成立,故选D.【点评】本题考查了角平分线的定义,全等三角形的判定,熟记全等三角形的判定定理是解题的关键.7.关于x的一元二次方程x2+ax﹣1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先计算判别式的值,然后非负数的性质和判别式的意义判断方程根的情况.【解答】解:∵△=a2+4>0,∴,方程有两个不相等的两个实数根.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.8.规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,则称此图形为旋转对称图形.下列图形是旋转对称图形,且有一个旋转角为60°的是()A.正三角形 B.正方形C.正六边形 D.正十边形【考点】旋转对称图形.【分析】分别求出各旋转对称图形的最小旋转角,继而可作出判断.【解答】解:A、正三角形的最小旋转角是120°,故此选项错误;B、正方形的旋转角度是90°,故此选项错误;C、正六边形的最小旋转角是60°,故此选项正确;D、正十角形的最小旋转角是36°,故此选项错误;故选:C.【点评】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角度的定义,求出旋转角.9.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A.B.C.D.【考点】翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.【解答】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4﹣3=1,∴在直角△ECD中,sin∠CDE==.故选:A.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.10.如图,在平面直角坐标系中,点A(0,2),在x轴上任取一点M,完成以下作图步骤:①连接AM.作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P;②在x轴上多次改变点M的位置,用①的方法得到相应的点P,把这些点用平滑的曲线顺次连接起来,得到的曲线是()A.直线 B.抛物线C.双曲线D.双曲线的一支【考点】二次函数图象上点的坐标特征;线段垂直平分线的性质;作图—基本作图.【分析】按照给定的作图步骤作图,根据图形中曲线的特征即可得出该曲线为抛物线.【解答】解:根据作图步骤作图,如图所示.由此即可得出该曲线为抛物线.故选B/【点评】本题考查了二次函数图象上点的坐标特征、线段的垂直平分线的性质以及基本作图,解题的关键是按照给定的作图步骤完成作图.本题属于基础题,难度不大,解决该题型题目时,熟悉各曲线的图形是关键.二、细心填一填:本大题共6小题,每小题4分,共24分11.莆田市海岸线蜿蜒曲折,长达217000米,用科学记数法表示217000为 2.17×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将217000用科学记数法表示为:217000=2.17×105.故答案为:2.17×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在平面直角坐标系中,点P(﹣1,2)向右平移3个单位长度得到的点的坐标是(2,2).【考点】坐标与图形变化-平移.【分析】将点P的横坐标加3,纵坐标不变即可求解.【解答】解:点P(﹣1,2)向右平移3个单位长度得到的点的坐标是(﹣1+3,2),即(2,2).故答案为(2,2).【点评】此题主要考查了坐标与图形的变化,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.已知直线a∥b,一块直角三角板如图所示放置,若∠1=37°,则∠2=53°.【考点】平行线的性质.【分析】首先作平行线,然后根据平行线的性质可得到∠1+∠2=90°,据此求出∠2的度数.【解答】解:作直线AB∥a,∵a∥b∴AB∥a∥b,∵AB∥a,∴∠1=∠3,∵AB∥b,∴∠2=∠4,∵∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=37°,∴∠2=90°﹣37°=53°,故答案为53°.【点评】本题考查了平行线的性质,构成直线AB∥a是解题的关键,熟练掌握两直线平行,内错角相等.14.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为480人.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则的长为π(结果保留π).【考点】弧长的计算;垂径定理.【分析】连接AC,由垂径定理的CE=DE,根据线段垂直平分线的性质得到AC=AD,由等腰三角形的性质得到∠CAB=∠DAB=30°,由圆周角定理得到∠COB=60°,根据弧长的计算公式即可得到结论.【解答】解:连接AC,∵CD为⊙O的弦,AB是⊙O的直径,∴CE=DE,∵AB⊥CD,∴AC=AD,∴∠CAB=∠DAB=30°,∴∠COB=60°,∴的长==π,故答案为:π.【点评】本题考查的是垂径定理,线段的垂直平分线的判定,等腰三角形的性质,熟练掌握垂径定理是解答此题的关键.16.魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理.若图中BF=1,CF=2,则AE的长为3.【考点】勾股定理的证明.【专题】证明题;等腰三角形与直角三角形.【分析】由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE 的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.【解答】解:∵BF=1,CF=2,∴BC=BF+CF=1+2=3,∵AB∥EC,∴=,即=,解得:CE=6,在Rt△ADE中,AD=3,DE=DC+CE=3+6=9,根据勾股定理得:AE==3,故答案为:3【点评】此题考查了勾股定理的证明,以及相似三角形的判定与性质,熟练掌握勾股定理是解本题的关键.三、耐心做一张:本大题共10小题,共86分17.计算:|﹣3|﹣+.【考点】实数的运算;零指数幂.【专题】计算题.【分析】根据绝对值、算术平方根和零指数幂的意义计算.【解答】解:原式=3﹣﹣4+1=﹣.【点评】本题考查了绝对值的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.注意零指数幂的意义.18.先化简,再求值:﹣÷,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】先把x2﹣4分解因式和除法运算化为乘法运算,再约分后进行同分母的减法运算得到原式=,然后把x的值代入计算即可.【解答】解:原式=﹣•(x+2)=﹣==,当x=﹣1时,原式==﹣1.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.解不等式组:.【考点】解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.【解答】解:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.【点评】考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【考点】解直角三角形的应用.【分析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=,求得OE,即可作出判断.【解答】证明:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.【点评】本题考查了解直角三角形的应用,解题的关键是构造直角三角形和三角函数的定义的综合运用.21.在一次数学文化课题活动中,把一副数学文化创意扑克牌中的4张扑克牌(如图所示)洗匀后正面向下放在桌面上,从中随机抽取2张牌,请你用列表或画树状图的方法,求抽取的2张牌的数字之和为偶数的概率.【考点】列表法与树状图法.【专题】概率及其应用.【分析】列出得出所有等可能的情况数,找出抽取2张牌的数字之和为偶数的情况数,即可求出所求的概率.【解答】解:列表如下:3 4 5 63 ﹣﹣﹣﹣(4,3)(5,3)(6,3)4 (3,4)﹣﹣﹣﹣(5,4)(6,4)5 (3,5)(4,5)﹣﹣﹣﹣(6,5)6 (3,6)(4,6)(5,6)﹣﹣﹣﹣所有等可能的情况数有12种,抽取2张牌的数字之和为偶数的有4种,则P==.【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.22.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【考点】分式方程的应用;函数的图象.【专题】方程与不等式.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=78是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.23.如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.(1)求证:EF是⊙O的切线;(2)求证:EF2=4BP•QP.【考点】切线的判定;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD 是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到∴PA2=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.【解答】证明:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴PA2=PB•PQ,在△AFP与△CEP中,,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴EF2=4BP•QP.【点评】本题考查了切线的判定,平行四边形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.24.如图,反比例函数y=(x >0)的图象与直线y=x 交于点M ,∠AMB=90°,其两边分别与两坐标轴的正半轴交于点A ,B ,四边形OAMB 的面积为6.(1)求k 的值;(2)点P 在反比例函数y=(x >0)的图象上,若点P 的横坐标为3,∠EPF=90°,其两边分别与x 轴的正半轴,直线y=x 交于点E ,F ,问是否存在点E ,使得PE=PF ?若存在,求出点E 的坐标;若不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点M 作MC ⊥x 轴于点C ,MD ⊥y 轴于点D ,根据AAS 证明△AMC ≌△BMD ,那么S 四边形OCMD =S 四边形OAMB =6,根据反比例函数比例系数k 的几何意义得出k=6;(2)先根据反比例函数图象上点的坐标特征求得点P 的坐标为(3,2).再分两种情况进行讨论:①如图2,过点P 作PG ⊥x 轴于点G ,过点F 作FH ⊥PG 于点H ,交y 轴于点K .根据AAS 证明△PGE ≌△FHP ,进而求出E 点坐标;②如图3,同理求出E 点坐标.【解答】解:(1)如图1,过点M 作MC ⊥x 轴于点C ,MD ⊥y 轴于点D ,则∠MCA=∠MDB=90°,∠AMC=∠BMD ,MC=MD ,∴△AMC ≌△BMD ,∴S 四边形OCMD =S 四边形OAMB =6,∴k=6;(2)存在点E ,使得PE=PF .由题意,得点P 的坐标为(3,2).①如图2,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3﹣2=1,GE=HP=2﹣1=1,∴OE=OG+GE=3+1=4,∴E(4,0);②如图3,过点P作PG⊥x轴于点G,过点F作FH⊥PG于点H,交y轴于点K.∵∠PGE=∠FHP=90°,∠EPG=∠PFH,PE=PF,∴△PGE≌△FHP,∴PG=FH=2,FK=OK=3+2=5,GE=HP=5﹣2=3,∴OE=OG+GE=3+3=6,∴E(6,0).【点评】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,有一定难度.利用数形结合与分类讨论是解题的关键.25.若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC中,设BC=a,AC=b,AB=c,各边上的高分别记为h a,h b,h c,各边上的内接正方形的边长分别记为x a,x b,x c(1)模拟探究:如图,正方形EFGH为△ABC的BC边上的内接正方形,求证: +=;(2)特殊应用:若∠BAC=90°,x b=x c=2,求+的值;(3)拓展延伸:若△ABC为锐角三角形,b<c,请判断x b与x c的大小,并说明理由.【考点】三角形综合题;相似三角形的判定与性质.【分析】(1)先根据EH∥FG,判定△AEH∽△ABC,再根据相似三角形对应边成比例,列出比例式变形即可得到+=;(2)先根据(1)中的结论得出,再将h b=c和x b=2代入变形,即可求得+的值;(3)先根据(1)中的结论得出和,变形得出,,再根据△ABC得到bh b=ch c,h b=csinA,h c=bsinA,最后代入代数式进行变形推导,即可得出x b与x c的大小关系.【解答】解:∵正方形EFGH中,EH∥FG,∴△AEH∽△ABC,∵AD⊥BC,∴,即,∴+=;(2)由(1)得:,∵∠A=90°,∴h b=c,又∵x b=2,∴;(3)x b>x c.证明:由(1)得:,,∴,,∵S=bh b=ch c,∴2S=bh b=ch c,又∵h b=csinA,h c=bsinA,∴===,∵b<c,sinA<1,∴<0,即<0,∴x b>x c.【点评】本题主要考查了三角形的综合运用,难度较大,解决问题的关键是掌握相似三角形的判定与性质.解题时注意,当三角形的高出现时,可以考虑相似三角形的对应高之比等于相似比;其中第(2)个问题也可以运用相似三角形的性质进行计算求解.此外,特殊应用和拓展延伸部分的解答都运用了模拟探究中的结论.26.如图,抛物线C1:y=﹣x2+2x的顶点为A,与x轴的正半轴交于点B.(1)将抛物线C1上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;(2)将抛物线C1上的点(x,y)变为(kx,ky)(|k|>1),变换后得到的抛物线记作C2,抛物线C2的顶点为C,点P在抛物线C2上,满足S△PAC=S△ABC,且∠APC=90°.①当k>1时,求k的值;②当k<﹣1时,请直接写出k的值,不必说明理由.【考点】二次函数综合题.【分析】(1)由抛物线C1解析式求出A、B及原点坐标,将三点坐标都扩大到原来的2倍,待定系数求解可得;(2)①如图1中,当k>1时,与(1)同理可得抛物线C2的解析式为y=﹣x2+2x及顶点C 的坐标,根据S△PAC=S△ABC知BP∥AC,继而可得△ABO是边长为2的正三角形,四边形CEBP 是矩形,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;②如图2中,当k<﹣1时,作△ABO关于y轴对称的△A′B′O,OE′⊥A′B′,同理可得四边形CEBP 是矩形,先求出抛物线C2解析式,表示出点P的坐标,将其代入到抛物线C2解析式可求得k的值;【解答】解:(1)∵y=﹣x2+2x=﹣(x﹣1)2+,∴抛物线C1经过原点O,点A(1,)和点B(2,0)三点,∴变换后的抛物线经过原点O,(2,2)和(4,0)三点,∴变换后抛物线的解析式为y=﹣x2+2x;(2)①如图1中,当k>1时,。

【真题解析版】2013年福建省漳州市中考数学试卷及答案

【真题解析版】2013年福建省漳州市中考数学试卷及答案

福建省漳州市2013年中考数学试卷一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项)、﹣、﹣3.(4分)(2013•漳州)使分式有意义的x的取值范围是()4.(4分)(2013•漳州)如图,几何体的俯视图是()B6.(4分)(2013•漳州)若反比例函数y=的图象经过点(﹣2,m),则m的值是()B即可求出y=8.(4分)(2013•漳州)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组正确的是()B解:根据图示可得10.(4分)(2013•漳州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()﹣=1二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2013•漳州)分解因式:ab2+a=a(b2+1).12.(4分)(2013•漳州)据《维基百科》最新统计,使用闽南语的人数在全世界数千语种中位列第21名,目前有约70010000人使用闽南语,70010000用科学记数法表示为7.001×107.13.(4分)(2013•漳州)如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE= 70度.14.(4分)(2013•漳州)某班围绕“舞蹈、乐器、声乐、其他等四个项目中,你最喜欢哪项活动(每日只限一项)”的问题,对全班50名学生进行问卷调查,调查结果如下扇形统计图,请问该班喜欢乐器的学生有20名.15.(4分)(2013•漳州)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是﹣.OB=,,,.16.(4分)(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.AC=×cm故答案为:.三、解答题(共9小题,满分86分)17.(8分)(2013•漳州)计算:|﹣4|﹣+cos30°.=.18.(8分)(2013•漳州)解方程:x2﹣4x+1=0.±±,.19.(8分)(2013•漳州)如图,▱ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有3对全等三角形;(2)请写出其中一对全等三角形:△ABE≌△CDF,并加以证明.中,,中,20.(8分)(2013•漳州)漳州三宝之一“水仙花”畅销全球,某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费(1)设运往A地的水仙花x(件),总运费为y(元),试写出y与x的函数关系式;(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?21.(8分)(2013•漳州)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.则随机抽取一张卡片图案是轴对称图形的概率是P=.22.(9分)(2013•漳州)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B的距离,如图2,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°,求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)23.(9分)(2013•漳州)如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC绕点O 顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)在旋转过程中,点A经过的路径的长度为π;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标.经过的路径的长度为:=故答案为:,x+,)24.(14分)(2013•漳州)(1)问题探究数学课上,李老师给出以下命题,要求加以证明.如图1,在△ABC中,M为BC的中点,且MA=BC,求证∠BAC=90°.同学们经过思考、讨论、交流,得到以下证明思路:思路一直接利用等腰三角形性质和三角形内角和定理…思路二延长AM到D使DM=MA,连接DB,DC,利用矩形的知识…思路三以BC为直径作圆,利用圆的知识…思路四…请选择一种方法写出完整的证明过程;(2)结论应用李老师要求同学们很好地理解(1)中命题的条件和结论,并直接运用(1)命题的结论完成以下两道题:①如图2,线段AB经过圆心O,交⊙O于点A,C,点D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求证:直线BD是⊙0的切线;②如图3,△ABC中,M为BC的中点,BD⊥AC于D,E在AB边上,且EM=DM,连接DE,CE,如果∠A=60°,请求出△ADE与△ABC面积的比值.BC BCBCBC∴∴∴(A=∴∴.面积的比值为.25.(14分)(2013•漳州)如图,在平面直角坐标系中,矩形OABC的边OA=2,0C=6,在OC上取点D将△AOD沿AD翻折,使O点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是(2,0),E点坐标是(2,2);(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.MN=4,MN=4)6+b=4﹣4MN=4,,MN=4,),b=4﹣﹣∴=∴=,=∴=∴=,=•,。

【解析版】福建省莆田市中考数学模拟试卷(5月份)

【解析版】福建省莆田市中考数学模拟试卷(5月份)

福建省莆田市中考数学模拟试卷(5月份)一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.795.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.187.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A.c<a<b B.b<a<c C.a<b<c D.c<b<a9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.410.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C.3D.4二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是事件(选填“随机”,“必然”或“不可能”).13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为.14.(4分)若a x=2,a y=3,则a2x+y=.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.福建省莆田市中考数学模拟试卷(5月份)参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π考点:实数大小比较.专题:应用题.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有C符合.故选C.点评:本题考查实数大小的比较,是基础性的题目,比较简单.2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°考点:平行线的性质.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.79考点:中位数.分析:先把这些数据从小到大排列,再找出最中间的两个数的平均数,即可得出答案.解答:解:把这些数据从小到大排列为:66,67,78,78,79,79,79,80,最中间的数是78,79的平均数,即=78.5,则这8人体育成绩的中位数是78.5;故选C.点评:此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对考点:绝对值.分析:根据题意取a=2,b=﹣3,求出a+b=﹣1,再比较即可.解答:解:∵|b|>|a|,且a>0,b<0,∴取a=2,b=﹣3,∴a+b=﹣1,故选A.点评:本题有理数的大小比较的应用,采取了取特殊值法.6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.18考点:三角形中位线定理.分析:根据三角形中位线定理,可得ED=FG=BC=4,GD=EF=AO=3,进而求出四边形DEFG的周长.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四边形DEFG的周长为3+4+3+4=14.故选B.点评:本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形中位线的性质定理,为证明线段相等和平行提供了依据.7.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.考点:锐角三角函数的定义.分析:根据勾股定理,可得AB与BC的关系,根据余弦函数的定义,可得答案.解答:解:由勾股定理,得AB=BC.由余弦函数的定义,得cosA===,故选:D.点评:本题考查了锐角三角函数的定义,先利用勾股定理得出BA与BC的关系,再利用余弦函数的定义.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A. c<a<b B.b<a<c C.a<b<c D.c<b<a考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为y轴,然后比较三个点离对称轴的远近得到a、b、c的大小关系.解答:解:∵二次函数y=mx2(m<0)∴抛物线的对称轴为y轴,∵A(﹣2,a)、B(﹣1,b)、C(3,c)∴点C离y轴最远,点B离y轴最近,而抛物线开口向下,∴b>a>c;故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.4考点:垂径定理;勾股定理.分析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.解答:解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠D PB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.点评:本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.10.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C. 3 D. 4考点:有理数的混合运算.专题:新定义.分析:根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.解答:解:根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.点评:(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=5.考点:算术平方根.分析:根据开方运算,可得一个正数的算术平方根.解答:解:=5,故答案为:5.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”,“必然”或“不可能”).考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:任意打开一本200页的数学书,正好是第50页”,这是随机事件,故答案为:随机.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为2.5×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000用科学记数法表示为2.5×104.故答案为:2.5×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为120°.考点:圆锥的计算.分析:直接利用扇形的侧面积公式计算即可确定本题的答案.解答:解:设圆心角的度数为n°,根据题意得:=12π,解得:n=120,所以圆心角为120°,故答案为:120°.点评:本题考查了圆锥的计算.牢记圆锥的计算公式是解答本题的关键,难度不大.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先利用菱形的性质和勾股定理求出菱形对角线BD为6,再作点M关于AC 的对称点M′,连接M′N交BD于P,此时MP+NP有最小值.然后根据勾股定理即可求出MP+NP=M′N=2.解答:解:∵在菱形ABCD中,AB=6,∠ABC=60°,∴AC=6,BD=6,作点M关于AC的对称点M′,连接M′N交BD于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于BD对称,∴BM′=BM,又∵,∠ABC=60°,∴△BMM′是等边三角形,∴MM′=BM=AB﹣AM=6﹣2=4,∵AB=AD,AM=AN,∴MN∥BD,∴===,∴MN=×6=2,∵MM′⊥BD,MN∥BD,∴MM′⊥MN,∴M′N==2∴MP+NP=M′N=2,即MP+NP的最小值为2.故答案为2.点评:本题考查的是轴对称﹣最短路线问题及菱形的性质和勾股定理的运用,熟知两点之间线段最短的知识是解答此题的关键.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣4×﹣4+2=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:原式=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当,b=﹣2时,原式=.点评:本题考查了整式的混合运算和求值的应用,能运用整式的运算法则进行化简是解此题的关键,难度适中.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,去括号,移项,合并同类项,系数化成1即可.解答:解:去分母得:2(2x﹣1)﹣3(5x+1)≥6,4x﹣2﹣15x﹣3≥6,﹣11x≥11,x≤﹣1,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有50辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)根据展销总量乘以D类所占的百分比,可得答案;(2)根据各类的成交量比上各类展销量,可得成交率,根据有理数的大小比较,可得答案;(3)根据A类的成交量比上总成交量,可得答案.解答:解:(1)参加展销的D型号轿车有200×(1﹣35%﹣20%﹣20%)=50(辆)(2)A类的成交率,B类的成交率,D类的成交率,C类的成交率,∵>,∴A型号的轿车销售的成交率最高.(3)总成交量45+25+20+30=120,A类成交量的概率;D类所占的百分比:1﹣35%﹣20%﹣20%=35,C类的展销量200×20%=40(辆),C类的成交量40×50%=20,补充如图:.点评:本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.考点:全等三角形的判定与性质.专题:证明题.分析:由旋转可以得出∠AEM=∠ADM=90°,就可以得出∠M=∠N,∠MAB=∠NAB就可以得出△ABM≌△ABN,由全等三角形的旋转就可以得出结论.解答:证明:∵AB=AC,AD⊥BC于D点,∴∠ACD=∠ABD,∠CAD=∠BAD,∠ADC=ADB=90°.∵△AEB是由△A DC旋转得到的,∴△AEB≌△ADC,∴∠AEB=∠ADC=90°,∠MAB=∠CAD.∴∠AEB=∠ADB=90°.∠MAB=∠NAB∴∠M+∠MAD=90°,∠N+∠EAN=90°,∴∠M=∠N.在△ABM和△ABN中,∴△ABM≌△ABN(AAS),∴AM=AN.点评:本题考查了旋转的旋转的运用,直角三角形的旋转的运用,全等三角形的判定及旋转的运用,解答时证明三角形全等是关键.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?考点:一元二次方程的应用.专题:销售问题.分析:根据题意表示出购买这种学习用品的数量,进而利用单价×数量=总钱数,进而求出即可.解答:解:设小红购买x盒学习用品.根据题意得:x[3.8﹣0.2(x﹣10)]=40.8解得:x1=12,x2=17当x=12时,单价为:3.8﹣2×0.2=3.4,当x=17时,单价为:3.8﹣7×0.2=2.4<3(不合题意舍去),所以小红购买了12盒学习用品.点评:此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.考点:菱形的判定;反比例函数与一次函数的交点问题.分析:由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.解答:解:四边形CBED是菱形.∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).∵AD⊥x轴于D,∴D(3,0),设直线AB的解析式为y=mx+n,将 A(3,)、B(﹣5,﹣4)代入得:解得:.∴直线AB的解析式为:.∴点C的坐标是(﹣2,0).∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形.点评:本题考查了反比例函数综合题及菱形的判定的知识.解答此题时,利用了反比例函数图象上点的坐标特征.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:首先证得△COF∽△EOC,再由BF=OB,得出OE与OC的比,进一步求得CE,在直角三角形OEC中利用勾股定理求得答案即可.解答:解:∵CF是⊙O的切线∴∠OCF=90°,∴∠OCF=∠OEC,∵∠COF=∠EOC∴△COF∽△EOC,∴∵,∴,∴,∵AB⊥CD于E,∴,设OE=2x,则OC=3x.∵OC2=OE2+CE2,∴,∴⊙O的半径为3.点评:此题考查切线的性质,相似三角形的判定与性质,勾股定理的运用,垂径定理,注意结合图形,灵活利用数据解决问题.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.考点:全等三角形的判定与性质;正方形的性质.分析:(1)如图1,在CD上截取DE=MB,连接AE由正方形的性质就可以得出Rt△ABM≌Rt△ADE,就可以得出AM=AE,∠DAE=∠BAN,进而得出△ANM≌△ANE 就可以得出结论;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD,就可以得出△ABD≌△AQF,得出∠CAQ=45°,∠BAC=∠CAQ,就有△BAC≌△QAC,从而得出BC=CQ=13,设AD=x,则QE=x﹣3,CE=x﹣10.由勾股定理就可以求出x的值,得出AD的值,由三角形的面积公式就可以求出结论.解答:解:(1)如图1,在CD上截取DE=MB,连接AE.∵四边形ABCD是正方形∴AB=BC=AD,∠ABC=∠D=90°在△ABM和△ADE中,∴△ABM≌△ADE(SAS),∴∠BAM=∠DAE,AM=AE∵∠MAN=45°∴∠DAE+∠BAN=45°.即∠NAE=45°.在△ANM和△ANE中,∴△ANM≌△ANE(SAS),∴S△AMN=S△AEN.∵S△ADN=S△AEN+S△ADE,∴S△ADN=S△ANE+S△ADE=S△AMN+S△ABM;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD.在△ABD和△AQF中,∴△ABD≌△AQF(SAS),∴AB=AQ,∠BAD=∠FAQ∵∠BAC=45°∴∠BAD+∠DAC=45°∴∠DAC+∠FAQ=45°即∠CAQ=45°∴∠BAC=∠CAQ.在△BAC和△QAC中,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=13.设AD=x,则QE=x﹣3,CE=x﹣10.在Rt△CQE中,∠E=90°∵CE2+QE2=CQ2∴(x﹣10)2+(x﹣3)2=132解得:x1=15,x2=﹣2(不合舍去)∴AD=15∴.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的性质的运用,解答时证明三角形全等是关键.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.考点:抛物线与x轴的交点.分析:(1)由C1:y=(x﹣m)2+m+1(m>0),可求得顶点A(m,m+1),由于点B 在y轴上,根据对称即可解得m=2;(2)由(1)知A(2,3)、B(0,1)根据勾股定理可得AB2=(2﹣0)2+(3﹣1)2=8由抛物线C2的顶点B(0,1)在y轴上得到抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),根据勾股定理得到AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1由于△ABC是直角三角形,进行分类讨论即可求出结果.解答:解:(1)∵C1:y=(x﹣m)2+m+1(m>0)∴顶点A(m,m+1),∵点B在y轴上,∴设B(0,b),又A、B关于点P(1,2)对称,∴,解得:m=2;(2)由(1)知A(2,3)、B(0,1)∴AB2=(2﹣0)2+(3﹣1)2=8∵抛物线C2的顶点B(0,1)在y轴上∴抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),∴AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1∵△ABC是直角三角形,则:①当∠ABC=90°时,AC2=BC2+AB2,即c2﹣4c+13=(c2+1)+8,解得:c=1∴C1(1,0),将点C1坐标代入y=ax2+1得:a+1=0;解得:a=﹣1,∴抛物线C2的解析式为:y=﹣x2+1,②当∠BAC=90°时,BC2=AC2+AB2,即c2+1=(c2﹣4c+13)+8,解得:c=5,∴C2(5,0),将点C2坐标代入y=ax2+1得:25a+1=0,解得:a=﹣,∴抛物线C2的解析式为:y=﹣x2+1,综上,当△ABC为直角三角形时,抛物线C2的解析式为:y=﹣x2+1或y=﹣x2+1.点评:本题考查了抛物线与X轴的交点,关于点对称,正确理解关于点对称是解题的关键.21 / 21。

2013年莆田市

2013年莆田市

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

莆田市2013年初中毕业班质量检测数 学(满分:150分;考试时间:120分钟) 一、精心选一选:本大题共8小题,每小题4分,共32分, 1.计算:32-+的结果是( )A .1B .1-C .5D .5-2.不等式组2153112x x x -<⎧⎪⎨-+≥⎪⎩的解集在数轴上表示正确的是( )3.如图,A 、B 的坐标分别为(2,0),(0,1),若将线段AB 平移至11A B ,则a b + 的值为( )A .2B .3C .4D .54.一个几何体的三视图如下,其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )A .2πB .12π C .4π D .8π5.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若2PA =,则PQ 的最小值为( )A .1B .2C .3D .46.在等腰三角形、梯形、矩形、平行四边形中既是轴对称图形又是中心对称图形的是( ) A .等腰三角形 B .梯形 C .矩形 D .平行四边形7.如图,正方形ABCD 的边长为1,E 、F 、G 、H 分别为各边上的点,且AE BF CG DH ===,设小5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

数学:中考2013年各地数学试题解析(山西、厦门)

数学:中考2013年各地数学试题解析(山西、厦门)

2013年山西省中考试题数学(解析)(满分120分考试时间120分钟)第I 卷选择题(共24分)一、选择题(本大题共12小题,每小题2分,共24分。

在每个小题给出的四个选项中,只有一项符合要求,请选出并在答题卡上将该项涂黑)1.(2013山西,1,2分)计算2×(-3)的结果是()A .6B .-6C .-1D .5【答案】B【解析】异号相乘,得负,所以选B 。

2.(2013山西,2,2分)不等式组的解集在数轴上表示为()【答案】C【解析】解(1)得:2x ≥,解(2)得:x <3,所以解集为23x ≤<,选C 。

3.(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B 、C 中两个小的与两个大的相邻,错,D 中底面不符合,只有A 符合。

4.(2013山西,4,2分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S 2甲=36,S 2乙=30,则两组成绩的稳定性:()A .甲组比乙组的成绩稳定B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定【答案】B【解析】方差小的比较稳定,故选B 。

5.(2013山西,5,2分)下列计算错误的是()A .x 3+x 3=2x 3B .a 6÷a 3=a 2C .D .【答案】B【解析】a 6÷a 3=633a a -=,故B 错,A 、C 、D 的计算都正确。

6.(2013山西,6,2分)解分式方程时,去分母后变形为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1-x)D.2-(x+2)=3(x-1)【答案】D【解析】原方程化为:,去分母时,两边同乘以x-1,得:2-(x+2)=3(x-1),选D。

7.(2013山西,7,2分)下表是我省11个地市5月份某日最高气温(℃)的统计结果:太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城2727282827292828303031该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃【答案】B【解析】28出现4次,最多,所以众数为28,由小到大排列为:27,27,27,28,28,28,28,29,30,30,31,所以,中位数为28,选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省莆田市2013年中考数学试卷
一、精心选一选:本大题共8小题,每小题4分,共32分。

每小题给出的四个选项中有且只有一个选项是符合题目要求的,答对的得4分,答错、不答或答案超过一个的一律得0分。

4.(4分)(2013•莆田)如图,一次函数y=(m ﹣2)x ﹣1的图象经过二、三、四象限,则m 的取值范围是( )
5.(
4分)(2013•莆田)如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是( )
B
6.(4分)(2013•莆田)如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()
7.(4分)(2013•莆田)如图,△ABC内接于⊙O,∠A=50°,则∠OBC的度数为()
OCB==40
二、细心填一填:本大题共8小题,每小题4分,共32分)
9.(4分)(2013•莆田)不等式2x﹣4<0的解集是x<2.
10.(4分)(2013•莆田)小明同学在“百度”搜索引擎中输入“中国梦”,搜索到相关的结果个数约为8650000,将这个数用科学记数法表示为8.65×106.
11.(4分)(2013•莆田)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件AB=DE,使△ABC≌△DEF.
12.(4分)(2013•莆田)已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.


=12
=.
故答案为:.
13.(4分)(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是10.
14.(4分)(2013•莆田)经过某个路口的汽车,它可能继续直行或向右转,若两种可能性
大小相同,则两辆汽车经过该路口全部继续直行的概率为.

故答案为:.
15.(4分)(2013•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q 是AC上一动点,则DQ+PQ的最小值为5.
BP=
16.(4分)(2013•莆田)统计学规定:某次测量得到n个结果x1,x2,…,x n.当函数
y=++…+取最小值时,对应x的值称为这次测量
的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为10.1.
三、耐心做一做:本大题共9小题,共86分。

解答应写出必要的文字说明、证明过程或演算步骤。

17.(8分)(2013•莆田)计算:+|﹣3|﹣(π﹣2013)0.
18.(8分)(2013•莆田)先化简,再求值:,其中a=3.
•,
=2
19.(8分)(2013•莆田)莆田素有“文献名邦”之称,某校就同学们对“莆田历史文化”的了解程度进行随机抽样调查,将调查结果制成如图所示的两幅统计图:
根据统计图的信息,解答下列问题:
(1)本次共调查60名学生;
(2)条形统计图中m=18;
(3)若该校共有学生1000名,则该校约有200名学生不了解“莆仙历史文化”.
×=200
20.(8分)(2013•莆田)定义:如图1,点C在线段AB上,若满足AC2=BC•AB,则称点C为线段AB的黄金分割点.
如图2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于点D.
(1)求证:点D是线段AC的黄金分割点;
(2)求出线段AD的长.
∴=,即=
AC=
21.(8分)(2013•莆田)如图,▱ABCD中,AB=2,以点A为圆心,AB为半径的圆交边BC于点E,连接DE、AC、AE.
(1)求证:△AED≌△DCA;
(2)若DE平分∠ADC且与⊙A相切于点E,求图中阴影部分(扇形)的面积.
×π×=
22.(10分)(2013•莆田)如图,直线l:y=x+1与x轴、y轴分别交于A、B两点,点C与
原点O关于直线l对称.反比例函数y=的图象经过点C,点P在反比例函数图象上且位于
C点左侧,过点P作x轴、y轴的垂线分别交直线l于M、N两点.
(1)求反比例函数的解析式;
(2)求AN•BM的值.
y=

,﹣),
×)﹣
•a
23.(10分)(2013•莆田)如图所示,某学校拟建一个含内接矩形的菱形花坛(花坛为轴对称图形).矩形的四个顶点分别在菱形四条边上,菱形ABCD的边长AB=4米,∠ABC=60°.设AE=x米(0<x<4),矩形EFGH的面积为S米2.
(1)求S与x的函数关系式;
(2)学校准备在矩形内种植红色花草,四个三角形内种植黄色花草.已知红色花草的价格为20元/米2,黄色花草的价格为40元/米2.当x为何值时,购买花草所需的总费用最低,并求出最低总费用(结果保留根号)?
AEM=
x
×x=
cm
的面积为+
8x x
x x+320
(+240,
元.
24.(12分)(2013•莆田)如图,抛物线y=ax2+bx+c的开口向下,与x轴交于点A(﹣3,0)和点B(1,0).与y轴交于点C,顶点为D.
(1)求顶点D的坐标.(用含a的代数式表示);
(2)若△ACD的面积为3.
①求抛物线的解析式;
②将抛物线向右平移,使得平移后的抛物线与原抛物线交于点P,且∠PAB=∠DAC,求平移后抛物线的解析式.
×.


=OA=×
DAC===
DAC=.
PAB==,
y=x+1,解得,
,)
点坐标(,)代入
=+m


,解得,
,﹣
点坐标(,﹣
=﹣(


﹣)
25.(14分)(2013•莆田)在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.
(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;
②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.
∴∴
,∴
,∴,∴
,∴

,得,即


又∵
∴。

相关文档
最新文档