2020版高考物理大一轮复习第五章专题强化六综合应用力学两大观点解决三类问题讲义含解析教科版201905291199
高考物理复习:力学三大观点的综合应用

高考物理复习:力学三大观点的综合应用考点一 动力学和能量观点的应用[知能必备]1.过程分析:将复杂的物理过程分解为几个简单的物理过程,挖掘出题中的隐含条件,找出联系不同阶段的“桥梁”.2.受力及功能分析:分析物体所经历的各个运动过程的受力情况以及做功情况的变化,选择适合的规律求解.3.规律应用:选用相应规律解决不同阶段的问题,列出规律性方程.[典例剖析](2020·全国卷Ⅱ)如图,一竖直圆管质量为M ,下端距水平地面的高度为H ,顶端塞有一质量为m 的小球.圆管由静止自由下落,与地面发生多次弹性碰撞,且每次碰撞时间均极短;在运动过程中,管始终保持竖直.已知M =4m ,球和管之间的滑动摩擦力大小为4mg ,g 为重力加速度的大小,不计空气阻力.(1)求管第一次与地面碰撞后的瞬间,管和球各自的加速度大小;(2)管第一次落地弹起后,在上升过程中球没有从管中滑出,求管上升的最大高度; (3)管第二次落地弹起的上升过程中,球仍没有从管中滑出,求圆管长度应满足的条件. 解析:(1)管第一次落地弹起的瞬间,小球仍然向下运动.设此时管的加速度大小为a 1,方向向下;球的加速度大小为a 2,方向向上;球与管之间的摩擦力大小为f ,由牛顿运动定律有Ma 1=Mg +f ① ma 2=f -mg ②联立①②式并代入题给数据,得a 1=2g ,a 2=3g ③(2)管第一次碰地前与球的速度大小相同.由运动学公式,碰地前瞬间它们的速度大小均为v 0=2gH ④方向均向下.管弹起的瞬间,管的速度反向,球的速度方向依然向下.设自弹起时经过时间t 1,管与小球的速度刚好相同.取向上为正方向,由运动学公式v 0-a 1t 1=-v 0+a 2t 1⑤ 联立③④⑤式得t 1=252H g⑥ 设此时管下端的高度为h 1,速度为v .由运动学公式可得 h 1=v 0t 1-12a 1t 21⑦v =v 0-a 1t 1⑧由③④⑥⑧式可判断此时v >0.此后,管与小球将以加速度g 减速上升h 2,到达最高点.由运动学公式有h 2=v 22g⑨设管第一次落地弹起后上升的最大高度为H 1, 则H 1=h 1+h 2⑩联立③④⑥⑦⑧⑨⑩式可得H 1=1325H ⑪(3)设第一次弹起过程中球相对管的位移为x 1.在管开始下落到上升H 1这一过程中,由动能定理有Mg (H -H 1)+mg (H -H 1+x 1)-4mgx 1=0⑫ 联立⑪⑫式并代入题给数据得x 1=45H ⑬同理可推得,管与球从再次下落到第二次弹起至最高点的过程中,球与管的相对位移x 2为x 2=45H 1⑭设圆管长度为L .管第二次落地弹起后的上升过程中,球不会滑出管外的条件是x 1+x 2≤L ⑮联立⑪⑬⑭⑮式,L 应满足的条件为L ≥152125H ⑯答案:(1)2g 3g (2)1325H (3)L ≥152125H[题组精练]1.(多选)如图所示,长直杆固定放置与水平面夹角θ=30°,杆上O 点以上部分粗糙,O 点以下部分(含O 点)光滑.轻弹簧穿过长杆,下端与挡板相连,弹簧原长时上端恰好在O 点,质量为m 的带孔小球穿过长杆,与弹簧上端连接.小球与杆粗糙部分的动摩擦因数μ=33,最大静摩擦力等于滑动摩擦力,现将小球拉到图示a 位置由静止释放,一段时间后观察到小球振动时弹簧上端的最低位置始终在b 点,O 点与a 、b 间距均为l .则下列说法正确的是( )A .小球在a 点弹簧弹性势能最大B .小球在a 点加速度大小是在b 点加速度大小的2倍C .整个运动过程小球克服摩擦力做功mglD .若增加小球质量,仍从a 位置静止释放,则小球最终运动的最低点仍在b 点 解析:BC 由于O 点与a 、b 间距均为l ,所以小球在a 、b 两点的弹性势能相等,则A 错误;小球从a 运动到b 过程,由动能定理可得mg sin θ2l -W f =0,解得W f =mgl ,所以C 正确;小球在a 点有mg sin 30°+kl -μmg cos 30°=ma 1,小球在b 点有kl -mg sin 30°=ma 2,由于小球最后是在O 与b 两点间做简谐振动,则在b 点与O 点的加速度大小相等,小球在O 点有mg sin 30°=ma 3,a 2=a 3,联立解得a 2=a 3=g 2,a 1=g ,所以小球在a 点加速度大小是在b 点加速度大小的2倍,则B 正确;若增加小球质量,仍从a 位置静止释放,设小球最终运动的最低点为c ,由于小球最后是在O 与最低点c 两点间做简谐振动,则在c 点与O 点的加速度大小相等,小球在c 点有kl ′-mg sin 30°=ma 2,解得l ′=mgk,所以增大小球的质量,弹簧在最低点的形变量也会增大,则最低点位置发生了改变,所以D 错误.2.如图所示,在光滑水平地面上放置质量M =2 kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1 kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6 m .滑块在木板上滑行t =1 s 后,和木板一起以速度v =1 m /s 做匀速运动,取g =10 m /s 2.求:(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功; (3)滑块相对木板滑行的距离. 解析:(1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2 N .(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3 m /s滑块沿弧面下滑的过程,由动能定理得 mgh -W f =12m v 20W f =mgh -12m v 20=1.5 J .(3)t =1 s 内木板的位移x 1=12a 1t 2此过程中滑块的位移x 2=v 0t +12a 2t 2故滑块相对木板滑行距离L =x 2-x 1=1.5 m . 答案:(1)2 N (2)1.5 J (3)1.5 m3.(2020·江苏卷)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h . 解析:(1)线速度v =ωr 得v =2ωR .(2)向心力F 向=2m ω2R设F 与水平方向的夹角为α,则 F cos α=F 向;F sin α=mg解得F = (2m ω2R )2+(mg )2. (3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.答案:(1)2ωR (2) (2m ω2R )2+(mg )2 (3)M +16m2Mg(ωR )2考点二 动量和能量观点的应用[知能必备]1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.[典例剖析](2020·天津卷)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小; (2)碰撞前瞬间B 的动能E k 至少多大?解析:(1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l①A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v 2A =12m 1v 2+2m 1gl ② 由动量定理,有I =m 1v A ③ 联立①②③式,得I =m 15gl ④(2)设两球粘在一起时的速度大小为v ′,A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A ⑤要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′⑥ 又E k =12m 2v 2B⑦ 联立①②⑤⑥⑦式,得碰撞前瞬间B 的动能E k 至少为 E k =5gl (2m 1+m 2)22m 2⑧答案:(1)m 15gl (2)5gl (2m 1+m 2)22m 2动量和能量观点应用的四点注意(1)弄清有几个物体参与运动,并划分清楚物体的运动过程. (2)进行正确的受力分析,明确各过程的运动特点.(3)光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定守恒;碰撞过程、子弹打击木块、不受其他外力作用的两物体相互作用问题,一般考虑用动量守恒定律分析.(4)如含摩擦生热问题,则考虑用能量守恒定律分析.[题组精练]1.(2021·上海浦东区二模)质量M =0.6 kg 的平板小车静止在光滑水平面上,如图所示,当t =0时,两个质量都为m =0.2 kg 的小物体A 和B ,分别从小车的左端和右端以水平速度v 1=5.0 m /s 和v 2=2.0 m /s 同时冲上小车,当它们相对于小车停止滑动时,没有相碰.已知A 、B 两物体与车面的动摩擦因数都是0.20,g 取10 m /s 2,求:(1)A 、B 两物体在车上都停止滑动时的速度. (2)车的长度至少是多少?解析:(1)设物体A 、B 相对于车停止滑动时,车速为v ,根据动量守恒定律: m (v 1-v 2)=(M +2m )v v =0.6 m /s 方向向右(2)设物体A 、B 在车上相对于车滑动的距离分别为L 1、L 2,车长为L ,由功能关系 μmg (L 1+L 2)=12m v 21+12m v 22-12(M +2m )v 2解得:L 1+L 2=6.8 m L ≥L 1+L 2=6.8 m 可知L 至少为6.8 m答案:(1)0.6 m /s 方向向右 (2)6.8 m2.(2021·铜陵一模)如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角θ=37°,另一端点C 为轨道的最低点.C 点右侧的光滑水平面上紧挨C 点静止放置一木板,木板质量M =1 kg ,上表面与C 点等高.质量为m =1 kg 的物块(可视为质点)从空中A 点以v 0=1.2 m /s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.取g =10 m /s 2.求:(1)物块经过C 点时的速度v C ;(2)若木板足够长,物块在木板上相对滑动过程中产生的热量Q .解析:(1)设物块在B 点的速度为v B ,在C 点的速度为v C ,从A 到B 物块做平抛运动,有v B sin θ=v 0从B 到C ,根据动能定理有 mgR (1+sin θ)=12m v 2C -12m v 2B解得v C =6 m /s .(2)根据动量守恒定律得:(m +M )v =m v C 根据能量守恒定律有 12(m +M )v 2+Q =12m v 2C 联立解得Q =9 J . 答案:(1)6 m /s (2)9 J考点三 动力学、动量和能量观点的应用[知能必备]1.力学解题的三大观点分类规律 数学表达式 动力学 观点力的瞬 时作用牛顿第二定律 F 合=ma牛顿第 三定律F =-F ′ 能量 观点力的空间 积累作用动能定理 W 合=E k2-E k1 机械能守 恒定律 E k1+E p1=E k2+E p2 动量 观点力的时间积累作用动量定理 F 合t =m v ′-m v 动量守 恒定律m 1 v 1+m 2 v 2=m 1 v 1′+m 2 v 2′2.选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题,应选用动量守恒定律,然后再根据能量关系分析解决.3.系统化思维方法(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).[典例剖析](2021·湖南卷)如图,竖直平面内一足够长的光滑倾斜轨道与一长为L的水平轨道通过一小段光滑圆弧平滑连接,水平轨道右下方有一段弧形轨道PQ.质量为m的小物块A与水平轨道间的动摩擦因数为μ.以水平轨道末端O点为坐标原点建立平面直角坐标系xOy,x轴的正方向水平向右,y轴的正方向竖直向下,弧形轨道P端坐标为(2μL,μL),Q端在y轴上.重力加速度为g.(1)若A从倾斜轨道上距x轴高度为2μL的位置由静止开始下滑,求A经过O点时的速度大小;(2)若A从倾斜轨道上不同位置由静止开始下滑,经过O点落在弧形轨道PQ上的动能均相同,求PQ的曲线方程;(3)将质量为λm(λ为常数且λ≥5)的小物块B置于O点,A沿倾斜轨道由静止开始下滑,与B发生弹性碰撞(碰撞时间极短),要使A和B均能落在弧形轨道上,且A落在B落点的右侧,求A下滑的初始位置距x轴高度的取值范围.解析:(1)若A从倾斜轨道上距x轴高度为2μL处由静止开始下滑,对A从静止释放到运动到O点的过程,由动能定理得mg×2μL-μmgL=12m v2,解得v0=2μgL.(2)在PQ曲线上任意取一点,设坐标为(x、y),设A从O点抛出的初速度为v,由平抛运动规律有x=v t,y =12gt 2, 联立解得y =12g x 2v2,设A 落在P 点时从O 点抛出的初速度为v P , 将P 点坐标代入上式,有μL =12g (2μL )2v 2P , 解得v P =2μgL ,小物块A 从倾斜轨道上不同位置由静止释放,落在曲线PQ 上的动能均相同,有12m v 2P+mg ·μL =12m v 2+mgy ,解得x 2+4y 2-8μLy =0(0≤x ≤2μL ).(3)设A 与B 碰前瞬间的速度为v 0′,A 、B 碰后瞬间的速度分别为v 1、v 2,对A 、B 组成的系统,根据动量守恒定律与机械能守恒定律有m v 0′=m v 1+λm v 2, 12m v 0′2=12m v 21+12λm v 22, 解得v 1=1-λ1+λv 0′,v 2=21+λv 0′,又因为mgh -μmgL =12m v 0′2,要使A 、B 均能落在PQ 上且A 落在B 落点的右侧,则有12m v 2P ≥12m v 21-2μmgL >12m v 22,联立解得3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL . 答案:(1)2μgL (2)x 2+4y 2-8μLy =0(0≤x ≤2μL ) (3)3μL ⎝ ⎛⎭⎪⎫1+λ1-λ2+μL ≥h >2μL (1+λ)λ-3+μL [题组精练]1.一玩具厂家设计了一款玩具,模型如下.游戏时玩家把压缩的弹簧释放后使得质量m =0.2 kg 的小弹丸A 获得动能,弹丸A 再经过半径R 0=0.1 m 的光滑半圆轨道后水平进入光滑水平平台,与静止的相同的小弹丸B 发生碰撞,并在黏性物质作用下合为一体.然后从平台O 点水平抛出,落于水平地面上设定的得分区域.已知压缩弹簧的弹性势能范围为0≤E p ≤4 J ,距离抛出点正下方O ′点右方0.4 m 处的M 点为得分最大值处,小弹丸均看作质点.(1)要使得分最大,玩家释放弹簧时的弹性势能应为多少? (2)得分最大时,小弹丸A 经过圆弧最高点时对轨道的压力大小.(3)若半圆轨道半径R 可调(平台高度随之调节),弹簧的弹性势能范围为0≤E p ≤4 J ,玩家要使得落地点离O 点最远,则半径应调为多少?最远距离多大?解析:(1)根据机械能守恒定律得 E p =12m v 21+mg ·2R 0A 、B 发生碰撞的过程,取向右为正方向,由动量守恒定律有 m v 1=2m v 2 2R 0=12gt 20x =v 2t 0 解得E p =2 J(2)小弹丸A 经过圆弧最高点时,由牛顿第二定律得F N +mg =m v 21R解得F N =30 N 由牛顿第三定律知 F 压=F N =30 N(3)根据E p =12m v 21+mg ·2Rm v 1=2m v 2 2R =12gt 2x =v 2t 联立解得 x =⎝⎛⎭⎫E p mg -2R ·2R 其中E p 最大为4 J ,得R =0.5 m 时落点离O ′点最远,为 x m =1 m答案:(1)2 J (2)30 N (3)0.5 m 1 m2.(2021·潍坊二模)如图所示,一质量M =4 kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C ,BC 所对圆心角θ=37°,CD 长L =3 m .质量m =1 kg 的小物块从某一高度处的A 点以v 0=4 m /s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2 m /s .取g =10 m /s 2,sin 37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ;(2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移时滑块离小车左端的水平距离.解析:(1)由平抛运动的规律得tan θ=gt v 0x =v 0t解得x =1.2 m .(2)物块在小车上CD 段滑动过程中,由动量守恒定律得m v 1=(M +m )v由功能关系得fL =12m v 21-12(M +m )v 2 对物块,由动量定理得-ft 0=m v -m v 1得t 0=1 s .(3)有销钉时mgH +12m v 20=12m v 21 由几何关系得H -12gt 2=R (1-cos θ) B 、C 间水平距离x BC =R sin θμmgL =12m v 21-12(M +m )v 2(或f =μmg ) 若拔掉销钉,小车向左运动达最大位移时,速度为0,由系统水平方向动量守恒可知,此时物块速度为4 m /s由能量守恒定律得mgH =μmg (Δx -x BC )解得Δx =3.73 m .答案:(1)1.2 m (2)1 s (3)3.73 m3.(2020·全国卷Ⅲ)如图,相距L =11.5 m 的两平台位于同一水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小v 可以由驱动系统根据需要设定.质量m =10 kg 的载物箱(可视为质点),以初速度v 0=5.0 m /s 自左侧平台滑上传送带.载物箱与传送带间的动摩擦因数μ=0.10,重力加速度取g =10 m /s 2.(1)若v =4.0 m /s ,求载物箱通过传送带所需的时间;(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;(3)若v =6.0 m /s ,载物箱滑上传送带Δt =1312s 后,传送带速度突然变为零.求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量.解析:(1)传送带的速度为v =4.0 m /s 时,载物箱在传送带上先做匀减速运动,设其加速度大小为a ,由牛顿第二定律有μmg =ma ①设载物箱滑上传送带后匀减速运动的距离为s 1,由运动学公式有v 2-v 20=-2as 1②联立①②式,代入题给数据得s 1=4.5 m ③因此,载物箱在到达右侧平台前,速度先减小至v ,然后开始做匀速运动.设载物箱从滑上传送带到离开传送带所用的时间为t 1,做匀减速运动所用的时间为t 1′,由运动学公式有v =v 0-at 1′④t 1=t 1′+L -s 1v ⑤联立①③④⑤式并代入题给数据得t 1=2.75 s ⑥(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v 1;当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v 2.由动能定理有-μmgL =12m v 21-12m v 20⑦ μmgL =12m v 22-12m v 20⑧ 由⑦⑧式并代入题给条件得v 1=2 m /s ,v 2=43 m /s ⑨(3)传送带的速度为v =6.0 m /s 时,由于v 0<v <v 2,载物箱先做匀加速运动,加速度大小仍为a .设载物箱做匀加速运动通过的距离为s 2,所用时间为t 2,由运动学公式有v =v 0+at 2⑩v 2-v 20=2as 2⑪联立①⑩⑪式并代入题给数据得t 2=1.0 s ⑫s 2=5.5 m ⑬因此载物箱加速运动1.0 s 、向右运动5.5 m 时,达到与传送带相同的速度.此后载物箱与传送带共同匀速运动(Δt -t 2)的时间后,传送带突然停止.设载物箱匀速运动通过的距离为s 3,有s 3=(Δt -t 2)v ⑭由①⑫⑬⑭式可知,12m v 2>μmg (L -s 2-s 3),即载物箱运动到右侧平台时速度大于零,设为v 3.由运动学公式有v 23-v 2=-2a (L -s 2-s 3)⑮v 3=v -at 3⑯设载物箱通过传送带的过程中,传送带对它摩擦力的冲量为I 1,由动量定理有I 1=m (v 3-v 0)⑰联立①⑫⑬⑭⑮⑰式并代入题给数据得I 1=0⑱传送带对它支持力(大小等于重力)的冲量为I 2=mg (Δt +t 3)⑲联立⑮⑯⑲式并代入题给数据得I 2=6253N ·s ⑳ 由于I 1=0,所以传送带对它的冲量为I =I 2=6253N ·s ,方向竖直向上. 答案:(1)2.75 s (2)43 m /s 2 m /s (3)6253N ·s ,方向竖直向上 限时规范训练(九) 力学三大观点的综合应用建议用时60分钟,实际用时________一、单项选择题1.如图所示,小球a 、b (均可视为质点)用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为θ=60°.忽略空气阻力.则两球a 、b 的质量之比m a m b为( )A .22B .2-1C .1-22 D .2+1 解析:B b 球下摆过程中,由动能定理得m b gL =12m b v 20-0,碰撞过程动量守恒,设向左为正方向,由动量守恒定律可得m b v 0=(m a +m b )v ,两球向左摆动过程中,由机械能守恒定律得12(m a +m b )v 2=(m a +m b )gL (1-cos θ),解得m a m b=2-1,故ACD 错误,B 正确. 2.如图所示,质量为3m 的物块A 与质量为m 的物块B 用轻弹簧和不可伸长的细线连接,静止在光滑的水平面上,此时细线刚好伸直且无弹力.现使物块A 瞬间获得向右的速度v 0,在以后的运动过程中,细线没有绷断,以下判断正确的是( )A .细线再次伸直前,物块A 的速度先减小后增大B .细线再次伸直前,物块B 的加速度先减小后增大C .弹簧的最大弹性势能等于38m v 20D .物块A 、B 与弹簧组成的系统,损失的机械能最多为32m v 20解析:C 细线再次伸直时,也就是弹簧再次恢复原长时,细线恢复原长的过程中,A 始终受到向左的弹力,即一直做减速运动,B 始终受到向右的弹力,即一直做加速运动,弹簧的弹力先变大后变小,故B 的加速度先增大后减小,故A 、B 错误;弹簧弹性势能最大时,弹簧压缩到最短,此时A 、B 速度相等,根据动量守恒定律可得3m v 0=(3m +m )v ,解得v =34v 0,根据能量守恒定律可得,弹性势能E pmax =12×3m v 20-12·(3m +m )v 2=38m v 20,故C 正确;整个过程中,物块A 、B 与弹簧组成的系统只有弹簧的弹力做功,系统的机械能守恒,故D 错误.3.如图(a)所示,光滑绝缘水平面上有甲、乙两个带电小球,t =0时,甲静止,乙以6 m /s 的初速度向甲运动.它们仅在静电力的作用下沿同一直线运动(整个运动过程中两球没有接触),它们运动的v t 图像分别如图(b)中甲、乙两曲线所示.则由图线可知( )A .两带电小球的电性一定相反B .甲、乙两球的质量之比为2∶1C .t 2时刻,乙球的电势能最大D .在0~t 3时间内,甲的动能一直增大,乙的动能一直减小解析:B 由题图(b)可知,乙球减速的同时,甲球正向加速,说明两球相互排斥,带有同种电荷,故A 错误;两球作用过程动量守恒m 乙Δv 乙=m 甲Δv 甲,解得m 甲m 乙=21,故B 正确;t 1时刻,两球共速,距离最近,则乙球的电势能最大,故C 错误;在0~t 3时间内,甲的动能一直增大,乙的动能先减小,t 2时刻后逐渐增大,故D 错误.4.如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A 从圆槽的右侧最顶端由静止释放,重力加速度为g ,一切摩擦均不计.则( )A .A 、B 物体组成的系统动量守恒B .A 不能到达圆槽的左侧最高点C .A 运动到圆槽的最低点时A 的速率为23gR D .A 运动到圆槽的最低点时B 的速率为 gR 3解析:D A 、B 物体组成的系统只有水平方向动量守恒,故A 错误;运动过程不计一切摩擦,系统机械能守恒,故A 可以到达圆槽的左侧最高点,且A 在圆槽的左侧最高点时,A 、B 的速度都为零,故B 错误;对A 运动到圆槽的最低点的运动过程由水平方向动量守恒得m v A =2m v B ,对A 、B 整体由机械能守恒可得mgR =12m v 2A +12×2m v 2B ,所以A 运动到圆槽的最低点时B 的速率为v B = gR 3,v A = 4gR 3,故C 错误,D 正确. 5.(2021·山东济南市高三模拟)碰碰车是大人和小孩都喜欢的娱乐活动.游乐场上,大人和小孩各驾着一辆碰碰车迎面相撞,碰撞前后两人的位移-时间图像(x t 图像)如图所示.已知小孩的质量为20 kg ,大人的质量为60 kg ,碰碰车质量相同,碰撞时间极短.下列说法正确的是( )A .碰撞前后小孩的运动方向没有改变B .碰碰车的质量为50 kgC .碰撞过程中小孩和其驾驶的碰碰车受到的总冲量大小为80 N ·sD .碰撞过程中损失的机械能为600 J解析:D 规定小孩初始运动方向为正方向,由图可知,碰后两车一起向反方向运动,故碰撞前后小孩的运动方向发生了改变,故A 错误;由图可知,碰前瞬间小孩的速度为2 m /s ,大人的速度为-3 m /s ,碰后两人的共同速度为-1 m /s ,设碰碰车的质量为M ,由动量守恒定律有(20+M )×2 kg ·m /s -(60+M )×3 kg ·m /s =(2M +20+60)×(-1) kg ·m /s ,解得M =60 kg ,故B 错误;碰前小孩与其驾驶的碰碰车的总动量为p 1=160 kg ·m /s ,碰后总动量为p 1′=-80 kg ·m /s ,由动量定理可知碰撞过程中小孩和其驾驶的碰碰车受到的总冲量为I =Δp =-240 N ·s ,故其大小为240 N ·s ,故C 错误;由能量守恒定律可得碰撞过程中损失的机械能为ΔE =12×80×22 J +12×120×(-3)2 J -12×200×(-1)2 J =600 J ,故D 正确.6.如图甲所示,一块长度为L 、质量为m 的木块静止在光滑水平面上.一颗质量也为m 的子弹以水平速度v 0射入木块.当子弹刚射穿木块时,木块向前移动的距离为s ,如图乙所示.设子弹穿过木块的过程中受到的阻力恒定不变,子弹可视为质点.则子弹穿过木块的时间为( )A .1v 0(s +L ) B .1v 0(s +2L ) C .12v 0(s +L ) D .1v 0(L +2s ) 解析:D 设子弹穿过木块的速度为v 1,木块最终速度为v 2,子弹穿过木块过程,对子弹和木块组成的系统,外力之和为零,动量守恒,以v 0的方向为正方向,有m v 0=m v 1+m v 2,设子弹穿过木块的过程所受阻力为F f ,对子弹由动能定理-F f (s +L )=12m v 21-12m v 20,由动量定理-F f t =m v 1-m v 0,对木块由动能定理F f s =12m v 22,由动量定理F f t =m v 2,联立解得t =1v 0(L +2s ),故选D .7.质量为1 kg 的物体从足够高处由静止开始下落,其加速度a 随时间t 变化的关系图像如图所示,重力加速度g 取10 m /s 2,下列说法正确的是( )A .2 s 末物体所受阻力的大小为20 NB .在0~2 s 内,物体所受阻力随时间均匀减小C .在0~2 s 内,物体的动能增大了100 JD .在0~1 s 内,物体所受阻力的冲量大小为2.5 N ·s解析:D 2 s 末物体的加速度为零,则此时阻力等于重力,即所受阻力的大小为10 N ,选项A 错误;根据牛顿第二定律有mg -f =ma ,可得f =mg -ma ,在0~2 s 内,物体加速度随时间均匀减小,则所受阻力随时间均匀增大,选项B 错误;根据物体加速度a 随时间t 变化的关系图像与坐标轴所围图形的面积表示速度变化量可知,在0~2 s 内,物体的速度增加了Δv =12×2×10 m /s =10 m /s ,即t =2 s 时速度为v =10 m /s ,则在0~2 s 内,物体的动能增大了12m v 2=12×1×102 J =50 J ,选项C 错误;在0~1 s 内,物体速度的增量Δv 1=12×(5+10)×1 m /s =7.5 m /s ,根据动量定理有mgt -I f =m Δv 1,解得I f =2.5 N ·s ,选项D 正确.8.如图甲所示,光滑水平面上有一上表面粗糙的长木板,t =0时刻,质量m =1 kg 的滑块以速度v 0=7 m /s 滑上长木板左端,此后滑块与长木板运动的v t 图像如图乙所示.下列分析正确的是( )A .长木板的质量为0.5 kgB .长木板的长度为0.5 mC .0~2 s 内滑块与长木板间因摩擦产生的热量为16 JD .0~2 s 内长木板对滑块的冲量大小为4 kg ·m /s解析:C 滑块滑上长木板后,滑块受摩擦力作用做匀减速运动,长木板做匀加速运动,由图乙可知滑块的加速度大小为a 1=Δv Δt =2 m /s 2,长木板的加速度大小为a 2=Δv Δt=1 m /s 2,。
应用力学的“三大观点”解题

分类 力的瞬时
作用 力的空间 积累作用
力的时间 积累作用
对应规律 牛顿第二定律
动能定理 机械能守恒定律
动量定理
动量守恒定律
规律内容 物体的加速度大小与合外力成正比,与质量 成反比,方向与合外力的方向相同 外力对物体所做功的代数和等于物体动能的增量 在只有重力(弹簧弹力)做功的情况下,物体的机械 能的总量保持不变 物体所受合外力的冲量等于它的动量的增量 系统不受外力或所受外力之和为零时,系统的总动 量就保持不变.(在某个方向上系统所受外力之和 为零,系统在这个方向上的动量分量就保持不变)
令 h 表示 B 上升的高度,有 h=v′2g22④ 由以上各式并代入数据得 h=4.05 m⑤ 【答案】 4.05 m
动量、能量、牛顿运动定律、匀变速直线运动综合 例 4 如图的水平轨道中,AC 段的中点 B 的正上方有一探 测器,C 处有一竖直挡板,物体 P1 沿轨道向右以速度 v1 与静止 在 A 点的物体 P2 碰撞,并接合成复合体 P,以此碰撞时刻为计 时零点,探测器只在 t1=2 s 至 t2=4 s 内工作.已知 P1、P2 的质 量都为 m=1 kg,P 与 AC 间的动摩擦因数为 μ=0.1,AB 段长 L =4 m,g 取 10 m/s2,P1、P2 和 P 均视为质点,P 与挡板的碰撞 为弹性碰撞.
(1)物块 C 的质量 mC; (2)墙壁对物块 B 的弹力在 4 s 到 12 s 的时间内对 B 的冲量 I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能 Ep.
【解析】 (1)由图知,C 与 A 碰前速度为 v1=9 m/s,碰后 速度为 v2=3 m/s,C 与 A 碰撞过程动量守恒,
【解析】 设物块受到水平冲量后速度为 v0.滑环固定时12 Mv02=MgL 得 v0= 2gL.
2023届高考一轮复习学案:三大力学观点中的三类典型题

“三大力学观点”中的三类典型题学案1内容归纳:1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。
(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。
(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题。
2.力学中的五大规律规律公式表达=ma牛顿第二定律F合W合=ΔE k动能定理W合=m v-m vE1=E2机械能守恒定律mgh1+m v=mgh2+m vF合t=p′-p动量定理I合=Δp动量守恒定律m1v1+m2v2=m1v1′+m2v2′突破一“滑块—弹簧”模型模型图示模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒。
(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)。
(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)[典例1]两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量为4 kg的物块C静止在前方,如图所示,B与C碰撞后二者会粘连在一起运动。
则下列说法正确的是()A.B、C碰撞刚结束时的共同速度为3 m/sB..弹簧的弹性势能最大时,物块A的速度为3 m/s C.弹簧的弹性势能最大值为36 JD.弹簧再次恢复原长时A、B、C三物块速度相同[练习1]如图所示,A、B、C三个木块的质量均为m,置于光滑的水平面上,B、C 之间有一轻质弹簧,弹簧的两端与木块接触但不固连,将弹簧压缩到不能再压缩时用细线把B、C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。
现A以初速度v0沿B、C的连线方向朝B运动,与B相碰并黏合在一起。
2020年高考物理重点难点易考点总结-力学三大观点的综合应用

第3课时力学三大观点的综合应用1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp =0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法. (1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动. (2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).考向1 动量和能量的观点在力学中的应用例1 (2014·安徽·24)在光滑水平地面上有一凹槽A ,中央放一小物块B .物块与左右两边槽壁的距离如图1所示,L 为1.0 m ,凹槽与物块的质量均为m ,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v 0=5 m /s 的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g 取10 m/s 2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小. 解析 (1)设两者间相对静止时速度为v ,由动量守恒定律得m v 0=2m v v =2.5 m/s ,方向向右.(2)设物块与凹槽间的滑动摩擦力F f =μF N =μmg 设两者相对静止前相对运动的路程为s 1,由动能定理得-F f ·s 1=12(m +m )v 2-12m v 20解得s 1=12.5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v 1、v 2,碰后的速度分别为v 1′、v 2′.有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v —t 图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+ata =-μg 解得t =5 s凹槽的v —t 图象所包围的阴影部分面积即为凹槽的位移大小s 2.(等腰三角形面积共分13份,第一份面积为0.5L ,其余每份面积均为L )s 2=12(v 02)t +6.5L解得s 2=12.75 m答案 (1)2.5 m/s ,方向向右 (2)6次 (3)5 s 12.75 m如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力; (2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 kg.A 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的动摩擦因数为μ1=0.2,B 、C 之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大?(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 、弹簧组成的系统由动量守恒定律和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s. (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2.对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律和能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B-12(m A +m B +m )v 2 解得:Q =4.5 J ,v =1.5 m/s(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E . 答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE k =12m v 21-12×2m v 22② 解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L =v 2t +12at 2④由①③④式得v 1=6L -at2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E k A max =17 J.(限时:45分钟)1.如图1所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2.)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2;(3)求出碰后木板在水平地面上滑动的距离s .答案 (1)向左运动 (2)v 1=4.2 m /s ,v 2=0.8 m/s (3)0.2 m 解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:F f =ma 0=2.5 N 木板受车向左的反作用力:F f ′=F f =2.5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0.5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿第二定律与运动学公式: 对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m2.如图2所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.3.如图3所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图3(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因. 答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a =12 m<20 m 即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2 甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左4.如图4所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,求:图4(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若A 、B 恰能通过半圆轨道的最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件? 答案 (1)12 m /s 212 m/s (2)0.5 (3)0.09≤μ2≤0.5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带的速度,由v 2-v 20=2ax 0得运动的位移x 0=116 m<L则到达Q 点前A 已和传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点的速度为v =12 m/s. (2)设A 、B 碰后的共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0.5(3)①若以v 3由N 点抛出,则有:2R =12gt 2x 1=v 3t =3.2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0.5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2x +L cos θ=v 3′t ′ 由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 和12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0.09综上所述,μ2应满足:0.09≤μ2≤0.5。
高中物理压轴题:用力学三大观点处理多过程问题(解析版)

压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。
2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。
这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。
3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。
其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。
考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。
从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。
考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。
通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。
2020版高考(京津鲁琼)大一轮复习:第5章 专题强化6 综合应用力学两大观点解决三类问题

t1+t2
命题点三 滑块—木板模型
1.模型分类 滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑 块—木板模型. 2.位移关系 滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动, 则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向 运动,则滑块的位移和木板的位移之和等于木板的长度. 3.解题关键 找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意 联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.
x1=vt
⑦
x2=x1-Rsin θ
⑧
联立②③⑥⑦⑧式,代入数据得x2=0.4 m.
变式1 (2018·河南省驻马店市第二次质检)如图2所示,AB和CDO都是处于同
一竖直平面内的光滑圆弧形轨道,OA处于水平位置.AB是半径为R=1
m的
1 4
圆
周轨道,CDO是半径为r=0.5 m的半圆轨道,最高点O处固定一个竖直弹性挡
2.(2018·河南省洛阳市上学期期中)如图2所示,一个半径为R的半圆形轨道竖 直固定放置,直径POQ水平,轨道的内表面动摩擦因数为μ.一质量为m的小滑 块(可看作质点)自P点正上方由静止释放,释放高度为R,小滑块恰好从P点进 入轨道.小滑块滑到轨道最低点N时对轨道的压力为4mg,g为重力加速度的大 小.用W表示小滑块从P点运动到N点的过程中克服摩擦力所做的功.则 A.小滑块恰好可以到达Q点 B.小滑块不能到达Q点
√C.W=12mgR
1 D.W<2mgR
图2
1234567
3.(2017·全国卷Ⅲ·16)如图3所示,一质量为m、长度为l的均匀柔软细绳PQ竖
直悬挂.用外力将绳的下端Q缓慢地竖直向上拉起至M点,M点与绳的上端P相
(统考版)高考物理一轮复习 第六章 动量守恒定律 专题五 动力学、动量和能量观点的综合应用学生用书

专题五 动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.关键能力·分层突破考点一 碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2. 如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m.P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L.物体P置于P1的最右端,质量为2m且可看作质点.P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起.P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内).P与P2之间的动摩擦因数为μ.求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p.教你解决问题第一步:审条件 挖隐含P的速度不变.①“与静止的P2发生碰撞,碰撞时间极短”隐含→P1、P2获得共同速度.②“碰撞后P1与P2粘连在一起”隐含→P1、P2、P三者有共同速度及整个碰撞过程③“P压缩弹簧后被弹回并停在A点”隐含→中的弹性势能变化为零.第二步:审情景 建模型①P1与P2碰撞建模碰撞模型.→②P与P2之间的相互作用建模滑块—滑板模型.→第三步:审过程 选规律①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x及弹性势能E p.模型3“子弹打木块”模型1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m +M )v ,Q 热=fL相对=12mv2-12(M +m )v 2.(2)若子弹穿出木块,有mv 0=mv 1+Mv 2,Q 热=fL 相对=12mv −0212mv −1212M v 22.例3.(多选)如图所示,一质量m 2=0.25 kg 的平顶小车,车顶右端放一质量m 3=0.30 kg 的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m 1=0.05 kg 的子弹以水平速度v 0=18 m/s 射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g 取10m s2.下列分析正确的是( )A .小物体在小车上相对小车滑行的时间为13s B .最后小物体与小车的共同速度为3 m/s C .小车的最小长度为1.0 mD .小车对小物体的摩擦力的冲量为0.45 N·s 跟进训练1.[2022·黑龙江哈尔滨模拟](多选)如图所示,两个小球A 、B 大小相等,质量分布均匀,分别为m 1、m 2,m 1<m 2,A 、B 与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A 球心等高处水平快速向右敲击A ,作用于A 的冲量大小为I 1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B 球心等高处水平快速向左敲击B ,作用于B 的冲量大小为I 2,I 1=I 2,则下列说法正确的是( )A .若两次锤子敲击完成瞬间,A 、B 两球获得的动量大小分别为p 1和p 2,则p 1=p 2B .若两次锤子敲击分别对A 、B 两球做的功为W 1和W 2,则W 1=W 2C .若两次弹簧压缩到最短时的长度分别为L 1和L 2,则L 1<L 2D .若两次弹簧压缩到最短时,A 、弹簧、B 的共同速度大小分别为v 1和v 2,则v 1>v 22.如图甲所示,质量为M =3.0 kg 的平板小车C 静止在光滑的水平面上,在t =0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v t 图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二 力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4. 如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知x bc=1 m,重力加速度g=10 m/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用关键能力·分层突破例1 解析:由题意可知,当b的速度最小时,弹簧恰好恢复原长,设此时a的速度最大为v,由动量守恒定律和机械能守恒定律得:m b v0=mb v1+m a v,12m b v2=12m b v12+12m a v2,代入数据解得:m a=0.5 kg,v=4 m/s,故A错误,B正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v0=(m a+m b)v2,E p=12mbv−212(ma+m b)v22,代入数据解得:Ep=1.5 J,故C正确;在a离开挡板前,a、b及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D错误.答案:BC例2 解析:(1)P1、P2碰撞瞬间,P的速度不受影响,根据动量守恒mv0=2mv1,解得v1=v 0 2最终三个物体具有共同速度,根据动量守恒:3mv0=4mv2,解得v2=3 4 v0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:1 2×2mv+¿1212×2mv−212×4m v22¿=2mgμ(L+x)×2解得x=v0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+x)解得E p=116mv2答案:(1)v0234v0 (2)v0232μg-L 116mv2例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v2=12(m1+m2)v2+E p,得E p=m1m2 2(m1+m2)v2,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:x A=12(2+4)×1 m=3 m,x B=12×2×1 m=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2x′A=v2−v A2-2a A=0.96 mx车=v22a车=0.16 m车的长度至少为l=x A+x B+x′A-x车=4.8 m.答案:(1)0 (2)4.8 m例4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+¿1212m2v22¿解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v,距水平面的高度为h,则有m1v1=(m1+M)v,12m1v12=12(m1+M)v2+m1gh解得h=0.1 m由于h=R(1-cos 60°),所以物块P恰好不能从滑块左侧冲出,假设成立,之后物块P沿弧形槽从滑块上滑下,设物块P返回到水平面时的速度为v3、滑块的速度为v4,由动量守恒定律和机械能守恒定律得m1v1=m1v3+Mv4,12m1v12=12m1v+¿3212M v42¿解得v3=0,v4=2 m/s.(2)若Q恰能经过d点,则Q在d点的速度v d满足m2g=m2v d2 rQ从b点运动到半圆轨道最高点d的过程,由动能定理有-μm2gx bc-2m2gr=12m2v−d212m2v22解得Q恰能经过半圆轨道最高点时μ=0.3若Q恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm2gx bc-m2gr=0−12m2v22解得Q恰能运动到与半圆轨道圆心等高点时μ=0.6若Q恰能到达c点,则由动能定理得-μm2gx bc=0−12m2v22解得Q恰能运动到c点时μ=0.8分析可知,要使Q能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C点时,有2mg+mg=m v C2R,解得v C=√3gR.小球从A到C,由机械能守恒定律得12m v2=12m vC2+mg·2R,联立解得v0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12m vC2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR (2)R。
2020年高考物理新课标第一轮总复习讲义:第五章 第五讲 动力学观点和能量观点解决力学综合问题 含答案

能力提升课第五讲 动力学观点和能量观点解决力学综合问题热点一 多运动组合问题 (师生共研)1.多运动组合问题主要是指直线运动、平抛运动和竖直面内圆周运动的组合问题. 2.解题策略(1)动力学方法观点:牛顿运动定律、运动学基本规律. (2)能量观点:动能定理、机械能守恒定律、能量守恒定律. 3.解题关键(1)抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程.(2)两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.很多情况下平抛运动的末速度的方向是解题的重要突破口.[典例1] (2016·全国卷Ⅰ)如图,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小; (2)求P 运动到E 点时弹簧的弹性势能;(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.解析:(1)根据题意知,B 、C 之间的距离为 l =7R -2R =5R ①设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12m v 2B ②式中θ=37°,联立①②式并由题给条件得 v B =2gR ③(2)设BE =x .P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E p =0-12m v 2B ④ E 、F 之间的距离为 l 1=4R -2R +x ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有 E p -mgl 1sin θ-μmgl 1cos θ=0⑥ 联立③④⑤⑥式并由题给条件得 x =R ⑦ E p =125mgR ⑧(3)设改变后P 的质量为m 1.D 点与G 点的水平距离x 1和竖直距离y 1分别为 x 1=72R -56R sin θ⑨ y 1=R +56R +56R cos θ⑩式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实. 设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t . 由平抛运动公式有 y 1=12gt 2⑪ x 1=v D t ⑫ 联立⑨⑩⑪⑫式得 v D =355gR ⑬设P 在C 点速度的大小为v C ,在P 由C 运动到D 的过程中机械能守恒,有12m 1v 2C =12m 1v 2D +m 1g (56R +56R cos θ)⑭P 由E 点运动到C 点的过程中,同理,由动能定理有 E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=12m 1v 2C ⑮ 联立⑦⑧⑬⑭⑮式得 m 1=13m .答案:(1)2gR (2)125mgR (3)355gR 13m [反思总结]力学综合题中多过程问题的分析思路1.对力学综合题中的多过程问题,关键是抓住物理情境中出现的运动状态与运动过程,将物理过程分解成几个简单的子过程.2.找出各阶段是由什么物理量联系起来的,然后对于每个子过程分别进行受力分析、过程分析和能量分析,选择合适的规律列出相应的方程求解.如图所示,设一个质量m =50 kg 的跳台花样滑雪运动员(可看成质点),从静止开始沿斜面雪道从A 点滑下,沿切线从B 点进入半径R =15 m 的光滑竖直平面圆轨道BPC ,通过轨道最高点C 水平飞出,经t =2 s 落到斜面雪道上的D 点,其速度方向与斜面垂直,斜面与水平面的夹角θ=37°,运动员与雪道之间的动摩擦因数μ=0.075,不计空气阻力,当地的重力加速度g 取10 m/s 2,sin 37°=0.60,cos 37°=0.80.试求:(1)运动员运动到C 点时的速度大小v C ;(2)运动员在圆轨道最低点P 受到轨道支持力的大小F N ; (3)A 点距过P 点的水平地面的高度h . 解析:(1)在D 点:竖直方向上的分速度 v y =gt =10×2 m/s =20 m/stan 37°=v Cv y,代入数据解得v C =15 m/s(2)对P →C 过程,由机械能守恒定律可得: 12m v 2P =12m v 2C +mg ·2R在P 点:F N -mg =m v 2PR ,联立上述两式代入数据解得F N =3 250 N由牛顿第三定律得:在P 点运动员受到轨道的支持力为3 250 N. (3)对A →P 过程,由动能定理可得: mgh -μmg cos 37°h -(R -R cos 37°)sin 37°=12m v 2P代入数据解得h =45.5 m.答案:(1)15 m/s (2)3 250 N (3)45.5 m热点二 传送带模型问题 (自主学习)1.传送带模型是高中物理中比较常见的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: (1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解. 2.传送带模型问题中的功能关系分析 (1)功能关系分析:W =ΔE k +ΔE p +Q . (2)对W 和Q 的理解: ①传送带做的功:W =Fx 传; ②产生的内能Q =Fx 相.2-1.[倾斜传送带] 已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图甲所示),以此时为t =0时刻记录了小物块之后在传送带上运动的速度随时间的变化关系,如图乙所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v 1>v 2).已知传送带的速度保持不变,g 取10 m/s 2.则下列判断正确的是( )A.0~t1内,物块对传送带做正功B.物块与传送带间的动摩擦因数为μ,μ<tan θC.0~t2内,传送带对物块做功为12m v22-12m v21D.系统产生的热量一定比物块动能的减少量大解析:由图可知:物块先向下运动后向上运动,则知传送带的运动方向向上.0~t1时间内,物块对传送带的摩擦力方向沿传送带向下,则物块对传送带做负功,A错误;在t1~t2时间内,物块向上运动,则有μmg cos θ>mg sin θ,则μ>tan θ,B错误;0~t2时间内,由图可知,它所围的面积是物块发生的位移,物块的总位移沿传送带向下,高度下降,重力对物块做正功,设为W G,根据动能定理得W+W G=12m v22-12m v21,则传送带对物块做的功W≠12m v22-12m v21,由此可知C错误;物块的重力势能减小,动能也减小,都转化为系统产生的内能,由能量守恒定律得知:系统产生的热量大小一定大于物块动能的变化量大小,D正确.答案:D2-2. [水平传送带]如图所示,一质量为m=2 kg的滑块从半径为R=0.2 m的光滑四分之一圆弧轨道的顶端A处由静止滑下,A点和圆弧对应的圆心O点等高,圆弧的底端B与水平传送带平滑相接.已知传送带匀速运行的速度为v0=4 m/s,B点到传送带右端C点的距离为L=2 m.当滑块滑到传送带的右端C时,其速度恰好与传送带的速度相同.(g取10 m/s2)求:(1)滑块到达底端B时对轨道的压力;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,滑块与传送带之间由摩擦而产生的热量Q.解析:(1)滑块由A到B的过程中,由机械能守恒定律得mgR=12m v2B①物体在B点,由牛顿第二定律得F B -mg =m v 2BR ② 联立①②解得F B =60 N由牛顿第三定律得,滑块到达底端B 时对轨道的压力大小为60 N ,方向竖直向下. (2)滑块从B 到C 运动过程中,由牛顿第二定律得 μmg =ma ③由运动学公式得v 20-v 2B =2aL ④由①③④得μ=0.3⑤(3)滑块从B 到C 运动过程中,设运动时间为t . 由运动学公式得v 0=v B +at ⑥ 产生的热量Q =μmg (v 0t -L )⑦ 由①③⑤⑥⑦得Q =4 J.答案:(1)60 N ,方向竖直向下 (2)0.3 (3)4 J [反思总结]传送带模型问题的分析流程热点三 滑块—木板模型 (师生共研)作好两分析,突破滑块—木板模型问题1.动力学分析:分别对滑块和木板进行受力分析,根据牛顿第二定律求出各自的加速度;从放上滑块到二者速度相等,所用时间相等,由t =Δv 2a 2=Δv 1a 1可求出共同速度v 和所用时间t ,然后由位移公式可分别求出二者的位移.2. 功和能分析:对滑块和木板分别运用动能定理,或者对系统运用能量守恒定律.如图所示,要注意区分三个位移:(1)求摩擦力对滑块做功时用滑块对地的位移x 滑; (2)求摩擦力对木板做功时用木板对地的位移x 板; (3)求摩擦生热时用相对滑动的位移x 相.[典例2]图甲中,质量为m1=1 kg的物块叠放在质量为m2=3 kg的木板右端.木板足够长,放在光滑的水平地面上,木板与物块之间的动摩擦因数为μ1=0.2,整个系统开始时静止,重力加速度g取10 m/s2.(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4 s内,若拉力F的变化如图乙所示,2 s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4 s内木板和物块的v-t图象,并求出0~4 s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.解析:(1)把物块和木板看成整体,由牛顿第二定律得F=(m1+m2)a.物块与木板将要相对滑动时,μm1g=m1a.联立解得F=μ1(m1+m2)g=8 N.(2)物块在0~2 s内做匀加速直线运动,木板在0~1 s内做匀加速直线运动,在1~2 s内做匀速运动,2 s后物块和木板均做匀减速直线运动,故二者在整个运动过程的v-t图象如图所示.0~2 s内物块相对木板向左运动,2~4 s内物块相对木板向右运动.0~2 s内物块相对木板的位移大小Δx1=2 m,系统摩擦产生的内能Q1=μ1m1gΔx1=4 J.2~4 s内物块相对木板的位移大小Δx2=1 m,物块与木板因摩擦产生的内能Q2=μ1m1gΔx2=2 J;0~4 s物块相对木板的位移大小x=Δx1-Δx2=1 m木板在粗糙水平面上对地位移x2=3 m,木板与地面因摩擦产生的内能Q3=μ2(m1+m2)gx2=30 J.0~4 s内系统因摩擦产生的总内能为Q=Q1+Q2+Q3=36 J.答案:(1)8 N(2)如图所示 1 m36 J3-1.[滑块带动木板](2018·河南中原名校质检)水平地面上放有一长为L=5.5 m、质量为M=1 kg的小车,小车与地面间的动摩擦因数μ1=0.1.在其左端放一质量m=3 kg的可视为质点的小物块,物块与小车间的动摩擦因数μ2=0.2.现对物块施加一水平向右、大小为18 N的水平拉力F,经过t1=2 s后撤去外力F.已知小车的上表面离地面的高度h=0.8 m,重力加速度g=10m /s2.(1)求2 s末物块及小车的速度分别是多少?(2)通过分析计算说明,物块能否从小车上滑出.如果不能,求物块停在小车上的位置;如果能,请计算出物块刚落地时,到小车右端的距离.解析:(1)对物块,根据牛顿第二定律有:F-μ2mg=ma m1解得:a m1=4 m/s 22 s末物块速度v m1=a m1t1=8 m/s对小车,根据牛顿第二定律有:μ2mg-μ1(m+M)g=Ma M1解得:a M1=2 m/s 22 s末小车的速度v M1=a M1t1=4 m/s2 s内两者的位移分别为:x m1=12a m1t21=12×4×22=8 m,xM1=12a M1t21=12×2×22=4 m故Δx=x m1-x M1=4 m<L所以2 s时两者没有分离,即物块的速度为8 m/s ,小车的速度为4 m/s (2)2 s时撤去外力后,物块将向右做减速运动,加速度大小为a m2=μ2g=2 m/s2小车受力不变,所以加速度a M2=2 m/s2设2 s以后再经过时间t2物块刚好从小车右端滑出,则x m-x M=L-Δx即v m 1t 2-12a m 2t 22-⎝ ⎛⎭⎪⎫v M 1t 2+12a M 1t 22=L -Δx 解得: t 2=0.5 s(另一种解t =1.5 s 不符合题意) t =2.5 s 时小车的速度v M 2=v M 1+a M 2t 2=5 m/s 物块的速度v m 2=v m 1-a m 2t 2=7 m/s >v M 2 所以物块在2.5 s 时刚好从小车右端滑出设再经过时间t 3物块落地,则有:h =12gt 23,解得t 3=0.4 s 在0.4 s 内物块向右运动的位移x m 3=v m 2t 3=2.8 m物块离开小车后,小车向右做减速运动,其加速度大小为a M 3=μ1g =1 m/s 2 0.4 s 内小车向右运动的位移x M 3=v M 2t 3-12a M 3t 23=5×0.4-12×1×0.42=1.92 m 物块落地时到小车右端的距离为Δx ′=x m 3-x M 3=(2.8-1.92) m =0.88 m. 答案:(1)8 m/s 4 m/s (2)0.88 m3-2.[木板带动滑块] 如图所示,在光滑水平台面上静置一质量m A =0.9 kg 的长木板A ,A 的右端用轻绳绕过光滑的轻质定滑轮与质量m C =0.9 kg 的物体C 拴接.当C 从静止开始运动至下落高度为h =0.4 m 时,在木板A 的最右端轻放一质量为m B =3.6 kg 的小铁块B (可视为质点),A 、B 间的动摩擦因数μ=0.25,最终B 恰好未从木板A 滑落,g 取10 m/s 2,求:(1)刚放铁块B 时,A 的速度大小v 0; (2)木板A 的长度L ;(3)若当B 轻放在木板A 的最右端的同时,加一水平向右的恒力,其他条件不变,在保证B 能滑离木板A 的条件下,则A 、B 间因摩擦而产生热量的最大值Q m 多大.解析:(1)以A 与C 组成的系统为研究对象,C 下降的过程中,拉着A 一起运动,只有重力做功,则m C gh =12(m A +m C )v 20,代入数据解得v 0=2 m/s.(2)将B 放在A 上后,B 受到摩擦力的作用,A 与B 之间的摩擦力为f =μm B g =0.25×3.6×10 N =9 N. C 受到的重力G C =m C g =0.9×10 N =9 N , 设此时A 与C 仍然一起做加速运动,则(m A +m C )a =m C g -f =9 N -9 N =0 N.所以将B 放在A 上后,A 与C 一起做匀速直线运动,B 做匀加速直线运动,加速度a B =f m B =93.6 m/s 2=2.5 m/s 2,B 与A 的速度相等需要的时间t =v 0a B =22.5 s =0.8 s.此过程中A 的位移x 1=v 0t =2×0.8 m =1.6 m , B 的位移x 2=12a B t 2=12×2.5×0.82 m =0.8 m.由于最后B 恰好未从木板A 滑落,所以A 的长度等于A 与B 的位移差,即L =x 1-x 2=1.6 m -0.8 m =0.8 m.(3)在保证B 能滑离木板A 的条件下,A 与B 的相对位移始终等于A 的长度,与运动的时间无关,所以A 、B 间因摩擦产生热量的最大值Q m =f ·L =9×0.8 J =7.2 J. 答案:(1)2 m/s (2)0.8 m (3)7.2 J1.如图所示,传送带AB 总长为l =10 m ,与一个半径为R =0.4 m 的光滑四分之一圆轨道BC 相切于B 点,传送带速度恒为v =6 m/s ,方向向右,现有一个滑块以一定初速度从A 点水平滑上传送带,滑块质量为m =10 kg ,滑块与传送带间的动摩擦因数为μ=0.1,已知滑块运动到B 端时,刚好与传送带同速,求:(1)滑块的初速度; (2)滑块能上升的最大高度;(3)求滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能.解析:(1)以滑块为研究对象,滑块在传送带上运动过程中,当滑块初速度大于传送带速度时,有-μmgl =12m v 2-12m v 20,解得v 0=214 m/s ;当滑块初速度小于传送带速度时,有μmgl =12m v 2-12m v 20,解得v 0=4 m/s. (2)由动能定理可得-mgh =0-12m v 2,解得h =1.8 m.(3)以滑块为研究对象,由牛顿第二定律得μmg =ma ,滑块的加速度a =1 m/s 2,滑块减速到零的位移s =v 22a =18 m >10 m ,则滑块第二次在传送带上滑行时,速度没有减小到零就离开传送带,由匀变速运动的位移公式可得l =v t -12at 2,解得t =2 s(t =10 s 舍去),在此时间内传送带的位移x =v t =6×2 m =12 m ,滑块第二次在传送带上滑行时,滑块和传送带系统产生的内能Q =μmg (l +x )=0.1×10×10×(10+12) J =220 J.答案:(1)214 m/s 或4 m/s (2)1.8 m (3)220 J2.如图所示,AB 段为一半径R =0.2 m 的14光滑圆弧轨道,EF 是一倾角为30°的足够长的光滑固定斜面,斜面上有一质量为0.1 kg 的薄木板CD ,开始时薄木板被锁定.一质量也为0.1 kg 的物块(图中未画出)从A 点由静止开始下滑,通过B 点后水平抛出,经过一段时间后恰好以平行于薄木板的方向滑上薄木板,在物块滑上薄木板的同时薄木板解除锁定,下滑过程中某时刻物块和薄木板能达到共同速度.已知物块与薄木板间的动摩擦因数μ=36.(g =10 m/s 2,结果可保留根号)求:(1)物块到达B 点时对圆弧轨道的压力; (2)物块滑上薄木板时的速度大小 ;(3)达到共同速度前物块下滑的加速度大小及从物块滑上薄木板至达到共同速度所用的时间. 解析:(1)物块从A 运动到B 的过程,由动能定理得: mgR =12m v 2B ,解得:v B =2 m/s 在B 点由牛顿第二定律得: F N -mg =m v 2B R 解得:F N =3 N由牛顿第三定律得物块对轨道的压力大小为3 N ,方向竖直向下. (2)设物块滑上薄木板时的速度为v ,则: cos 30°=v Bv 解得:v =433 m/s.(3)物块和薄木板下滑过程中,由牛顿第二定律得 对物块:mg sin 30°-μmg cos 30°=ma 1对薄木板:mg sin 30°+μmg cos 30°=ma2设物块和薄木板达到的共同速度为v′,则:v′=v+a1t=a2t解得:a1=2.5 m/s2,t=43 15s.答案:(1)3 N,方向竖直向下(2)433m/s (3)2.5 m/s24315s[A组·基础题]1.如图所示,一足够长的木板在光滑的水平面上以速度v向右匀速运动,现将质量为m的物体竖直向下轻轻地放置在木板上的右端,已知物体m和木板之间的动摩擦因数为μ.为保持木板的速度不变,从物体m放到木板上到它相对木板静止的过程中,须对木板施加一水平向右的作用力F,那么力F对木板做功的数值为( C )A.14m v2B.12m v2C.m v2D.2m v22.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止.现将木板分成A和B两段,使B的长度和质量均为A的2倍,并紧挨着放在原水平面上,让小铅块仍以初速度v0由木板A的左端开始向右滑动,如图乙所示.若小铅块相对滑动过程中所受的摩擦力始终不变,则下列有关说法正确的是( B )A.小铅块将从木板B的右端飞离木板B.小铅块滑到木板B的右端前就与木板B保持相对静止C.甲、乙两图所示的过程中产生的热量相等D.图甲所示的过程产生的热量小于图乙所示的过程产生的热量3.(多选) 如图所示,倾斜传送带沿逆时针方向匀速转动,在传送带的A端无初速度放置一物块.选择B端所在的水平面为零势能面,物块从A端运动到B端的过程中,其机械能E与位移x的关系图象可能正确的是( BD )4.(多选)(2018·安徽皖南八校联考)如图甲所示,绷紧的水平传送带始终以恒定速率v1运行,一质量为m=1 kg初速度大小为v2的小物块,从与传送带等高的光滑水平地面上的A处滑上传送带;若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.则( AD )A .小物块向左运动的过程中离A 处的最大距离为4 mB .0~3 s 时间内,小物块受到的摩擦力的冲量大小为2 N·sC .0~4 s 时间内,传送带克服摩擦力做功为16 JD .小物块与传送带之间由摩擦产生的热能为18 J解析:由v -t 图象可知,2 s 时小物块向左运动的距离最远,根据v -t 图象得面积等于位移,s 1=12×2×4 m =4 m ,故A 正确;小物块匀变速运动的加速度:a =Δv Δt =42=2 m/s 2,由牛顿第二定律得:μmg =ma =2 N ,0~3 s 时间内,小物块受到的摩擦力方向都向右,冲量大小为I =μmgt =6 N·s ,故B 错误;由v -t 图象,传送带速度大小:v 2=2 m/s ,前3 s 小物块与传送带间有相对运动,存在摩擦力,传送带克服摩擦力做功为W =μmg v 2t 3=2×2×3 J =12 J ,故C 错误;小物块在传送带上滑动的3 s 内,皮带的位移s ′=v 2t 3=6 m ,方向向右;小物块的位移:s =s 1-s 2=3 m ,方向向左.两个物体的相对位移Δs =s ′+s =9 m ,整个过程中摩擦产生的热量:Q =μmg Δs =18 J ,故D 正确.5.如图所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .(1)当长木块A 的位移为多少时,B 从A 的右端滑出? (2)求上述过程中滑块与木块之间产生的内能.解析:(1)设B 从A 的右端滑出时,A 的位移为x ,A 、B 的速度分别为v A 、v B ,由动能定理得 μmgx =12m v 2A(F -μmg )·(x +L )=12m v 2B 又因为v A =a A t =μgtv B =a B t =F -μmg m t ,解得x =μmgL F -2μmg.(2)由功能关系知,拉力F 做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有 F (x +L )=12m v 2A+12m v 2B +Q解得Q =μmgL . 答案:(1)μmgLF -2μmg(2)μmgL[B 组·能力题]6.如图所示,质量分别为m 、2m 的物体a 、b 通过轻绳和不计摩擦的定滑轮相连,均处于静止状态.a 与水平面上固定的劲度系数为k 的轻质弹簧相连,Q 点有一挡板,若有物体与其垂直相碰会以原速率弹回,现剪断a 、b 之间的绳子,a 开始上下往复运动,b 下落至P 点后,在P 点有一个特殊的装置使b 以落至P 点前瞬间的速率水平向右运动,当b 静止时,a 恰好首次到达最低点,已知PQ 长s 0,重力加速度为g ,b 距P 点高h ,且仅经过P 点一次,b 与水平面间的动摩擦因数为μ,a 、b 均可看作质点,弹簧在弹性限度范围内,试求:(1)物体a 的最大速度;(2)物体b 停止的位置与P 点的距离.解析:(1)绳剪断前,系统静止,设弹簧伸长量为x 1,对a 有 kx 1+mg =T , 对b 有T =2mg , 则kx 1=mg ,x 1=mgk .绳剪断后,a 所受合外力为零时,速度最大,设弹簧压缩量为x 2,对a 有kx 2=mg ,x 2=mgk ,由于x 1=x 2,两个状态的弹性势能相等,则两个状态的动能和重力势能之和相等,mg (x 1+x 2)=12m v 2,解得v =2gm k .(2)对b ,整个运动过程由动能定理得 2mgh -μ·2mgs 路=0,解得b 在水平面上滑行的路程s 路=h μ. 讨论:①若b 未到达挡板Q 就在PQ 上停止, 则物块b 停止的位置与P 相距d =s 路=hμ; ②若b 与挡板Q 碰撞后,在PQ 上运动到停止,则物块b停止的位置与P相距d=2s0-s路=2s0-hμ.答案:(1)2g mk(2)hμ或2s0-hμ7.(2019·河南滑县联考)如图所示轻弹簧一端固定在水平面上的竖直挡板上,处于原长时另一端位于水平面上B点处,B点左侧光滑,右侧粗糙.水平面的右侧C点处有一足够长的斜面与水平面平滑连接,斜面倾角为37°,斜面上有一半径为R=1 m的光滑半圆轨道与斜面切于D点,半圆轨道的最高点为E,G为半圆轨道的另一端点,L BC=2.5 m,A、B、C、D、E、G均在同一竖直面内.使质量为m=0.5 kg 的小物块P挤压弹簧右端至A点,然后由静止释放P,P到达B点时立即受到斜向右上方,与水平方向的夹角为37°,大小为F=5 N的恒力,一直保持F对物块P的作用,结果P通过半圆轨道的最高点E时的速度为v E=10 m/s.已知P与水平面、P与斜面间的动摩擦因数均为μ=0.5,g取10m/s2.sin 37°=0.6.求:(1)P运动到E点时对轨道的压力大小;(2)弹簧的最大弹性势能;(3)若其他条件不变,增大B、C间的距离使P过G点后恰好能垂直落在斜面上,求P在斜面上的落点距D点的距离.解析:(1) P在半圆轨道的最高点E,设轨道对P的压力为N,由牛顿运动定律得:mg-F sin 37°+N=m v2E R解得:N=3 N由牛顿第三定律得,P运动到E点时对轨道的压力F N =3 N(2)P从D点到E点,由动能定理得:-mg(R+R cos 37°)+FR sin37°=12m v2E-12m v2D解得:v D=34 m/sP从C点到D点,由牛顿运动定律得:F-mg sin37°-μmg cos 37°=ma1解得a1=0,说明P从C点到D点匀速运动,故v D=v C=34 m/s由能的转化和守恒得:E pm +FL BC cos 37°-(mg -F sin 37°)μL BC =12m v 2C 解得:E pm =1 J(3)P 在G 点脱离圆轨道,做曲线运动,把该运动分解为平行于斜面的匀减速直线运动和垂直于斜面的初速度为零的匀加速直线运动,有: F -mg sin 37°=ma 2 解得:a 2=4 m/s 2 mg cos 37°=ma 3 解得:a 3=8 m/s 2P 垂直落在斜面上,运动时间满足:2R =12a 3t 2 平行于斜面方向上:0=v G -a 2t 联立解得:v G =2 2 m/s平行于斜面方向上:x =v G +02×t =1 m P 在斜面上的落点距D 的距离x =1 m. 答案:(1)3 N (2)1 J (3)1 m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化六 综合应用力学两大观点解决三类问题专题解读1.本专题是力学两大观点在多运动过程问题、传送带问题和滑块—木板问题三类问题中的综合应用,高考常以计算题压轴题的形式命题.2.学好本专题,可以极大地培养同学们的审题能力、推理能力和规范表达能力,针对性的专题强化,可以提升同学们解决压轴题的信心.3.用到的知识有:动力学方法观点(牛顿运动定律、运动学基本规律),能量观点(动能定理、机械能守恒定律、能量守恒定律).命题点一 多运动过程问题1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况;(2)做功分析:根据各种力做功的不同特点,分析各种力在不同的运动过程中的做功情况; (3)功能关系分析:运用动能定理、功能关系或能量守恒定律进行分析,选择合适的规律求解. 2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动图景;(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律;(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案. 例1 (2018·河南省驻马店市第二次质检)如图1所示,AB 和CDO 都是处于同一竖直平面内的光滑圆弧形轨道,OA 处于水平位置.AB 是半径为R =1m 的14圆周轨道,CDO 是半径为r =0.5m的半圆轨道,最高点O 处固定一个竖直弹性挡板(可以把小球弹回不损失能量,图中没有画出)D 为CDO 轨道的中点.BC 段是水平粗糙轨道,与圆弧形轨道平滑连接.已知BC 段水平轨道长L =2m ,与小球之间的动摩擦因数μ=0.2.现让一个质量为m =1kg 的小球P 从A 点的正上方距水平线OA 高H 处自由落下:(取g =10m/s 2,不计空气阻力)图1(1)当H =2m 时,问此时小球第一次到达D 点对轨道的压力大小;(2)为使小球仅与弹性挡板碰撞一次,且小球不会脱离CDO 轨道,问H 的取值范围. 答案 (1)84N (2)0.65m≤H ≤0.7m解析 (1)设小球第一次到达D 点的速度为v D ,对小球从静止到D 点的过程,根据动能定理有:mg (H +r )-μmgL =12mv D 2在D 点轨道对小球的支持力N 提供向心力,则有N =m v D 2r联立解得:N =84N ,由牛顿第三定律得,小球对轨道的压力大小为:N ′=N =84N ; (2)为使小球仅与挡板碰撞一次,且小球不会脱离CDO 轨道,H 最小时必须满足能上升到O 点, 则有:mgH min -μmgL =12mv 02在O 点由牛顿第二定律有:mg =m v 02r代入数据解得:H min =0.65m仅与弹性挡板碰撞一次,且小球不会脱离CDO 轨道,H 最大时,与挡板碰后再返回最高能上升到D 点,则mg (H max +r )-3μmgL =0 代入数据解得:H max =0.7m 故有:0.65m≤H ≤0.7m.变式1 (2018·河南省周口市期末)如图2所示,半径R =0.3m 的竖直圆槽型光滑轨道与水平轨道AC 相切于B 点,水平轨道的C 点固定有竖直挡板,轨道上的A 点静置有一质量m =1kg 的小物块(可视为质点).现给小物块施加一大小为F =6.0N 、方向水平向右的恒定拉力,使小物块沿水平轨道AC 向右运动,当运动到AB 之间的D 点(图中未画出)时撤去拉力,小物块继续滑行到B 点后进人竖直圆槽轨道做圆周运动,当物块运动到最高点时,由压力传感器测出小物块对轨道最高点的压力为103N .已知水平轨道AC 长为2m ,B 为AC 的中点,小物块与AB 段间的动摩擦因数μ1=0.45,重力加速度g =10m/s 2.求:图2(1)小物块运动到B 点时的速度大小; (2)拉力F 作用在小物块上的时间t ;(3)若小物块从竖直圆轨道滑出后,经水平轨道BC 到达C 点,与竖直挡板相碰时无机械能损失,为使小物块从C 点返回后能再次冲上圆形轨道且不脱离,试求小物块与水平轨道BC 段间的动摩擦因数的取值范围.答案 (1)4m/s (2)53s(3)0.4>μ2≥0.25或0≤μ2≤0.025解析 (1)小物块运动到轨道最高点时,由牛顿第二定律得N +mg =m v 2R,由牛顿第三定律得N=N ′=103N ,则v =2m/s物块从B 运动到轨道最高点的过程,由机械能守恒定律得2mgR +12mv 2=12mv B 2可得v B =4m/s ;(2)小物块从A 点运动到B 点的过程,由动能定理有Fs -μ1mgx AB =12mv B 2-0由牛顿第二定律有F -μ1mg =ma 由位移公式有s =12at 2联立解得t =53s.(3)设小物块与BC 段间的动摩擦因数为μ2. ①物块在圆轨道最高点的最小速度为v 1,由牛顿第二定律有mg =m v 12R由动能定理有-2μ2mgx BC -2mgR =12mv 12-12mv B 2解得μ2=0.025故物块能从C 点返回通过轨道的最高点而不会脱离轨道时应满足0≤μ2≤0.025 ②物块从C 点返回在圆轨道上升高度R 时速度为零, 由动能定理有-2μ2mgx BC -mgR =0-12mv B 2解得μ2=0.25物块从C 点返回刚好运动到B 点, 解得-2μ2mgx BC =0-12mv B 2μ2=0.4故物块能返回圆形轨道(不能到达最高点)且不会脱离轨道时应满足0.4>μ2≥0.25 综上所述,0.4>μ2≥0.25或0≤μ2≤0.025.命题点二 传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系. (2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解. 2.功能关系分析(1)功能关系分析:W =ΔE k +ΔE p +Q . (2)对W 和Q 的理解:①传送带克服摩擦力做的功:W =fx 传; ②产生的内能:Q =fx 相对.模型1 水平传送带问题例2 (2018·河南省郑州一中上学期期中)如图3,一水平传送带以4m/s 的速度逆时针传送,水平部分长L =6 m ,其左端与一倾角为θ=30°的光滑斜面平滑相连,斜面足够长,一个质量为m =1.0 kg 的物块无初速度地放在传送带最右端,已知物块与传送带间动摩擦因数μ=0.2,g =10 m/s 2,求物块从放到传送带上到第一次滑回传送带最远处的过程中因摩擦而产生的热量.图3答案 32J解析 物块在传送带上加速到与传送带同速时 对物块有f =μmg =ma 解得:a =2m/s 2物块所用的时间为:t 1=va=2s则物块的位移为:x 1=v 22a=4m<L =6m传送带匀速运动的位移为:x 1′=vt 1=8m 则相对位移为Δx 1=x 1′-x 1=4m 因摩擦产生的热量Q 1=f Δx 1=8J接着二者一起匀速运动,物块冲上斜面再返回传送带,向右减速到零,则在传送带上运动时,物块的位移为:x 2=v 22a=4m物块所用的时间为:t 2=v a=2s传送带匀速运动的位移为:x 2′=vt 2=8m 则相对位移为:Δx 2=x 2′+x 2=12m 因摩擦产生的热量Q 2=f Δx 2=24J全程因摩擦产生的热量为:Q =Q 1+Q 2=32J.模型2 倾斜传送带问题例3 (2018·陕西师大附中模拟)如图4所示,与水平面成30°角的传送带以v =2m/s 的速度按如图所示方向顺时针匀速运动,AB 两端距离l =9m .把一质量m =2kg 的物块(可视为质点)无初速度的轻轻放到传送带的A 端,物块在传送带的带动下向上运动.若物块与传送带间的动摩擦因数μ=7153,不计物块的大小,g 取10m/s 2.求:图4(1)从放上物块开始计时,t =0.5s 时刻摩擦力对物块做功的功率是多少?此时传送带克服摩擦力做功的功率是多少?(2)把这个物块从A 端传送到B 端的过程中,传送带运送物块产生的热量是多大? (3)把这个物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是多少? 答案 (1)14W 28W (2)14J (3)18.8W 解析 (1)物块受沿传送带向上的摩擦力为:f =μmg cos30°=14N由牛顿第二定律得:f -mg sin30°=ma ,a =2m/s 2物块与传送带速度相同时用时为:t 1=v a =22s =1s因此t =0.5s 时刻物块正在加速, 其速度为:v 1=at =1m/s则此时刻摩擦力对物块做功的功率是:P 1=fv 1=14W此时刻传送带克服摩擦力做功的功率是:P 2=fv =28W(2)当物块与传送带相对静止时:物块的位移x 1=12at 12=12×2×12m =1m<l =9m摩擦力对物块做功为:W 1=fx 1=14×1J=14J 此段时间内传送带克服摩擦力所做的功:W 2=fvt 1=28J这段时间产生的热量:Q =W 2-W 1=14J (3)物块在传送带上匀速运动的时间为:t 2=l -x 1v=4s把物块由A 端传送到B 端摩擦力对物块所做的总功为:W 总=mgl sin30°+12mv 2把物块从A 端传送到B 端的过程中,摩擦力对物块做功的平均功率是:P =W 总t 1+t 2=18.8W.命题点三 滑块—木板模型1.模型分类滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型. 2.位移关系滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度. 3.解题关键找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.例4 (2019·四川省德阳市质检)如图5所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 、长度为L 的木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数μ=32,且最大静摩擦力等于滑动摩擦力,重力加速度为g .图5(1)若给木板和物块一沿斜面向上的初速度v 0,木板上端恰能到达B 点,求v 0大小; (2)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (3)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 答案 (1)h -L g (2)32mg (3)94mgh解析 (1)由动能定理得12×2mv 02=2mg (h -L sin θ)解得:v 0=h -L g(2)对木板与物块整体由牛顿第二定律有F 0-2mg sin θ=2ma 0 对物块由牛顿第二定律有μmg cos θ-mg sin θ=ma 0 解得:F 0=32mg(3)设拉力F 的作用时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零.对木板有F -mg sin θ-μmg cos θ=ma 1mg sin θ+μmg cos θ=ma 3对物块有μmg cos θ-mg sin θ=ma 2 对木板与物块整体有2mg sin θ=2ma 4 另有:a 1t 1-a 3t 2=a 2(t 1+t 2)a 2(t 1+t 2)=a 4t 312a 1t 12+a 1t 1t 2-12a 3t 22+12a 4t 32=h sin θW =F ·12a 1t 12解得:W =94mgh .变式2 如图6甲所示,半径R =0.45m 的光滑14圆弧轨道固定在竖直平面内,B 为轨道的最低点,B 点右侧的光滑水平面上紧挨B 点有一静止的小平板车,平板车质量M =1kg ,长度l =1m ,小车的上表面与B 点等高,距地面高度h =0.2m .质量m =1kg 的物块(可视为质点)从圆弧最高点A 由静止释放.取g =10m/s 2.试求:图6(1)物块滑到轨道上的B 点时对轨道的压力大小;(2)若锁定平板车并在上表面铺上一种特殊材料,其动摩擦因数从左向右随距离均匀变化,如图乙所示,求物块滑离平板车时的速率;(3)若解除平板车的锁定并撤去上表面铺的材料后,物块与平板车上表面间的动摩擦因数μ=0.2,物块仍从圆弧最高点A 由静止释放,求物块落地时距平板车右端的水平距离. 答案 (1)30N (2)1m/s (3)0.2m解析 (1)物块从圆弧轨道顶端滑到B 点的过程中,机械能守恒,则有mgR =12mv B 2解得v B =3m/s在B 点由牛顿第二定律得,N -mg =m v B 2R,解得N =30N由牛顿第三定律得物块滑到轨道上B 点时对轨道的压力N ′=N =30N ,方向竖直向下. (2)物块在平板车上滑行时摩擦力做功W f =-μ1mg +μ2mg2l =-4J 物块由静止到滑离平板车过程中由动能定理得,mgR +W f =12mv 2,解得v =1m/s(3)当平板车不固定时,对物块有a 1=μg =2m/s 2对平板车有a 2=μmg M=2m/s 2经过时间t 1物块滑离平板车,则有v B t 1-12a 1t 12-12a 2t 12=1m解得t 1=0.5s(另一解舍掉)物块滑离平板车时的速度v 物=v B -a 1t 1=2m/s 此时平板车的速度v 车=a 2t 1=1m/s物块滑离平板车后做平抛运动的时间t 2=2hg=0.2s物块落地时距平板车右端的水平距离s =(v 物-v 车)t 2=0.2m.1.(多选)(2018·广东省茂名市第二次模拟)如图1,光滑的水平轨道AB ,与半径为R 的光滑的半圆形轨道BCD 相切于B 点,圆轨道在竖直平面内,B 为最低点,D 为最高点.质量为m 的小球(可视为质点)以初速度v 0沿AB 运动恰能通过最高点,则( )图1A .R 越大,v 0越大B .m 越大,v 0越大C .R 越大,小球经过B 点瞬间对轨道的压力越大D .m 越大,小球经过B 点瞬间对轨道的压力越大 答案 AD解析 小球恰能通过最高点时,由重力提供向心力,则有mg =m v D 2R,则v D =gR ,根据动能定理得12mv 02=12mv D 2+2mgR ,解得v 0=5gR ,可见R 越大,v 0越大,而且v 0与小球的质量m无关,A 正确,B 错误;小球经过B 点的瞬间,N -mg =m v 02R ,则轨道对小球的支持力N =mg+m v 02R=6mg ,则N 大小与R 无关,随m 增大而增大,由牛顿第三定律知C 错误,D 正确.2.(2018·河南省洛阳市上学期期中)如图2所示,一个半径为R 的半圆形轨道竖直固定放置,直径POQ 水平,轨道的内表面动摩擦因数为μ.一质量为m 的小滑块(可看作质点)自P 点正上方由静止释放,释放高度为R ,小滑块恰好从P 点进入轨道.小滑块滑到轨道最低点N 时对轨道的压力为4mg ,g 为重力加速度的大小.用W 表示小滑块从P 点运动到N 点的过程中克服摩擦力所做的功.则( )图2A .小滑块恰好可以到达Q 点B .小滑块不能到达Q 点C .W =12mgRD .W <12mgR答案 C解析 从最高点到N 点,由动能定理有 2mgR -W =12mv 2,在N 点,由牛顿第二定律有N -mg =m v 2R,由牛顿第三定律有N =N ′=4mg联立可得W =12mgR ,故C 正确,D 错误;小滑块从P 点到N 点再到Q 点的过程中,重力与摩擦力做功,由于小滑块做圆周运动,由运动的特点可知,小滑块在PN 段与轨道之间的压力大于NQ 段小滑块与轨道之间的压力,根据f =μN 可知,小滑块在PN 段受到的摩擦力比较大,所以小滑块在PN 段克服摩擦力做的功比较多,则在NQ 段小滑块克服摩擦力做的功W ′<12mgR ,从N 到Q ,由动能定理得-mgR -W ′=12mv Q 2-12mv 2,解得v Q >0,小滑块到达Q 点后,还能继续上升,故A 、B 错误. 3.(2017·全国卷Ⅲ·16)如图3所示,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为( )图3A.19mglB.16mgl C.13mgl D.12mgl 答案 A解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C、D错误.4.(多选)如图4甲所示,倾角为θ的足够长的传送带以恒定的速率v0沿逆时针方向运行,t=0时,将质量m=1kg的物体(可视为质点)轻放在传送带上,物体相对地面的v-t图像如图乙所示.设沿传送带向下为正方向,取重力加速度g=10m/s2,则( )图4A.传送带的速率v0=10m/sB.传送带的倾角θ=30°C.物体与传送带之间的动摩擦因数μ=0.5D.0~2.0s内摩擦力对物体做功W f=-24J答案ACD解析当物体的速率超过传送带的速率后,物体受到的摩擦力的方向发生改变,加速度也发生改变,根据v-t图像可得,传送带的速率为v0=10 m/s,选项A正确;1.0 s之前的加速度a1=10 m/s2,1.0 s之后的加速度a2=2 m/s2,结合牛顿第二定律,g sinθ+μg cosθ=a1,g sinθ-μg cosθ=a2,解得sin θ=0.6,θ=37°,μ=0.5,选项B错误,C正确;摩擦力大小f=μmg cosθ=4 N,在0~1.0 s内,摩擦力对物体做正功,在1.0~2.0 s内,摩擦力对物体做负功,0~1.0 s内物体的位移为5 m,1.0~2.0 s内物体的位移是11 m,0~2.0 s内摩擦力做的功为-4×(11-5) J=-24 J,选项D 正确.5.(2018·闽粤期末大联考)如图5所示,一固定在地面上的导轨ABC,AB与水平面间的夹角为α=37°,一小物块放在A处(可视为质点),小物块与轨道间的动摩擦因数均为μ=0.25,现在给小物块一个沿斜面向下的初速度v0=1m/s.小物块经过B处时无机械能损失,物块最后停在B点右侧1.8米处(sin 37°=0.6,cos 37°=0.8,g取10 m/s2).求:图5(1)小物块在AB段向下运动时的加速度大小;(2)小物块到达B处时的速度大小;(3)AB的长度L.答案(1)4m/s2 (2)3 m/s (3)1m解析 (1)小物块从A 到B 过程中,由牛顿第二定律得,mg sin α-μmg cos α=ma代入数据解得a =4m/s 2.(2)小物块从B 向右运动,由动能定理得, -μmgs =0-12mv B 2代入数据解得v B =3m/s.(3)小物块从A 到B ,由运动学公式得L =v B 2-v 022a=1m.6.(2018·安徽省蚌埠二中期中)如图6甲所示,质量为m =0.1kg 的小球,用长l =0.4m 的细线与固定在圆心处的力传感器相连,小球和传感器的大小均忽略不计.当在最低点A 处给小球6m/s 的初速度时,小球恰能运动至最高点B ,空气阻力大小恒定.求:(g 取10 m/s 2)图6(1)小球在A 处时传感器的示数;(2)小球从A 点运动至B 点过程中克服空气阻力做的功;(3)小球在A 点以不同的初速度v 0开始运动,当运动至B 点时传感器会显示出相应的读数F ,试通过计算在图乙所示坐标系中作出F -v 02图像. 答案 (1)10N (2)0.8J (3)如图所示解析 (1) 在A 点,由牛顿第二定律有F 1-mg =m v A 2l ,则F 1=10N(2)由题意知在B 点时,有mg =m v B 2l,则v B =2m/s小球从A 到B 的过程中,根据动能定理:-W 克f -2mgl =12mv B 2-12mv A 2解得W 克f =0.8J(3)小球从A 到B 的过程中,根据动能定理:有-W 克f -2mgl =12mv B 2-12mv 02小球在最高点F +mg =m v B 2l联立得:F =14v 02-9,F -v 02图像如图所示7.(2018·河北省石家庄二中期中)如图7,四分之一光滑圆轨道固定于粗糙水平面上,紧靠轨道放一上表面粗糙的长木板,长木板上表面与轨道末端相切,轨道末端C 点固定有大小不计的压力开关和长木板相连,当对开关的压力超过15N 时触发压力开关,使长木板和圆轨道脱离.已知长木板长1m ,圆轨道半径R =1m ,滑块和长木板的质量均为1kg ,滑块与长木板间的动摩擦因数μ1=0.4,长木板与水平面间的动摩擦因数μ2=0.1,g 取10m/s 2.若滑块从轨道上距离C 点高h =0.45m 的位置由静止释放,求:图7(1)滑块到C 点时对轨道压力的大小;(2)从滑块滑上木板到停止运动的过程中滑块的位移大小;(3)从滑块滑上木板到停止运动的过程中,地面、滑块、木板这个系统产生的总热量. 答案 (1)19N (2)1.5m (3)4.5J解析 (1)滑块在圆轨道上运动时机械能守恒,则有mgh =12mv 02,解得v 0=3m/s在C 点由向心力公式知:N -mg =mv 02R,解得N =19N由牛顿第三定律可知滑块对轨道的压力N ′=N =19N (2)从滑块滑上木板到停止运动的过程中: 滑块的加速度大小a 1=μ1mg m=4m/s 2木板的加速度大小a 2=μ1mg -μ2·2mg m=2m/s 2由v 0-a 1t =a 2t =v 共得出,t =0.5s ,v 共=1m/s滑块的位移x 1=v 0+v 共2t =1m之后二者一起做匀减速直线运动直至停止运动,a 3=μ2·2mg 2m=1m/s 2x 3=v 共22a 3=0.5m故滑块的总位移x =x 1+x 3=1.5m.(3)对整个系统运动全程,由能量守恒,mgh =Q =4.5J.。