奥数综合练习2

合集下载

奥数资料——综合练习二

奥数资料——综合练习二

五年级数学兴趣小组综合练习题二(2014.04)班别___________ 姓名___________ 评分____________1.计算:4.82×0.59+0.41×1.59﹣0.323×5.9=________.2.计算(34567+43675+56734+67453+75346)÷5=________.3.某年7月恰有4个星期一和4个星期四,这月的15号是星期________.4.已知某个月的所有星期天的日期加起来是85,则这个月的最后一个星期天是______号.5.一个长方形操场的周长是300米,现将长和宽各增加10米,增加部分的面积是______平方米.6.红色水笔5元一支,蓝色水笔7元一支,花102元共买16支,蓝色水笔买了______支.7.有不同的语文书4本,数学书5本,英语书3本,自然书2本.从中各任取一本,共有________种不同的取法.8.A水池有168吨水,B水池有92吨水,两水池每小时都排出2吨水,经过______小时后,A水池的吨数是B水池的3倍.9.把一批书平均分给6个小朋友,结果多出1本;平均分给8个小朋友,也多出1本;平均分给9个小朋友,还是多出1本.这批书至少有________本.10.有一条鱼,鱼头长4厘米,鱼身长是鱼头、鱼尾长的和,而鱼尾是半头、半身之和,请你算一算,这条鱼全长是________厘米.11.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,原数是________.12.小红做一道有余数除法的题目,错把被除数113写成131,结果得出的商比正确的商多3,但余数相同.原来的除数是________,余数是________.13.两个数相除,商是3,余数是10;被除数,除数,商与余数的和是143,被除数是______,除数是______.14.老师让同学们计算AB.C+D.E时,马小虎把D.E中的小数点看漏了,得到错误结果39.6;而马大虎把加号看成了乘号,得到错误结果36.9,则正确的计算结果是________.15.六一节,同学们做红纸花、黄纸花和绿纸花共183朵,已知红纸花比绿纸花的2倍少4朵,黄纸花比绿纸花的3倍多7朵,则红纸花有________朵,黄纸花有________朵.16.羊叔叔与牛伯伯各有一堆青草,羊叔叔每天吃5千克;牛伯伯每天吃15千克,几天后,羊叔叔的青草吃完了,牛伯伯的青草还要一天才能吃完.已知牛伯伯的青草是羊叔叔的4倍,那么,牛伯伯与羊叔叔一共有________千克青草. 17.某小学各年级都参加的一次书法比赛中,四年级与五年级共有18人获奖,在获奖的人中有16人不是四年级的,有14人不是五年级的.该校书法比赛获奖的总人数是______人.18.小萌在超市买了3种糖果,其中红色糖果每粒8分,绿色糖果每粒1角,黄色糖果每粒2角,她共付了1元2角2分.小萌至少买了这3种糖果________粒.19.某校有10间宿舍,80个学生刚好住满.宿舍有三种规格,大房间住10个学生,中房间住7个学生,小房间住5个学生,其中中房间最多.中房间有_____间.20.某工人加工零件,每加工出一个正品得报酬2元,每出一个次品罚款5元.一天他加工的正品是次品的7倍,得款54元.这天他制出了________件次品.21.甲、乙、丙、丁四人拿出同样多的钱,合伙订购同样规格的若干件货物,货物买来后,甲、乙、丙、丁分别比丁多拿了3、7、14件货物,最后结算时,乙付给丁14元,那么丙应付给丁________元.22.从1、3、5、7、9中任取三个不同数字组成一个三位数,那么这样的三位数一共有______个,所有这些三位数的平均数是________.23.一班有52人,二班有48人,数学考试中,两个班的平均成绩是85分,二班的平均成绩比一班多2分,二班的平均成绩是______分.24.有100名学生参加第三届“玉燕杯”数学竞赛,平均分是63分,其中参赛男同学的平均分为60分,女同学的平均分为70分。

小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项练习及答案解析

小学奥数5-2-2 数的整除之四大判断法综合运用(二).专项练习及答案解析

1. 了解整除的性质;2. 运用整除的性质解题;3. 整除性质的综合运用.一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。

【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除.即如果c ︱a ,c ︱b ,那么c ︱(a ±b ).知识点拨教学目标5-2-2.数的整除之四大判断法综合运用(二)性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m 为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;例题精讲模块一、11系列【例 1】以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列【难度】2星【题型】解答【解析】略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯()()()()()110000114199992100118199511171=⨯-+⨯++⨯-+⨯++⨯-+⨯()()=⨯+⨯+⨯+⨯+⨯+-+-+-11000014999921001899511418275因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125()()能-+-+-=++-++否被11整除,因此结论得到说明.【例 2】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列 【难度】2星 【题型】解答【解析】 略 【答案】设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()()10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律.【考点】整除之7、11、13系列 【难度】3星 【题型】解答【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+ (14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+- 因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几?【考点】整除之7、11、13系列 【难度】2星 【题型】填空【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。

五年级奥数学练习试卷思维培训资料 数论综合 (2)

五年级奥数学练习试卷思维培训资料  数论综合 (2)
附加题目
【附1】(1)阿呆用一根长为28厘米的铁丝围一个长方形,怎样分配长与宽,使围成的长方形面积最大?最大面积是多少?
(2)已知A、B两个整数的积是36,那么A、B两个数分别是多少时,它们的和最小?最小和是多少?
分析:(1)聪明好学的小朋友们,可能一下子就知道答案是围成正方形时面积最大,那么你知道我们是怎样找到这个结论的么?让我们来一起看看研究的过程吧!这是一道已知周长,让我们求长和宽,再求面积的题。如果长和宽都是整厘米数的话,我们试一试有哪些可能情况:
分析:设组成这个四位数的四个数码为a,b、c,d(9≥a>b>c>d≥1),
【例12】如果把数码5加写在某自然数的右端,则该数增加 ,这里A表示一个看不清的数码,求这个数和A。
分析:设这个数为x,则10x+5-x= ,化简得9x= ,等号右边是9的倍数,试验可得A=1,x=1234。
此部分的拓展可参看附加8、9、10、11、12。
【例7】 (第二届华杯赛复赛)在一个圆圈上有几十个孔(不到100个),如右图.小明像玩跳棋那样,从A孔出发沿着逆时针方向,每隔几孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步.也只能跳到B孔.最后他每隔6孔跳一步。正好跳回到A孔,你知道这个圆圈上共有多少个孔吗?
设长方形和墙平行的一边长为x,另一边为y,则有x+2y=28,列表分析可得x=14,y=7时,面积最大为98。上题中若在长方形非墙的一边上留出一个1米宽的门,那么我们又该如何解决这个问题呢?其实就相当于用28+1=29米的铁丝,依靠墙做为一边,围长方形,使面积最大的问题。解决方法一样!
【例2】有两个三位数,构成它们的六个数码互不相同。已知这两个三位数之和等于1771,求这两个三位数之积的最大可能值。

创新培训学校六年级奥数综合训练题

创新培训学校六年级奥数综合训练题

创新培训学校六年级奥数综合训练题(一)一、填空题1、用简便方法计算: 9.6×541+8.2×5.6= 。

(1++21+31+4151)×(+21+3141)= 。

(1++21+3141)×(+21+31+4151)= 。

(3.6×0.75×1.2)÷(1.5)×24×0.18)= 。

2、一个整数乘以7以后,乘积的最后三位数是173,那么这样的整数中最小的是 。

3、一次数学考试共有20道题,规定答对一题得2分,答错一题扣1分,未答的题不得分,小杰得了25分,已知他未答的题目数是偶数,他答错了 题。

4、小王在计算某数除以3.75时,把除号看成了乘号,得结果225,则这道题的正确答案是 。

5、数5、6、7、8、9…是连续的自然数,如果5个连续的自然数之和是55,那么在它面的7个连续自然数的和是 。

6、一笔奖金分为一、二、三等奖,每个一等奖奖金是每个二等奖奖金的2倍,每个二等奖奖金是每个三等奖奖金的2倍,如果评选一等奖1人,二等奖2人,三等奖3人,那么一等奖奖金是120元,如果评选一等奖1人,二等奖3人,三等奖5人,那么一等奖奖金是 元。

7、一个长方体的长是宽的1.5倍,宽是高的2倍,总棱长是96厘米,其体积是 。

8、有1,2,3,4……8,9张牌,甲、乙、丙各三张,甲说“我的三张牌的积是48”, 乙说“我的三张牌的和是15”,丙说“我的三张牌的积是63”,则甲、乙、丙拿的牌分别是 。

9、甲、乙、丙三人赛跑,甲每分钟跑240米,乙每分钟跑200米,丙每分钟跑140米,如果三人同时同向,从同地出发,沿周长600米的圆形跑道奔跑,经过 分钟后,三人又可以相聚;10、55个苹果分给甲、乙、丙三人,甲的苹果数是乙的2倍,丙最少但也多于10个,三人各得苹果 个。

11、小明在7点到8点之间解了一道题,开始时分钟与时钟成一条直线,解完题后,两什正好重合,小明解题用了 分钟。

小学奥数 组合的基本应用(二) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  组合的基本应用(二) 精选练习例题 含答案解析(附知识点拨及考点)

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到m m mn n m P C P =⋅.因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅m mn nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)知识要点教学目标7-5-2.组合的基本应用(二)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n n C =,01nC =.模块一、组合之几何问题【例 1】 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:⑴ 直线段;⑵ 三角形;⑶ 四边形. 【考点】组合之基本运用 【难度】3星 【题型】解答【解析】 由于10个点全在圆周上,所以这10个点没有三点共线,故只要在10个点中取2个点,就可以画出一条线段;在10个点中取3个点,就可以画出一个三角形;在10个点中取4个点,就可以画出一个四边形,三个问题都是组合问题. 由组合数公式:⑴ 可画出221010221094521P C P ⨯===⨯(条)直线段. ⑵ 可画出331010331098120321P C P ⨯⨯===⨯⨯(个)三角形. ⑶ 可画出44101044109872104321P C P ⨯⨯⨯===⨯⨯⨯(个)四边形. 【答案】⑴21045C = ⑵310120C = ⑶410210C =【巩固】 平面内有10个点,以其中每2个点为端点的线段共有多少条?【考点】组合之基本运用 【难度】2星 【题型】解答【解析】 这道题不考虑线段两个端点的顺序,是组合问题,实际上是求从10个元素中取出2个元素的组合数,由组合数公式,2101094521C ⨯==⨯,所以以10个点中每2个点为端点的线段共有45条.【答案】45【巩固】 在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个? 【考点】组合之基本运用 【难度】2星 【题型】解答【解析】 三角形的形状与三个顶点选取的先后顺序无关,所以这是一个组合问题,实际上是求从7个点中选出3个点的选法,等于3776535321C ⨯⨯==⨯⨯(种).【答案】3735C =【例 2】 平面内有12个点,其中6点共线,此外再无三点共线.⑴ 可确定多少个三角形?⑵ 可确定多少条射线? 【考点】组合之基本运用 【难度】3星 【题型】解答 【解析】 ⑴ 分三类:①有2个顶点在共线的6点中,另1个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯个;例题精讲②有1个顶点在共线的6点中,另2个顶点在不共线的6点中的三角形有2665669021C ⨯⨯=⨯=⨯(个);③3个顶点都在不共线的6点中的三角形有3665420321C ⨯⨯==⨯⨯个.根据加法原理,可确定909020200++=个三角形. ⑵ 两点可以确定两条射线,分三类: ①共线的6点,确定10条射线;②不共线的6点,每两点确定两条射线,共有2665223021C ⨯⨯=⨯=⨯(条)射线; ③从共线的6点与不共线的6点中各取一个点可以确定66272⨯⨯=(条)射线.根据加法原理,可以确定103072112++=(条)射线.【答案】⑴200 ⑵112【巩固】 如图,问:⑴ 图1中,共有多少条线段? ⑵ 图2中,共有多少个角?54321 ...P 9P 3P 2P 1BAO图1 图2【考点】组合之基本运用 【难度】1星 【题型】解答【解析】 ⑴ 在线段AB 上共有7个点(包括端点A 、B ).注意到,只要在这七个点中选出两个点,就有一条以这两个点为端点的线段,所以,这是一个组合问题,而27C 表示从7个点中取两个不同点的所有取法,每种取法可以确定一条线段,所以共有27C 条线段. 由组合数公式知,共有227722762121P C P ⨯===⨯(条)不同的线段; ⑵ 从O 点出发的射线一共有11条,它们是OA , 1OP ,2OP ,3OP ,,9OP ,OB .注意到每两条射线可以形成一个角,所以,只要看从11条射线中取两条射线有多少种取法,就有多少个角.显然,是组合问题,共有211C 种不同的取法,所以,可组成211C 个角. 由组合数公式知,共有2211112211105521P C P ⨯===⨯(个)不同的角. 【答案】⑴2721C = ⑵21155C =模块二、组合之应用题【例 3】 6个朋友聚会,每两人握手一次,一共握手多少次?【考点】组合之基本运用 【难度】1星 【题型】解答【解析】 这与课前挑战的情景是类似的.因为两个人握手是相互的,6个朋友每两人握手一次,握手次数只与握手的两个人的选取有关而与两个人的顺序无关,所以这是个组合问题.由组合数公式知,26651521C ⨯==⨯(次).所以一共握手15次.【答案】15【巩固】 某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手? 【考点】组合之基本运用 【难度】1星 【题型】解答【解析】 220201919021C ⨯==⨯(次). 【答案】220190C =【例 4】 学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法?【考点】组合之基本运用 【难度】2星 【题型】解答 【解析】 被选中的3门排列顺序不予考虑,所以这是个组合问题.由组合数公式知,3665420321C ⨯⨯==⨯⨯(种).所以共有20种不同的选法.【答案】3620C =【例 5】 有2克,5克,20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出 种不同的质量。

三年级下册奥数综合小试卷 (17张)

三年级下册奥数综合小试卷    (17张)

不一样。宁波到杭州共有
种不同的票价。
⑹ 张军在做一道加法题时,把加数个位上的9看作6,把十位上的3看作
8,结果和是115,正确的答案应当是

⑺甲班和乙班共96人,乙班和丙班共89人,丙班和丁班共86人,问甲班
和丁班共
人。
⑻数一数,右图中共有
个三角形。
奥数综合练习(7) (1)小华和奶奶今年共64岁,奶奶的岁数是小华的7倍,那么明年奶奶 岁。
颜色。
5、用一根绳子绕树三圈余30厘米,如果绕树四圈则差40厘米,树的周 长有( )厘米,绳子长( )厘米。
6、一只蜗牛在12米深的井底向上爬,每小时爬上3米后要滑下2米,这 只蜗牛要( )小时才能爬出井口。 7、锯一根10米长的木棒,每锯一段要2分钟。如果把这根木棒锯成相等 的5段,一共要( )分钟。
,除数是

(4)甲、乙两车间共有393名工人,把甲车间的16名工人调到乙车间后, 甲车间还比乙车间多5名,甲、乙车间原来各有多少名工人?
(5)56个荔枝与48个杏子重量相等,每个杏子比荔枝重5克。每个杏子重 多少克?每个荔枝重多少克?
(6)两个仓库,共有存粮173吨,从第一个仓库运出38吨粮后,第二个仓 库的粮食是第一个仓库的2倍还多6吨,则第一个仓库原有多少吨粮食? 第二个仓库原有粮食多少吨?
上的7看成1,结果得出差是111。问正确答案应是

⑺小东有画片35张,小明有画片43张,小明给小东 人的画片一样多。
张画片,两
⑻用0、2、5、7一共可以组成
个不同的三位数。
奥数综合练习(5)ቤተ መጻሕፍቲ ባይዱ
(1)一个班42名学生都订了报纸,订阅《中国少年报》的有32人,订阅
《小学生报》的有27人。有

四年级奥数综合练习

四年级奥数综合练习

四年级奥数综合练习姓名平均数问题1、有5个数,它们的平均数是43,如果把这5个数从小到大排列,那么前三个数的平均数是35,后三个数的平均数是50,则中间的那个数是多少?2、四次语文测验,平均成绩是68分,他想通过一次语文测验,将五次的平均成绩提高到最少70分,那么,在下次测验中,他至少要得多少分?3、芳芳上学期期末考试成绩:语文87分,数学96分,地理93分,思想品德94分,外语成绩比五科平均成绩低2分,求外语成绩?4、张明五次考试的平均成绩是88分,为了使平均成绩达到92分以上,张明至少再考几次100分?5、甲乙丙三人一共买了8个面包,平均分着吃,甲拿5个面包的钱,乙拿3个面包的钱,吃后乙算,丙应拿出4角钱,甲应收回多少元?6、甲乙丙三人一共买了9个面包,平均分着吃,甲拿出5个面包的钱,乙拿出4个面包的钱,丙没带钱,吃后一算,丙应拿出1.2元,甲应收回多少元?7、在一次爬山活动中,小刘上山时每分钟走50米,30分钟到达山顶,又从原路返回,下山时每分钟走75米,求小刘在上山、下山的平均速度?8、气象小组的同学统计了若干天的平均温度是17℃,事后复查发现,某一天的31℃误作13℃,重新计算后,这几天的平均温度是20℃,统计了几天的温度?9、已知9个数的平均数是72,去掉一个数后,余下数的平均数是78,去掉的数是多少?10、某五个数的平均数是770,若把其中一个数改为90,则这五个数的平均数变为80,改动前这个数是多少?11、四个数的平均数是60,若把其中一个数改为60,这四个数的平均数变为66,被改的数是多少?12、小华、小强、小玲三人平均体重42千克,小华、小强的平均体重比小玲的体重多6千克,小玲的体重是多少千克?13、三门功课,如果不算语文,平均分是98分;如果不算数学,平均分是93分;如果不算英语,平均分是91分,三门功课的平均成绩是多少分?14、有8个互不相等的整数从小到大排成一排,已知前面的3个整数分别为2,7,14,这8个数的平均数是25,那么,最后一个整数至少是多少?15、甲乙两人手中钱数的平均数是24;乙丙两人手中钱数的平均数是25元;甲丙两人钱数的平均数是29元,三人中,最多的人比最少的人多多少元?16、小明看着自己的数学成绩表预测,如果下次考100分,那么数学总平均分是91分;如果下次考80分,那么数学总平均分就只有86分,小明成绩表上已经有几次成绩?17、用6元1千克的甲级糖,3.5元1千克的乙级糖,3元1千克的丙级汤,混合成每千克4元的什锦糖。

五年级奥数专题练习2

五年级奥数专题练习2

五年级奥数-火车行程问题1.A火车长210米,每秒钟行驶25米,B火车每秒钟行驶20米,两列车同方向行驶,A火车追上B火车到超过共用过了80秒,求B火车的长度2.一列火车通过340米的大桥需要100秒,用同样的速度通过144米的大桥用了72秒。

求火车的速度和长度。

3.两辆车相向而行,客车长168米,每秒行驶23米,货车长288米,每秒行驶15米。

问:从两车相遇到离开需要多长时间?4.甲列车每秒钟行驶18米,乙列车每秒中行驶12米。

若两车齐头并进,则甲列车经过40秒超过乙列车,若两车齐尾并进,则甲列车经过30秒超过乙列车。

求甲、乙列车的长度。

5.老李沿着铁路散步,他每分钟走60米,迎面过来一列长300米的火车,他与车头相遇到与车尾相离共用了20秒,求火车的速度。

1.用0,1,2,3四个数字组成一个三位数,可以组成多少个偶数(每个数字最多用一次)?2.在一个长方形中划6条直线,最多能把它分成多少份?3.从1到100的自然数中,完全不含数字“9”的有多少个?4.a和b是自然数,且a+b=81。

a和b的积最大是多少?5.a,b,c是三个互不相等的正整数,且a+b+c=30,那么a,b,c的积最大是多少?最小是多少?1.能否在下式中填入适当的“+”,“-”,使等式成立?9□8□7□6□5□4□3□2□1=282.在a、b、c三个数中,有一个是2003,一个是2004,一个是2005。

问(a -1)(b-2)(c-3)是奇数还是偶数。

3.用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=1991a×b×c×d-b=1993a×b×c×d-c=1995a×b×c×d-d=1997试说明:符合条件的整数a、b、c、d是否存在。

4.有一串数,最前面的四个数依次是1、9、8、7.从第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?5.任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奥数综合练习(二)
1、选择有关的条件和问题,组成一道两步计算的应用题.
①有4袋白糖②有2袋红糖③每袋糖重2千克
④卖出4千克白糖⑤还剩多少千克白糖? ⑥红糖比白糖少几千克?
2、再将(以上)选择有关的条件和问题,组成一道三步计算的应用题.
3、老师出了4栏算式,每栏9道。

(),还有几道没算?(补充一个条件,使它成为一道两步计算的应用题。


4、同学们做16只红风车,20只花风车。

每组做9只,
()?(补充一个问题,使它成为一道两步计算的应用题。


5、同学们分4组做风车,()。

送给幼儿园18只,还有多少只?(补充一个条件,使它成为一道两步计算的应用题。


6、小明有18元钱,小红有24元钱,小红应该给小明多少元钱,两人的钱数才一样多?
7、一条河堤长12米,每隔4米栽一棵树,从头到尾一共栽多少棵?
8、一条大鲨鱼,尾长是身长的一半,头长是尾长的一半,已知头长3米,这条大鲨鱼全长多少米?
9、一桶油连桶重19千克,吃了一半油后,连桶重12千克。

吃掉了多少油?油桶里原来有多少千克油?
10、书架上的故事书比连环画少15本,书架上有杂志8本,有故事书32本。

连环画有多少本?故事书和连环画一共有多少本?
11、少年宫新购进小提琴52把,中提琴比小提琴少20把,两种琴一共有多少把?
12.妈妈买一双皮鞋花52元,买一双布鞋花12元,付给售货员100元,应该找回多少元?。

相关文档
最新文档