概 率 论 与 数 理 统 计 试 题
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计题库及答案-知识归纳整理

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21− (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A)41414121 (B)161814121(C)1631614121 (D)81834121−3. 设延续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=− (B) 21)21(==X P(C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为延续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞−=x x F b d )() (B) X a P <(≤⎰=b ax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞−=x x f b d )()5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ).(A)⎰ba x x F d )( (B)⎰bax x f d )((C) )()(a f b f − (D) )()(b F a F −6. 下列函数中可以作为延续型随机变量的密度函数的是( ).知识归纳整理7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) 0.1 (B) 0.4 (C) 0.3 (D) 0.28. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+−)(x Φ1)(=x (C) Φ=−)(a Φ)(a (D) 2)(=<a x P Φ1)(−a9. 下列数组中,不能作为随机变量分布列的是( ).(A ) 61,61,31,31 (B)104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23−=X Y ( ).(A) )3,2(−N (B) )3,4(−N (C) )3,4(2−N (D) )3,2(2−N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ). (A) n (B) p(C) 1- p (D) p−1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ).(A) E X D X (),().==321(B) 9.0)(,3)(==X D X E 求知若饥,虚心若愚。
(完整word版)《概率论与数理统计》期末考试试题及答案

)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
概率论与数理统计(经管类)(有答案)

实用文档04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X PB .21)1(=≤+Y X P实用文档C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
(完整版)概率论与数理统计试题库

《概率论与数理统计》试题(1)判断题(本题共15分,每小题3分。
正确打“V” ,错误打“X” )⑴对任意事件A和B ,必有P(AB)=P(A)P(B) ()⑵ 设A、B是Q中的随机事件,则(A U B)-B=A ()⑶ 若X服从参数为入的普哇松分布,则EX=DX⑷假设检验基本思想的依据是小概率事件原理1 n _⑸ 样本方差S:= —(X i X )2是母体方差DX的无偏估计(n i i、(20分)设A、B、C是Q中的随机事件,将下列事件用A、B、C表示出来(1) 仅A发生,B、C都不发生;(2) 代B,C中至少有两个发生;(3) 代B,C中不多于两个发生;(4) 代B,C中恰有两个发生;(5) 代B,C中至多有一个发生。
三、(15分)把长为a的棒任意折成三段,求它们可以构成三角形的概率四、(10分)已知离散型随机变量X的分布列为X 2 1 0 1 31 1 1 1 11P5 6 5 15 302 求Y X的分布列.1五、(10分)设随机变量X具有密度函数f(x) -e|x|, V x V2求X的数学期望和方差•六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求P(14 X 30).七、(15分)设X1 ,X2,L ,X n是来自几何分布k 1P(X k) p(1 p) , k 1,2,L , 0 p 1 ,的样本,试求未知参数p的极大似然估计•X表示在x 0 0.5 1 1.5 2①(x ) 0.500 0.691 0.841 0.933 0.9772.5 30.994 0.999《概率论与数理统计》试题(1)评分标准⑴ X;(2) X;⑶“;⑷";(5) X o 解(1) ABC(2)ABU AC U BC 或 ABC U ABC U ABC U ABC ;(3) AUBUC 或 ABC U ABC U ABC U ABC U ABC U ABC U ABC ; (4) ABC U ABC U ABC ;(5) AB U AC U BC 或 ABC U ABC U ABC U ABC六解X “ P(14 ^b(k;100,0.20), EX=100 X 0.2=20, DX=100 X 0.2 X 0.8=16.-- --5分 分 30 20 14 20、 X 30) ( --------- )( --------------- ) ------------------ V16 J16 ------10(2.5) ( 1.5)=0.994+0.933—10.927. -------------------------------------n——15分七解n x nL(X 1, L ,x n ;p)p(1 p)x i1 p n(1 p)i1---------5分 -------------------------------------- 10 分每小题4分;解 设A '三段可构成三角形'又三段的长分别为x,y,a x y ,Oxa, 0 ya, Oxy a ,不等式构成平面域S .Aa A 发生 0 x —, 02不等式确定S 的子域A , 所以a a y , x y a2 2------------------------------------ 10A 的面积 1S 的面积 4---------------------------------------- 15则 分分分四 解Y 的分布列为Y 0 1 4 91 7 1 11P — ----- — —5 30 5 30Y 的取值正确得2分, 分布列对一组得 2分; 五 解 EXx 2 凶 dx 0, (因为被积函数为奇函数)2D X EX 22 x 1 |x| 1 —e dx x 2e x dx22 xx e0 2 xe x dx 0------------------------- 4 分 2[ xe x 0e x dx] 2.In L n In p d In L n dp p (X i n )l n(1 p),i 1 X i n @0, --------------------------- 10 分 解似然方程 n n X in i 1 得p 的极大似然估计 ------------------------------------------------------------------- 15 分 《概率论与数理统计》期末试题(2) 与解答一、填空题(每小题 3分,共15分) 1. 设事件 代B 仅发生一个的概率为 0.3,且P(A) P(B) 0.5,则 代B 至少有一个不发 生的概率为 ___________ . 2. __________________________________________________________________________ 设随机变量X 服从泊松分布,且P(X 1) 4P(X 2),则P(X 3) _______________________ . 23. _______________________ 设随机变量X 在区间(0,2)上服从均匀分布,则随机变量Y X 在区间(0,4)内的概率 密度为f Y (y) . 的指数分布,P(X 1) e 2,则4. 设随机变量 X,Y 相互独立,且均服从参数为5._______ , P{min( X ,Y) 1} = ____ 设总体X 的概率密度为 (1)x , 0 x 1, f (x)0, 其它 1.X 1 ,X 2, ,X n 是来自X 的样本,则未知参数 的极大似然估计量为 ___________解:1. P(AB AB) 0.3即 0.3 P(AB) P(AB) P(A) P(AB) P(B) P(AB) 0.5 2P(AB)2所以 P(AB) 0.1P(A B) P(AB) 1 P(AB) 092.P(X 1) P(X 0) P(X 1) e e , P(X 2) e由 P(X 1) 4P(X 2)知e e2 2e即2 21 0解得1,故P(X3)1 1 e . 63•设丫的分布函数为F Y (y), X 的分布函数为F x (x),密度为f x (x)则F Y (V ) P(Y y) P(X 2 y) P( ...y X ,y) FxG.y) F x ( ,y) 因为 X ~U (0, 2),所以 F X ( ,y) 0,即 F Y (y) F X G. y)1.ln x in i 1二、单项选择题(每小题 3分,共15分)1 .设A, B,C 为三个事件,且 A, B 相互独立,则以下结论中不正确的是(A) 若P(C) 1,则AC 与BC 也独立. (B) 若P(C) 1,则AUC 与B 也独立. (C) 若P(C) 0,则AUC 与B 也独立.J(y) F Y (y)1 _2丁x(J)0 y 4, 另解 在(0,2)上函数y 所以 2x 严格单调,反函数为h(y)其它..5f Y (y) Afx(7?)诙4孑 0 ,其它.y 4,4. P(X 1) 1 P(X P{min( X ,Y) 1} 111) eP{min( X,Y) 4 e ・ 1} P(X 1)P(Y 1)5.似然函数为L(X 1 ,L ,X n ;n(i 1n1)Xi(1叽1_ X )解似然方程得 ln L n ln(1)ln x i ln x i i 1@0的极大似然估计为EX X(D )若C B ,则A 与C 也独立• ()2•设随机变量 X~N(0,1), X 的分布函数为(x),贝U P(|X| 2)的值为(A )2[1 (2)] . ( B )2 (2)1 .(C ) 2(2).( D )1 2 (2).()3•设随机变量 X 和Y 不相关,则下列结论中正确的是(A ) X 与 Y 独立. (B ) D(X Y) DX DY .(C ) D(X Y) DX DY .(D ) D(XY) DXDY .()4•设离散型随机变量 X 和Y 的联合概率分布为(X,Y) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) P1 1 1 1 691832. X ~ N(0,1)所以 P(| X | 2) 1 P(| X | 2)1 P(2 X1 (2) ( 2) 1 [2 (2) 1] 2[1 (2)]若X,Y 独立,则 7的值为2 112(A ) -, —(A ) J—99991 15 1 (C ), — (D ) — , . ()6618185 •设总体X 的数学期望为,X 1,X 2丄,X n为来自X 的样本,则下列结论中正确的是(A ) X i 是的无偏估计量 (B ) X i 是 的极大似然估计量(C ) X 1是 的相合(一致)估计量(D ) X i 不是 的估计量.() 解:1.因为概率为1的事件和概率为 0的事件与任何事件独立,所以( A ), (B ), (C )可见A 与C 不独立.2)应选(A )都是正确的,只能选(事实上由图EX X12 3 P(X 2, Y 2)1 1 1 11— — ■ 1 、69183(- )(-391 1 23321 1丄92 918故应(A).3•由不相关的等价条件知应选(B ) 4•若X,Y 独立则有)P(X 2)P(Y 2)f(o三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1) 一个产品经检查后被认为是合格品的概率;(2) 一个经检查后被认为是合格品的产品确是合格品的概率解:设A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则(1) P(A) P(B)P(A|B) P(B)P(A|B)0.9 0.95 0.1 0.02 0.857.P(AB) 0.9 0.95 (2) P(B| A) 0.9977 .P(A) 0.857四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.解:X的概率分布为k2 k3 3 kP(X k) cf(5)k(5)3kX 0 1 2即P27 54 36 125 125 12X的分布函数为0 , x 0,27125 ,0 x 1,F(x )81 1 x 2, 125117 2 x3, 1251 , x 3.2 6 EX3 --5 5DX c 2 3 183 --5 5 25五、(10分)设二维随机变量(X,Y)在区域 D匀分布.求(1)(X,Y)关于X的边缘概率密度;38125{(x,y)|x 0, y 0, x y 1}上服从均(2)Z X Y的分布函数与概率密(1) (X ,Y)的概率密度为f(x, y) 2, (x, y) D 0,其它.k 0,1,2,3.2 2x, 0 x 1f(x,y)dy0 ,其它(2)利用公式f Z(z) f (x, z x)dx其中f(x,z x) 2, 0 x 1,0 z x 1 x0,其它2, 0 x 1, x z 1.0,其它.当z 0 或z 1 时f z (z) 0z的分布函数为z z0 z 1 时f z(z) 2 q dx 2x02z 故Z的概率密度为f z(z)2z, 0 z 1,0,其它.0, z 0 0, z 0,fZ⑵z zf Z(y)dy 02ydy,0 z 1 2z , 0 z 1,1,1 z 1.z 1或利用分布函数法0 , z 0,F Z(Z) P(Z z) P(X Y z) 2dxdy, 0 z 1D11 , z 1.0 , z 0,2z , 0 z 1,1 , z 1.f z (z) F z⑵2z,0 ,0 z 1,其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,22)分布.求(1)命中环形区域D {( x, y) |1 x2 y2 2}的概率;(2)命中点到目标中心距离Z X Y2的数学期望.D (1)P{X,Y) D} f(x,y)dxdyDx28dxdy 8rdrdf x(X)4 41 2 -8re 8 rdrd1 e 8 r 2dr 8 04 0r2re 丁r 2e T dr 02冷dr阪七、(11分)设某机器生产的零件长度(单位: cm ) X 〜N ( , 2),今抽取容量为样本,测得样本均值 X 10,样本方差s 2 0.16. ( 1)求的置信度为0.952区间;(2)检验假设H 。
概率论与数理统计试题库及答案考试必做

概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件;试用 A 、B 、C 分别表示事件1A 、B 、C 至少有一个发生2A 、B 、C 中恰有一个发生3A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8;则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在1,6上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用,X Y 的联合分布函数Fx,y 表示P{a b,c}X Y ≤≤<=13.用,X Y 的联合分布函数Fx,y 表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量x,y 在区域D 上服从均匀分布,则x,y 关于X 的边缘概率密度在x = 1 处的值为 ;15.已知)4.0,2(~2-N X ,则2(3)E X +=16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 相互独立,则(3)D X Y -=17.设X的概率密度为2()x f x -=,则()D X = 18.设随机变量X 1,X 2,X 3相互独立,其中X 1在0,6上服从均匀分布,X 2服从正态分布N0,22,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,则DY=19.设()()25,36,0.4xy D X D Y ρ===,则()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或X ~ ;特别是,当同为正态分布时,对于任意的n ,都精确有X ~ 或X ~ .21.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且i EX μ=,2i DX σ=(1,2,)i =⋅⋅⋅ 那么211n i i X n =∑依概率收敛于 . 22.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;23.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差=24.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 AP A+B = P A; B ()P(A);P AB =C (|A)P(B);P B =D (A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 A “甲种产品滞销,乙种产品畅销”; B “甲、乙两种产品均畅销”C “甲种产品滞销”;D “甲种产品滞销或乙种产品畅销”;3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球;则第二人取到黄球的概率是A1/5 B2/5 C3/5 D4/54. 对于事件A,B,下列命题正确的是A 若A,B 互不相容,则A 与B 也互不相容;B 若A,B 相容,那么A 与B 也相容;C 若A,B 互不相容,且概率都大于零,则A,B 也相互独立;D 若A,B 相互独立,那么A 与B 也相互独立;5. 若()1P B A =,那么下列命题中正确的是A AB ⊂ B B A ⊂C A B -=∅D ()0P A B -=6. 设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A 增大 B 减少 C 不变 D 增减不定;7.设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=;那么对任意给定的a 都有A 0()1()a f a f x dx -=-⎰B 01()()2a F a f x dx -=-⎰ C )()(a F a F -= D 1)(2)(-=-a F a F8.下列函数中,可作为某一随机变量的分布函数是A 21()1F x x =+B x x F arctan 121)(π+= C =)(x F 1(1),020,0x e x x -⎧->⎪⎨⎪≤⎩D ()()x F x f t dt -∞=⎰,其中()1f t dt +∞-∞=⎰ 9. 假设随机变量X 的分布函数为Fx,密度函数为fx.若X 与-X 有相同的分布函数,则下列各式中正确的是AFx = F-x; B Fx = - F-x;C f x = f -x;D f x = - f -x.10.已知随机变量X 的密度函数fx=x x Ae ,x 0,λλ-≥⎧⎨<⎩λ>0,A 为常数,则概率P{X<+a λλ<}a>0的值A 与a 无关,随λ的增大而增大B 与a 无关,随λ的增大而减小C 与λ无关,随a 的增大而增大D 与λ无关,随a 的增大而减小 11.1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A 21X X = B1}{21==X X P C 21}{21==X X P D以上都不正确12.设离散型随机变量(,)X Y 的联合分布律为 且Y X ,相互独立,则A 9/1,9/2==βαB 9/2,9/1==βαC 6/1,6/1==βαD 18/1,15/8==βα13.若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为 A 二维正态,且0=ρ B 二维正态,且ρ不定C 未必是二维正态D 以上都不对14.设X,Y 是相互独立的两个随机变量,它们的分布函数分别为F X x,F Y y,则Z = max{X,Y} 的分布函数是AF Z z= max { F X x,F Y y}; B F Z z= max { |F X x|,|F Y y|}C F Z z= F X x ·F Y yD 都不是(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ15.下列二无函数中, 可以作为连续型随机变量的联合概率密度;Afx,y=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B gx,y=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C ϕx,y=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D hx,y=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他16.掷一颗均匀的骰子600次,那么出现“一点”次数的均值为A 50B 100 C120 D 15017. 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A1. B9. C10. D6.18.对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =⋅,则A ()()()D XY D X D Y =⋅B ()()()D X Y D X D Y +=+C X 和Y 独立D X 和Y 不独立19.设()(P Poission λX 分布),且()(1)21E X X --=⎡⎤⎣⎦,则λ= A1, B2, C3, D020. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的A 不相关的充分条件,但不是必要条件;B 独立的必要条件,但不是充分条件;C 不相关的充分必要条件;D 独立的充分必要条件21.设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是A 123X X X ++B 123max{,,}X X XC 2321i i X σ=∑D 1X μ-22.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭B {}(1),k k n k n P X kC p p -==-0,1,2,,k n =⋅⋅⋅ C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅ D {}(1),1k k n k i nP X k C p p i n -==-≤≤ 23.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χD ()t n24.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是 A 1/1--=n S X t μ B 1/2--=n S X t μ C n S X t /3μ-= D n S X t /4μ-=25.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121n i i n m i i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n --三、解答题1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率;2.任意将10本书放在书架上;其中有两套书,一套3本,另一套4本;求下列事件的概率;1 3本一套放在一起;2两套各自放在一起;3两套中至少有一套放在一起;3.调查某单位得知;购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD 占5%,三种电器都购买占2%;求下列事件的概率;1至少购买一种电器的;2至多购买一种电器的;3三种电器都没购买的;4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率;5.一箱产品,A,B 两厂生产分别个占60%,40%,其次品率分别为1%,2%;现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大6.有标号1∼n 的n 个盒子,每个盒子中都有m 个白球k 个黑球;从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率;7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率;1放回 2不放回8.设随机变量X 的密度函数为()x f x Ae -= ()x -∞<<+∞,求 1系数A,2 {01}P x ≤≤3 分布函数)(x F ;9.对球的直径作测量,设其值均匀地分布在b a ,内;求体积的密度函数;10.设在独立重复实验中,每次实验成功概率为,问需要进行多少次实验,才能使至少成功一次的概率不小于;11.公共汽车车门的高度是按男子与车门碰头的机会在以下来设计的,设男子的身高2(168,7)X N ,问车门的高度应如何确定12. 设随机变量X 的分布函数为:Fx=A+Barctanx,-x ∞<<+∞.求:1系数A 与B ;2X 落在-1,1内的概率;3X 的分布密度;13.把一枚均匀的硬币连抛三次,以X 表示出现正面的次数,Y 表示正、反两面次数差的绝对值 ,求),(Y X 的联合分布律与边缘分布;14.设二维连续型随机变量),(Y X 的联合分布函数为 )3arctan )(2arctan (),(y C x B A y x F ++= 求1A B C 、、的值, 2),(Y X 的联合密度, 3 判断X Y 、的独立性;15.设连续型随机变量X,Y 的密度函数为fx,y=(34)0,0,0,x y x y Ae -+>>⎧⎨⎩其他, 求 1系数A ;2落在区域D :{01,02}x y <≤<≤的概率;16. 设),(Y X 的联合密度为x y x x Ay y x f ≤≤≤≤-=0,10),1(),(,1求系数A,2求),(Y X 的联合分布函数;17.上题条件下:1求关于X 及Y 的边缘密度; 2X 与Y 是否相互独立18.在第16题条件下,求)(x y f 和)(y x f ;19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X 的数学期望()E X 和方差()D X ;20. 有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量准备了三组砝码 ,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少21. 公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望准确到秒;22.设排球队A 与B 比赛,若有一队胜4场,则比赛宣告结束,假设A,B 在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负23.一袋中有n 张卡片,分别记为1,2,﹒﹒﹒,n ,从中有放回地抽取出k 张来,以X 表示所得号码之和,求(),()E X D X ;24.设二维连续型随机变量X ,Y 的联合概率密度为:f x ,y=,0x 1,0y x 0,k <<<<⎧⎨⎩其他 求:① 常数k, ② ()E XY 及()D XY .25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率;26.一系统是由n 个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少由 80%的部件正常工作,系统才能正常工作,问n 至少为多大时,才能使系统正常工作的概率不低于 0.9527.甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%;28.设总体X 服从正态分布,又设X 与2S 分别为样本均值和样本方差,又设21(,)n X N μσ+,且1n X +与12,,,n X X X ⋅⋅⋅相互独立,求统计量的分布;29.在天平上重复称量一重为α的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N α,若以n X 表示n 次称量结果的算术平均值,为使()0.10.95n P X a -<≥成立,求n 的最小值应不小于的自然数30.证明题 设A,B 是两个事件,满足)()(A B P A B P =,证明事件A,B 相互独立; 31.证明题 设随即变量X 的参数为2的指数分布,证明21X Y e -=-在区间0,1上服从均匀分布;<数理统计>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 必须写出分布的参数;2.设),(~2σμN X ,而,,,,是从总体X 中抽取的样本,则μ的矩估计值为 ;3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 ;4.已知2)20,8(1.0=F ,则=)8,20(9.0F ;5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计;6.设样本的频数分布为则样本方差2s =_____________________;7.设总体X~N μ,σ²,X1,X2,…,Xn 为来自总体X 的样本,X 为样本均值,则D X =________________________;8.设总体X 服从正态分布N μ,σ²,其中μ未知,X1,X2,…,Xn 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;9.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值x1,x2, (x)落入W 的概率为,则犯第一类错误的概率为_____________________; 10.设样本X1,X2,…,Xn 来自正态总体N μ,1,假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H0成立的条件下,对显著水平α,拒绝域W 应为______________________;11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于,则样本容量n 至少要取__ __;12.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个简单随机样本,其中参数μ和2σ均未知,记11n i i X X n ==∑,221()ni i Q X X ==-∑,则假设0H :0μ=的t 检验使用的统计量是 ;用X 和Q 表示13.设总体2~(,)X N μσ,且μ已知、2σ未知,设123,,X X X 是来自该总体的一个样本,则21231()3X X X σ+++,12323X X X μσ++,222123X X X μ++-,(1)2X μ+中是统计量的有 ;14.设总体X 的分布函数()F x ,设n X X X ,,,21 为来自该总体的一个简单随机样本,则n X X X ,,,21 的联合分布函数 ;15.设总体X 服从参数为p 的两点分布,p 01p <<未知;设1,,n X X 是来自该总体的一个样本,则21111,(),6,{},max n niin i n i ni i X XX X X X pX ≤≤==--+∑∑中是统计量的有 ;16.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;17.设2~(,)X X X N μσ,2~(,)Y Y Y N μσ,且X 与Y 相互独立,设1,,m X X 为来自总体X 的一个样本;设1,,n Y Y 为来自总体Y 的一个样本;2X S 和2Y S 分别是其无偏样本方差,则2222//X X Y Y S S σσ服从的分布是 ;18.设()2,0.3X N μ~,容量9n =,均值5X =,则未知参数μ的置信度为的置信区间是 查表0.025 1.96Z =19.设总体X ~2(,)N μσ,X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D X =________________________;20.设总体X 服从正态分布N μ,σ²,其中μ未知,X 1,X 2,…,X n 为其样本;若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________;21.设12,,,n X X X ⋅⋅⋅是来自正态总体2(,)N μσ的简单随机样本,μ和2σ均未知,记11n i i X X n ==∑,221()ni i X X θ==-∑,则假设0:0H μ=的t 检验使用统计量T= ;22.设11m i i X X m ==∑和11ni i Y Y n ==∑分别来自两个正态总体211(,)N μσ和222(,)N μσ的样本均值,参数1μ,2μ未知,两正态总体相互独立,欲检验22012:H σσ= ,应用检验法,其检验统计量是 ;23.设总体X ~2(,)N μσ,2,μσ为未知参数,从X 中抽取的容量为n 的样本均值记为X ,修正样本标准差为*n S ,在显著性水平α下,检验假设0:80H μ=,1:80H μ≠的拒绝域为 ,在显著性水平α下,检验假设2200:H σσ=0σ已知,2110:H σσ≠的拒绝域为 ;24.设总体X ~12(,),01,,,,n b n p p X X X <<⋅⋅⋅为其子样,n 及p 的矩估计分别是 ;25.设总体X ~[]120,,(,,,)n U X X X θ⋅⋅⋅是来自X 的样本,则θ的最大似然估计量是 ;26.设总体X ~2(,0.9)N μ,129,,,X X X ⋅⋅⋅是容量为9的简单随机样本,均值5x =,则未知参数μ的置信水平为0.95的置信区间是 ;27.测得自动车床加工的10个零件的尺寸与规定尺寸的偏差微米如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4则零件尺寸偏差的数学期望的无偏估计量是28.设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令221234()(),Y X X X X =++- 则当C = 时CY ~2(2)χ;29.设容量n = 10 的样本的观察值为8,7,6,9,8,7,5,9,6,则样本均值= ,样本方差= 30.设X 1,X 2,…X n 为来自正态总体2(,)N μσX的一个简单随机样本,则样本均值11ni i n =X =X ∑服从二、选择题1.1621,,,X X X 是来自总体),10(N ~X 的一部分样本,设:216292821X X Y X X Z ++=++= ,则YZ~ )(A )1,0(N )(B )16(t )(C )16(2χ )(D )8,8(F2.已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是X X A +)( +A ∑=-n i iX n B 1211)( a X C +)( +10 131)(X a X D ++5 3.设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是)(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 4.设总体),(~2σμN X ,n X X ,,1 为抽取样本,则∑=-ni i X X n 12)(1是)(A μ的无偏估计 )(B 2σ的无偏估计 )(C μ的矩估计 )(D 2σ的矩估计5、设n X X ,,1 是来自总体X 的样本,且μ=EX ,则下列是μ的无偏估计的是)(A ∑-=111n i i X n )(B ∑=-n i i X n 111 )(C ∑=ni i X n 21 )(D ∑-=-1111n i i X n 6.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当__ __时,一般采用统计量X t =A 220μσσ未知,检验=B 220μσσ已知,检验= C 20σμμ未知,检验= D 20σμμ已知,检验=7.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为im 的样本,则下列说法正确的是___ __A 方差分析的目的是检验方差是否相等B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异8.在一次假设检验中,下列说法正确的是______ A 既可能犯第一类错误也可能犯第二类错误B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都不变D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9.对总体2~(,)X N μσ的均值μ和作区间估计,得到置信度为95%的置信区间,意义是指这个区间A 平均含总体95%的值B 平均含样本95%的值C 有95%的机会含样本的值D 有95%的机会的机会含μ的值 10.在假设检验问题中,犯第一类错误的概率α的意义是 A 在H 0不成立的条件下,经检验H 0被拒绝的概率 B 在H 0不成立的条件下,经检验H 0被接受的概率 C 在H 00成立的条件下,经检验H 0被拒绝的概率 D 在H 0成立的条件下,经检验H 0被接受的概率 11. 设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 12.X 服从正态分布,1-=EX ,25EX =,),,(1n X X 是来自总体X 的一个样本,则∑==ni inX X 11服从的分布为___ ;A N 1-,5/nB N 1-,4/nC N 1-/n,5/nD N 1-/n,4/n13.设n X X X ,,,21 为来自正态总体2(,)N μσ的一个样本,若进行假设检验,当___ __时,一般采用统计量X U =A 220μσσ未知,检验=B 220μσσ已知,检验=C 20σμμ未知,检验=D 20σμμ已知,检验=14.在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为i m 的样本,则下列说法正确的是____ _ A 方差分析的目的是检验方差是否相等 B 方差分析中的假设检验是双边检验C 方差分析中211.()im r e ij i i j S y y ===-∑∑包含了随机误差外,还包含效应间的差异D 方差分析中2.1()rA i i i S m y y ==-∑包含了随机误差外,还包含效应间的差异15.在一次假设检验中,下列说法正确的是___ ____ A 第一类错误和第二类错误同时都要犯B 如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误C 增大样本容量,则犯两类错误的概率都要变小D 如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16.设ˆθ是未知参数θ的一个估计量,若ˆE θθ≠,则ˆθ是θ的___ _____A 极大似然估计B 矩法估计C 相合估计D 有偏估计 17.设某个假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2, …,x n落入W 的概率为,则犯第一类错误的概率为__________; A B C D18.在对单个正态总体均值的假设检验中,当总体方差已知时,选用A t 检验法B u 检验法C F 检验法D 2χ检验法19.在一个确定的假设检验中,与判断结果相关的因素有 A 样本值与样本容量 B 显著性水平α C 检验统计量 DA,B,C 同时成立 20.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平下,下列结论中正确的是A 必须接受0HB 可能接受,也可能拒绝0HC 必拒绝0HD 不接受,也不拒绝0H21.设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是A 22111()1n i i S X X n ==--∑B 22211()n i i S X X n ==-∑C 221S X +D 222S X +22.总体X ~2(,)N μσ,2σ已知,n ≥ 时,才能使总体均值μ的置信水平为0.95的置信区间长不大于LA 152σ/2LB 15.36642σ/2LC 162σ/2LD 16 23.设12,,,nX X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C X X θ-+==-∑为 2σ的无偏估计,C =A 1/nB 1/1n -C 1/2(1)n -D 1/2n - 24.设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为A ()211n i i X X n =-∑B ()2111n i i X X n =--∑C 211n i i X n =∑ D 2X 25.设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是A 当n 充分大时,近似有X ~(1),p p N p n -⎛⎫⎪⎝⎭B {}(1),k kn k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅C {}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅D {}(1),1k kn k i nP X k C p p i n -==-≤≤ 26.若X ~()t n 那么2χ~A (1,)F nB (,1)F nC 2()n χ D ()t n27.设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S n i i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是A 1/1--=n S X t μ B 1/2--=n S X t μ C nS X t /3μ-=D nS X t /4μ-=28.设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A (,)F m nB (1,1)F n m --C (,)F n mD (1,1)F m n -- 29.设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____A4114i i X X ==∑ B142X X μ+-C42211()i i K X X σ==-∑ D4211()3i i S X X ==-∑30. 设 ()2~,N ξμσ,其中μ已知,2σ未知,123,,X X X 为其样本, 下列各项不是统计量的是A 22212321()X X X σ++ B13X μ+C123max(,,)X X X D 1231()3X X X ++三、计算题1.已知某随机变量X 服从参数为λ的指数分布,设n X X X ,,,21 是子样观察值,求λ的极大似然估计和矩估计;10分2.某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为: 已知原来直径服从)06.0,(N μ,求:该天生产的滚珠直径的置信区间;给定05.0=α,645.105.0=Z ,96.1025.0=Z 8分3.某包装机包装物品重量服从正态分布)4,(2μN ;现在随机抽取16个包装袋,算得平均包装袋重为900=x ,样本均方差为22=S ,试检查今天包装机所包物品重量的方差是否有变化05.0=α488.2715262.6)15(2025.02975.0==)(,χχ8分 4.设某随机变量X 的密度函数为⎩⎨⎧+=0)1()(λλx x f 其他10<<x 求λ的极大似然估计; 6分5.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α求出滚珠的平均直径的区间估计;8分)96.1,645.1(025.005.0==Z Z6.某种动物的体重服从正态分布)9,(μN ,今抽取9个动物考察,测得平均体重为3.51公斤,问:能否认为该动物的体重平均值为52公斤;05.0=α8分96.1645.1025.005.0==Z Z7.设总体X 的密度函数为:⎩⎨⎧+=0)1()(ax a x f 其他10<<x , 设n X X ,,1 是X 的样本,求a 的矩估计量和极大似然估计;10分8.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取12个子样算得2.0=S ,求σ的置信区间1.0=α,68.19)11(22=αχ,57.4)11(221=-αχ8分9.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=10.10分某出租车公司欲了解:从金沙车站到火车北站乘租车的时间; 随机地抽查了9辆出租车,记录其从金沙车站到火车北站的时间,算得20x =分钟,无偏方差的标准差3s =;若假设此样本来自正态总体2(,)N μσ,其中2,μσ均未知,试求σ的置信水平为的置信下限;11.10分设总体服从正态分布2(,)N μσ,且μ与2σ都未知,设1,,n X X 为来自总体的一个样本,其观测值为1,,n x x ,设11n i i X X n ==∑,2211()n n i i S X X n ==-∑;求μ和σ的极大似然估计量;12.8分掷一骰子120次,得到数据如下表若我们使用2χ检验,则x 取哪些整数值时,此骰子是均匀的的假设在显著性水平0.05α=下被接受13.14分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布, 规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,21()0.008192nii x x =-=∑;问1在显著性水平0.05α=下,这天生产的食盐的平均净重是否和规定的标准有显著差异2 在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准3你觉得该天包装机工作是否正常14.8分设总体X 有概率分布现在观察到一个容量为3的样本,11x =,22x =,31x =;求θ的极大似然估计值15.12分对某种产品进行一项腐蚀加工试验,得到腐蚀时间X 秒和 腐蚀深度Y 毫米的数据见下表:X 5 5 10 20 30 40 50 60 65 90 120 Y 4 6 8 13 16 17 19 25 25 29 46假设Y 与X 之间符合一元线回归模型01Y X ββε=++1试建立线性回归方程;2在显著性水平0.01α=下,检验01:0H β=16. 7分设有三台机器制造同一种产品,今比较三台机器生产能力,记录其五天的日产量17.10分设总体X 在),0(θ)0(>θ上服从均匀分布,n X X ,,1 为其一个样本,设},,max{1)(n n X X X =1)(n X 的概率密度函数()n p x 2求()[]n E X18.7分机器包装食盐,假设每袋盐的净重服从2~(,)X N μσ正态分布,规定每袋标准重量为1μ=kg,方差220.02σ≤;某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重单位:kg 为:,,,,,,,,算得上述样本相关数据为:均值为0.998x =,无偏标准差为0.032s =,在显著性水平0.05α=下,这天生产的食盐的净重的方差是否符合规定的标准19.10分设总体X 服从正态分布2(,)N μσ,1,,n X X 是来自该总体的一个样本,记11(11)kk i i X X k n k ==≤≤-∑,求统计量1k k X X +-的分布;20.某大学从来自A,B 两市的新生中分别随机抽取5名与6名新生,测其身高单位:cm 后算得x =,y =;1.9s 3.11s 2221==,;假设两市新生身高分别服从正态分布X-N μ1,σ2,Y-N μ2,σ2其中σ2未知;试求μ1-μ2的置信度为的置信区间;9=,11=<概率论>试题参考答案一、填空题1. 1 C B A 2 C B A C B A C B A3 B A C A C B 或 C B A C B A C B A C B A2. , 3.3/7 , 4.4/7 = 1/1260 , 5., 6. 1/5, 7.1=a ,=b 1/2, 8., 9.2/3, 10.4/5, 11.5/7, 12.Fb,c-Fa,c, 13.F a,b, 14.1/2, 15., 16., 17.1/2, 18.46, 19.85 20.22(,),(0,1),(,),(0,1)N N N N nnσσμμ; 21.22μσ+, 22,1/8 ,23.X =7,S 2=2 , 24.2N ,n σμ⎛⎫⎪⎝⎭,二、选择题1.A 2.D 3.B 4.D 5.D 6.C 7.B 8.B 9.C 10 .C11.C 12.A 13.C 14.C 1 5.B 16.B 17.C 18.B 19.A 20 .C21.C 22.B 23.A 24.B 25.C 三、解答题 1. 8/15 ;2. 11/15, 21/210, 32/21;3. 1 , 2, 3 ;4. ;5. 取出产品是B 厂生产的可能性大;6. m/m+k;7.11{}(3/13)(10/13)k P X K -== 28. 1A =1/2 , 211(1)2e -- , 31,02()11,02xx e x F x e x ⎧<⎪⎪=⎨⎪-≥⎪⎩9. 1/32/3330()161()(),()366f x x x a b b a πππ-⎧⎪=⎨⎡⎤∈⎪⎢⎥-⎣⎦⎩其他, 10. 4≥n11. 提示:99.0}{01.0}{≥<≤≥h x P h x P 或,利用后式求得31.184=h 查表(2.33)0.9901φ= 12. 错误!A=1/2,B=1π; 错误! 1/2; 错误! f x=1/π1+x 2 13. 14. 12,,22A B C ππ===;2 222(,)(4)(9)f x y x y π=++;3 独立 ;15. 1 12; 2 1-e -31-e -816. 124A =24322432340003812(/2)010(,)3861014301111x y y y x x y x y x F x y y y y x y x x x x y x y <<⎧⎪-+-≤<≤<⎪⎪=++≥≤<⎨⎪-≤<≤⎪≥≥⎪⎩或 17. 1212(1),01()0,x x x x f x ⎧-≤≤=⎨⎩其他 ; 212(1),01()0,y y y y f y ⎧-≤≤=⎨⎩其他2不独立18. 22,0,01()0,Y X yy x x f y x x ⎧<<<<⎪=⎨⎪⎩其他 ;22(1),1,01(1)()0,X Y x y x y y f x y -⎧≤<<<⎪-=⎨⎪⎩其他19. 1224(),()749E X D X ==20. 丙组 21. 10分25秒 22. 平均需赛6场j PiP1/823. 2(1)(1)(),()212k n k n E X D X +-== ; 24. k = 2, EXY=1/4, DXY=7/144 25. 26. 27. 537 28. (1)t n - 29. 1630. 提示:利用条件概率可证得;31. 提示:参数为2的指数函数的密度函数为220()00xe xf x x -⎧>=⎨≤⎩ ,利用21xY e-=-的反函数⎪⎩⎪⎨⎧--=0)1ln(21y x 即可证得;<数理统计>试题参考答案一、填空题1.)1,0(N , 2.∑=n i i X n 11=, 3.121-∑=ni i x n , 4., 5.)ˆ()ˆ(β<θD D 6.2 , 7.n 2σ, 8.n-1s 2或∑=n 1i 2i )x -(x , 9. , 10.⎭⎬⎫⎩⎨⎧>2u |u |σ,其中n x u =11.21X u α-±, 385;12.X t =13. 222123X X X μ++-, (1)2X μ+ ; 14.1(,,)n F x x 为1()ni i F x =∏,15.2111,(),6,{}max n ni in i i ni i X XX X X ≤≤==--∑∑ ;16.21X u α-±,17. (,)F m n , 18.,, 19.n 2σ, 20.n-1s 2或∑=n1i 2i )x -(x ,21.T =, 22.F ,2121(1)()(1)()mi i ni i n X X F m Y Y ==--=--∑∑ , 23.__22221122100222()()(1),(1)(1)n n i i i i n x x x x t n n n αααχχσσ==-⎧⎫⎧⎫--⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪->-⋃<-⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎩⎭⎪⎪⎪⎪⎩⎭⎩⎭∑∑, 24.2,1X S n p p X∧∧==- , 25.12max{,,,}n X X X θ=⋅⋅⋅ ,26.[4.412,5.588], 27.2 , 28.1/8 , 29.X =7, S 2=2, 30.2N ,n σμ⎛⎫⎪⎝⎭二、选择题1.D 2.B 3.B 4.D 5.D 6.C 7.D 8.A 9.D 10.C11.A 12.B 13.D 14.D 15.C 16.D 17.B 18.B 19.D 20.A21.D 22.B 23.C 24.A 25.B 26.A 27.B 28.C 29.C 30.A 三、计算题 1.10分解:设n X X X ,,,21 是子样观察值 极大似然估计: ∑⋅===-=-∏ni iix nni x eeL 11)(λλλλλ∑=-⋅=ni i n n x l n L l 1)(λλλ0)(1=-=∂∂∑=ni i n x n L l λλλ x1=λ 矩估计:λ=⋅λ⋅=⎰+∞λ-1)(0dx e x X E x 样本的一阶原点矩为:∑==ni i X n X 11所以有:XX X EX 1ˆ1=λ⇒=λ⇒= 2.8分解:这是方差已知,均值的区间估计,所以有: 置信区间为:],[22αασ+σ-Z n X Z n X 由题得:95.14)1.152.158.149.141.156.14(61=+++++=X696.105.0025.0===αn Z代入即得:]96.1606.095.14,96.1606.095.14[⨯-⨯-所以为:]146.15,754.14[ 3.8分解:统计量为:)1(~)1(222--n X S n σ0H :22024==σσ,1H :202σσ≠16=n ,22=S ,224=σ代入统计量得875.116215=⨯ 262.6)15(875.12975.0=<χ所以0H 不成立,即其方差有变化; 4.6分解:极大似然估计:λλλλλ)()1()1(),,(111∏∏==+=+=ni i nni i n X X X X L ;∏=++=ni i X n L 1ln )1ln(ln λλ0ln 1ln 1=++=∑=ni i X nd L d λλ 得 ∑∑==+-=ni ini iXX n 11ln ln ˆλ5.8分解: 这是方差已知均值的区间估计,所以区间为:],[22αασ+σ-Z n x Z n x 由题意得:905.004.0152==α=σ=n x 代入计算可得]96.192.015,96.192.015[⨯+⨯-化间得:]131.15,869.14[ 6.8分解:52:00==μμH ,01:μμ≠H7.093523.51-=-=-nx σμ96.12=αμ96.17.0|7.0|025.0=μ<=-所以接受0H ,即可以认为该动物的体重平均值为52;7.10分 解: 矩估计为:210121)1()(21++=++=+⋅=+⎰a a x a a dx x a x X E a a 样本的一阶原点矩为:∑==ni i x n X 11所以有:XX a X a a --=⇒=++112ˆ21极大似然估计:∏∏==⋅+=+=ni i a ni ni an x a x a x x x f 1121)1(])1[(),,,(两边取对数:∑=++=ni i n x a a n x x f 11)ln()1ln(),,(ln两边对a 求偏导数:=∂∂afln ∑=++ni i x a n 1)ln(1=0 所以有:∑=--=ni ix na1)ln(1ˆ8.8分 解:由2222221)1(ααχσχ≤-≤-S n 得 2222)1(αχσS n -≥,22122)1(αχσ--≤S n所以σ的置信区间为:)11()1(222αχS n -,)11()1(2212αχ--S n 将12=n ,2.0=S 代入得 15.0,31.09.解:这是两正态总体均值差的区间估计问题;由题设知,2-n n 1)s -(n 1)s -(n s .05.01.9s 3.11s 172y 9.175x 6,n 5,n 21222211w 222121++========α,,,, 2分=, 4分 选取9=,则21μμ-置信度为的置信区间为: ⎥⎦⎤⎢⎣⎡+++++21w 21221w212n 1n 12)s -n (n t y -x ,n 1n 12)s -n (n t -y -x αα 8分 =,. 10分 注:置信区间写为开区间者不扣分; 10. 解:由于μ未知,故采用2222(1)~(1)n S n χχσ-=-作枢轴量 2分要求()1L P σσα≥=- 2分这等价于要求22()1L P σσα≥=-, 也即2222(1)(1)()1Ln S n S P ασσ--≤=- 2分而2212(1)((1))1n S P n αχασ--≤-=- 2分所以2212(1)(1)Ln S n αχσ--=-,故2221(1)(1)Ln S n ασχ--=- 1分 故σ的置信水平为1α-的置信下限为L σ=由于这里9n =,0.05α=,20.95(8)15.507χ=所以由样本算得ˆ 2.155L σ= 1分 即σ的置信水平为的置信下限为; 11. 解:写出似然函数221222()()2222(,)(2)ni i i n x x ni L eμμσσμσπσ=-----=∑== 4分取对数2222211ln (,)ln(2)()2nn ii L x μσπσμσ==---∑ 2分求偏导数,得似然方程221231ln 1()0ln 1()0n i i n i i L x L n x μμσμσσσ==∂⎧=-=⎪∂⎪⎨∂⎪=-+-=⎪∂⎩∑∑ 3分解似然方程得:ˆX μ=,ˆσ= 1分12.解:设第i 点出现的概率为i p ,1,,6i =101266:H p p p ====,1126:,,,H p p p 中至少有一个不等于161分采用统计量 221()ri i i i n np np χ=-=∑1分在本题中,6r =,0.05α=,20.95(5)11.07χ= 1分所以拒绝域为2{11.107}W χ=≥ 1分 算实际的2χ值,由于1612020i np =⨯=,所以22222621()(20)4(2020)(20)(20)2010i i i i n np x x x np χ=--+-+--===∑ 1分所以由题意得2(20)011.10710x -≤<时被原假设被接受即9.4630.54x <<,故x 取[10,30]之间的整数时, 2分 此骰子是均匀的的假设在显著性水平0.05α=下被接受;1分13. 解:“这几天包装是否正常”,即需要对这天包装的每袋食盐净重的期望与方差分别作假设检验1检验均值,总共6分0:1H μ=,1:1H μ≠ 选统计量,并确定其分布~(1)X t t n =-确定否定域21{||}{|| 2.306}W t t t α-=≥=≥统计量的观测值为0.1875x t ==因为21||0.1875 2.306t t α-=<=,所以接受0:1H μ=;2检验方差,总共6分220:0.02H σ≤,220:0.02H σ>选统计量222211()~(1)0.02nii XX n χχ==--∑确定否定域2221{(1)}{15.5}W n αχχχ-=≥-=≥ 统计量的观测值为222221180.032()20.480.020.02n i i x x χ=⨯=-==∑因为22120.4815.5(1)n αχχ-=>=-,所以拒绝220:0.02H σ≤32分结论:综合1与2可以认为,该天包装机工作是不正常的; 14.解:此时的似然函数为123123()(1,2,1)(1)(2)(1)L P X X X P X P X P X θ======== 2分即225()2(1)2(1)L θθθθθθθ=⨯-⨯=- 2分 ln ()ln 25ln ln(1)L θθθ=++- 1分ln ()511d L d θθθθ=-- 1分 令 ln ()0d L d θθ= 1分得θ的极大似然估计值5ˆ6θ=.1分15.解:1解:根据公式可得01ˆˆY X ββ=+其中 011ˆˆˆXYXX l lY X βββ⎧=⎪⎨⎪=-⎩ 2分。
概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。
2、一个袋子中有大小相同的红球6只、黑球4只。
(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。
3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为: 0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。
7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。
2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概 率 论 与 数 理 统 计 试 题
一. 一. 填空题(每空1分,共20分)
1.设两个事件A 和B :P (A )=0.7, P(B)=0.2, 若A 和B 相互独立,则,P(A ⋃B)=_______,P(A -B)=_________,若A 和B 互不相容, 则P(A ⋃B)=_______, P(A |B)=__________.
2.设随机变量ξ的概率分布为P(ξ=k) = C k )21((k=1,2,3,4),η=(ξ-2)2, 则常数C=_____,η的分布列为
__________________________________
3.设随机变量ξ1,ξ2,…,ξn ,…,相互独立且同分布,E(ξ
i )=a,D(ξi )=σ2(i=1,2,…,n…)那么对任意的正数ε,有
≥-∑=∞→a n p n
i n 1i 1(lim ξε)= 。
4.设随机变量ξ,η相互独立,且都服从区间 [0,2]上的均匀分布,则二维随机变量(ξ,η)的分布密度f(x,y)=_______________,cov(ξ,
η)__________ 。
<1)=______________,E(ξη)=________________
6.设x 1,x 2,…x n 是总体ξ∽N(a, σ2)的样本,
∑==n
i i x n x 11,s 2=21)(1x x n n i i -∑=,则统计量1--n s a x 的分布是
___________________-当a 未知时,要检验假设H: σ2=20σ(20σ是已知常数),则使用的检验统计量是
____________________,当假设H 成立时,该统计量的分布是
_______________
7.设总体ξ的分布密度为
f(x)=⎩⎨⎧<<-其他0101x x θθ
其中θ>0为未知参数, x 1,x 2,…x n 是总体ξ的样本,要求θ的极大似然估计量,则似然函数为
L(θ)=___________________,^θ=________________
8.回归分析是处理两个变量之间的_________________关系的分析方法,一元线性回归方程^y =a+bx 中回归系数a 和b 的稳定性与_________________和____________及观测数据的个数有关。
二。
单项选择题(每题2分,共10分)
1. 1. 设A 和B 是两个随机事件,则下列关系式中成立的是( )
(1)P (A -B )=P (A )-P (B ) (2)P(A ⋃B)=P
(A )+P (B )
(3)P (A -B )≤P (A )-P (B ) (4)P(A ⋃B)≤P (A )+P (B )
2. 2. 设P 是单次试验中事件A 发生的概率,则n 次重复独立试验中事件A 至少发生一次的概率为( )
(1)P (2)1-P (3)(1-P) n
(4)1-(1-P )n
3. .设随机变量ξ服从区间[0,1]上的均匀分布,η=1-ξ,则D (η)=( )
(1)1/12 (2)-(1/12) (3)13/12 (4)11/12
4..设x 1,x 2, x 3,x 4是总体ξ∽N(a, σ)的一个样本,则下列统计量中作为总体均值的估计量最有效的是( )
(1)x 1 (2)(x 1+x 2)/2 (3)(x 1+x 2,+2x 4)/3 (4)(x 1+x 2,+x 3+x 4)/4
5. 5. 关于假设检验,下列说法不正确的是( )
(1) (1) 假设检验的基本原理是小概率原理。
(2) (2) 只要适当选取样本,计算精确,则不会
犯任何错误。
(3) (3) 在显著性水平α下犯第一类错误的概率
为α
(4) (4) 在固定的α下,增大样本容量可减少犯
第二类错误的概率
三. (12分)车床加工同样的零件,第一台车床出现废品的概率为0.03,第二台车床出现品的概率为0.02,加工出来的零件放在一起,且已知第一台加工的零件数是第二台的一半,如果从中任取一个零件是废品,求它是第二台加工的概率
四. (14分)设随机变量ξ的分布密度为
f(x)=⎪⎩⎪⎨⎧<≤-<≤其他021210x x
x x 求(1)P (ξ<3/2) (2) E(ξ)
五.(12分)设随机变量(ξ,η)的联合分布密度为
⎩⎨⎧≤≤≤≤=其它00,10),(x y x k y x f
(1)求常数k 的值 (2) 求关于ξ的边缘分布密度
六. 六. (8分)一细纱车间纺出某种细纱支数的标准差为
1.2,某日从纺出的一批纱中随机抽取15缕,进行支数测量,测得细纱支数的样本标准差为S=
2.1.假定总体服从正态分布,问细纱支数的标准差有无显著性变化? 已知2975.0χ(14)=26.1 )
七. 七. (12分)有三台机器用来生产规格相同的铝合金薄板,取样测量薄板厚度精确到千分之一厘米,得结果如下 铝合金薄板厚度 机器1 0.236 0.238 0.248 0.245 0.243
机器2 0.257 0.253 0.255 0.254 0.261
机器3 0.258 0.264 0.259 0.267 0.262
试检验机器对薄板厚度的影响是否显著。
已知
F 0.95(2,13)-=3.81,F 0.99(2,13)=6.70
八. (12分)下表列出不同重量下弹簧的长度
试求回归方程^y=a+bx并对回归方程进行显著性检验。
已知F0.95(1,4)=7.71
答案
概率论与数理统计试题参考答案
所以机器对薄板厚度的影响不显著。