2014年最新平面直角坐标系测试题(2) Word 文档

合集下载

平面直角坐标系测试题(一) 2

平面直角坐标系测试题(一) 2

平面直角坐标系测试题(一)班级姓名得分一、精心选一选(每小题3分,共30分),,则点P在()1.在平面直角坐标系中,点P的坐标为(46)A.第一象限B.第二象限C.第三象限D.第四象限2.点A(m+3,m+1)在x轴上,则A点的坐标为()A (0,-2)B、(2,0)C、(4,0)D、(0,-4)3.点P在第二象限内,点P到x轴的距离是2,到y轴的距离是3,A.(-2,3)B.(-3,-2)C.(-3,2)D.(3,-2)4.如图3,下列各点在阴影区域内的是( ).A.(2,1) B.(-2,1)C.(2,-1) D.(-2,-1)6.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是().A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´7.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1),(– 1,2),(3,– 1),则第四个顶点的坐标为().A.(2,2) B.(3,2) C.(3,3) D.(2,3)8.已知点A的坐标是(a,b),若a+b<0、ab>0.则点A在( ).A.第一象限B.第二象限C.第三象限D.第四象限9. 已知M(1,-2),N(-3,-2)则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直10.如图1,若车的位置是(4,2),那么兵的位置可以记作().A.(1,5)B.(4,4)C.(3,4)D.(0,5)二、细心填一填(每小题3分,共24分)11.点A(3,-4)到y轴的距离为_______,到x轴的距离为_____.12. 若点P(2,k-1)在第一象限,则k的取值范围是_______.13.已知△ABC三顶点坐标分别是A(-7,0)、B(1,0)、C(-5,4),那么△ABC的面积等于______.14. 已知AB∥x轴,点A的坐标为(3,2),并且AB=5,则点B的坐标为 .16. 第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是 .17. 将点P (-3,y )向下平移3个单位,向右平移2个单位后得到点Q (x ,-1),则xy =________.三、用心做一做(共46分)21.在平面直角坐标系中, △ABC 的三个顶点的位置如图所示,点A'的坐标是(-2,2), 现将△ABC 关于y 轴对称,使点A 变换为点A', 点B ′、C ′分别是B 、C 的对应点.(1)请作出对称后的图形 ,并直接写出点B ′、C ′的坐标: B ′ 、C ′ ;(2)若△ABC 内部一点P 的坐标为(a ,b ),则点P 的对应点P ′的坐标是 .22. (8分)如图5:三角形ABC 三个顶点A 、B 、C 的坐标分别为A (1,2)、B (4,3)、C (3,1).(1)作出关于x 轴对称的三角形A 1B 1C 1,试写出三角形A 1B 1C 1三个顶点的坐标;(2)求出三角形 A 1B 1C 1的面积。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

《平面直角坐标系》复习测试题

《平面直角坐标系》复习测试题
‘ .




图 1

戛 焉 _ 号
维普资讯

维普资讯
整 蠢
豸 一 — 疆 lt
黝 ∞_ _
麟盛墨
}●~ …-
2 .( 4 5分 ) 平 面 直 角 坐标 系 中描 出 A(2 1 , 在 一 ,)B( AA C. 将 △A曰 B 并 C向右平 移 , 其 顶点 A 移到 使 ( )画 出平 移后 的 AAB 并写 出 B, 1 C, C两 点平 移 () B 2 AA C平移 前后 , 应点 的坐标 之 间具 有什 对
( ) Βιβλιοθήκη 4 .已知点 P x 一1 , 点 P不可 能在 (, )则 ( ) A 第 一象 限 . B 第 二象 限 . C 第 三象 限 . D 第 四象 限 . 5 .已知 点 M 在 y轴的左 侧 , 点 M 到 轴 、 且 Y轴的距 离分别是 3 5 则点 的坐标为 和 , ( ) A (5一 ) . ,3 一 B (5 3 .- ,) C (,) 5一 ) . 53 或( ,3 D (5 3或(5 一 ) . ,) 一 ,3 一 6 .已知点 M(a , 一口 3 一9 1 )在 第三 象 限, 它的坐标 都 是整 数 , n 且 则 = ( )



( )
C 第三象 限 .
D 第 四象 限 . ( )
B 小光 家住 上海 湖 南路 . D. 南偏 西 5 。 O
a 若点 PxY 在第三象限, (,) 则点 Q , 一 ) ( Y 2 在第几象限
A 第 一 . B 第二 . C 第 三 . D 第四 .
维普资讯

覆 习
温■提 示 : . 1 考试 时 间 :0分 9

(完整word版)初二平面直角坐标系经典综合练习题

(完整word版)初二平面直角坐标系经典综合练习题

初二独立练习满分 100 分第一卷( 60 分)一、选择题:(每题 2 分,共 20 分)1.若点 P(a,b)到x轴的距离是 2 ,到 y 轴的距离是 3,则这样的点P 有()A. 1个B. 2个C. 3个D.4个2.已知点 A( 2,- 2),假如点 A 对于 x 轴的对称点是B,点 B 对于原点对称点是C,那么点 C 的坐标是()A. (2,2)B. (- 2, 2)C. (- 1,- 1)D. (- 2,- 2)3.若点 P( 1m ,m )在第二象限,则以下关系正确的选项是()A. 0 m 1B.m 0C.m 0D.m 14.如图,若在象棋盘上成立直角坐标系,使“帥”位于点( -1,-2 ),“馬”位于点(2, -2 ),则“兵”位于点()A.( -1,1 )B.(-2 ,-1 )C.(-3,1 )D. ( 1,-2 )5.已知坐标平面内点M(a,b) 在第三象限,那么点N(b,- a) 在()A.第一象限B.第二象限C.第三象限D.第四象限6.若点 P( x,y )的坐标知足xy=0(x≠ y) ,则点 P()yA.原点上 B . x 轴上 C . y 轴上 D .x 轴上或 y 轴上7.如图,在平面直角坐标系中,平行四边形 OABC的极点 O、A、 C 的坐标分别是( 0, 0)、( 5, 0)、( 2,3),则极点B 的坐标是()CF BO G A E xA、( 3, 7) B 、( 5, 3) C、( 7, 3) D 、( 8, 2)8.线段 CD是由线段 AB 平移获得的 . 点 A(– 1,4)的对应点为 C( 4,7),则点 B(– 4,– 1 )的对应点 D 的坐标为()A. (2,9)B. (5,3)C. ( 1,2)D. (-9,-4)9.已知△ ABC的面积为 3,边 BC长为 2,以 B 原点, BC所在的直线为 x 轴,则点 A 的纵坐标为()A. 3B.- 3C.6 D. ±310.如图,已知直角坐标系中的点A,点 B 的坐标分别为A( 2,4),B( 4,0),且 P 为 AB的中点,若将线段 AB向右平移 3 个单位后,与点 P 对应的点为 Q,则点 Q的坐标为()A. (3,2)B. ( 6,2)C.(6,4)D.(3, 5)二、填空题:(每题 2 分,共20 分)11.已知两点P1,2、P3,6,那么 P P长为- 1 -12.点 A( 5 ,7 )到原点的距离是.点A 在第二象限,它到x轴、y轴的距离分别是 3 、2,则点A坐标是;1314.已知点 A(1,2),AC ∥ X 轴 , AC=5, 则点 C的坐标是 _____________.15.当 b=______时 , 点 B(3,|b-1|) 在第一 . 三象限角均分线上 .16.假如点 P( m+3, m+1)在直角坐标系的 x 轴上,则点 P 的坐标为 _________17.点 A (-3,4),点B在座标轴上,且AB=5,那么点B坐标为18.假如点A(0,0),B(3,0),点C在y轴上,且ABC 的面积是5,C点坐标为.19. 正方形 ABCD在平面直角坐标系中的地点如下图,已知 A 点的坐标( 0,4),B 点的坐标(- 3, 0),则 C 点的坐标是.20.如图,△ DEF是由△ ABC绕着某点旋转获得的,则这点的坐标是.第19题三、解答题:A21.对于边长为 6 的正△ ABC,成立适合的直角坐标系,并在图上注明各个极点的坐标 .B C22. 如图,方格纸中有一条漂亮可爱的小金鱼.( 1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1 ,而纵坐标不变后获得的图案;( 4 分)( 2)在同一方格纸中,在y轴的右边,将原小金鱼图案上全部的点的坐标以同样的规律进行变化,使图案的形状不变,而且对应线段放大为本来的 2 倍,画出放大后小金鱼的图案,并简述你将点的坐标进行了如何的变化.( 6 分)x第二卷( 40 分)一、(每 4 分,共 16 分)1. 随意数x,点P( x,x22x) 必定不在()..A.第一象限B.第二象限C.第三象限D.第四象限2.如的坐平面上有一正五形ABCDE,此中C、D 两点坐分 (1,0) 、(2,0) .若在没有滑的状况下,将此正五形沿着x 向右,程中,以下会(75 , 0)的点是()A.AB.BC.CD.D3. 在一次夏令活中,小霞同学从地 A 点出,要到距离 A 点1000 m 的C地去,先沿北偏70 方向抵达B地,而后再沿北偏西20方向走了500 m抵达目的地 C ,此小霞在地 A 的()A.北偏C.北偏2040方向上 B.北偏30方向上方向上 D.北偏西30方向上4.在直角坐系中,我把横、坐都是整数的点叫做整点.且定,正方形的内部不包括界上的点.察如所示的中心在原点、一平行于 x 的正方形:1的正方形内部有 1 个整点,2 的正方形内部有 1 个整点,3的正方形内部有 9 个整点,⋯ 8的正方形内部的整点的个数()A. 64.B. 49.C.36.D. 25.二、填空(每 4 分,共 20 分)5.在直角坐平面内的机器人接受指令“, A”(≥, 0< A <180)后的行果:在原地旋 A 后,再向正前面沿直行走. 若机器人的地点在原点,正前方为 y 轴的负半轴,则它达成一次指令2,60后地点的坐标为6. 已知点P1,0 ,O为原点, POQ150 ,PQ 2,则点 Q 坐标为7.如图,在平面直角坐标系中有一矩形 ABCD,此中yE(0,0),B(8,0),C(0,4,)若将△ ABC沿 AC所在直线翻折 , 点 B 落在点D CE 处 , 则 E点的坐标是 __________.A B8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A点的坐标为( -1,0) ,则点 C 的坐标为 ______.9. 已知:如图, O为坐标原点,四边形OABC为矩形, A(10 , 0) ,C(0, 4) ,点 D 是 OA的中点,点P 在 BC上运动,当△ODP是腰长为 5 的等腰三角形时,则P 点的坐标为.三、解答题(24 分)1.( 12 分)已知在平面直角坐标系中点A( -3,4 ),O为坐标原点,点 P 为坐标轴上一点,且PAO 为等腰三角形,请你画出草图并在图上注明点P 的坐标(不写过程)。

(易错题精选)初中数学函数之平面直角坐标系基础测试题及答案解析(2)

(易错题精选)初中数学函数之平面直角坐标系基础测试题及答案解析(2)

(易错题精选)初中数学函数之平面直角坐标系基础测试题及答案解析(2)一、选择题1.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为()A.(14,8)B.(13,0)C.(100,99)D.(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A.【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.2.如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,则点C的坐标为( )A.(3,1) B.(-1,1) C.(3,5) D.(-1,5)【答案】C【解析】解:∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,∴点B的横坐标为:﹣1+4=3,纵坐标为:1,∴点B的坐标为(3,1),∴点C的横坐标为:3,纵坐标为:1+4=5,∴点C的坐标为(3,5).故选C.点睛:本题考查坐标与图形性质,解题的关键是明确正方形的各条边相等,能根据图形找出它们之间的关系.3.若点M的坐标为b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.4.下列说法中,正确的是()A.点P(3,2)到x轴距离是3B.在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.【详解】A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C 、若y =0,则点M (x ,y )在x 轴上,此选项错误;D 、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确; 故选D .【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.5.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.6.平面直角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是( )A.(-2 ,l ) B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【答案】A【解析】【分析】【详解】试题分析:∵平行四边形ABCD是中心对称图形,对称中心是对角线的交点,而A、C关于原点对称,故B、D也关于原点对称∴D(-2 ,l ).故选A.考点:平行四边形的性质;坐标与图形性质.7.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.8.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .()23,2B .()4,2C .()4,23D .()2,23 【答案】C【解析】【分析】 由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到OD′= 2223AD OA '-=,于是得到结论.【详解】∵AD ′=AD=4,AO=12AB=2, ∴OD ′=2223AD OA '-=,∵C ′D ′=4,C′D′∥AB ,∴C ′(4,23),故选C .【点睛】考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.9.如果点在第四象限,那么m 的取值范围是( ). A .B .C .D .【答案】D【解析】【分析】横坐标为正,纵坐标为负,在第四象限.【详解】解:∵点p (m ,1-2m )在第四象限,∴m >0,1-2m <0,解得:m >,故选D .【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.10.若点P(a,b)在第二象限,则点Q(b,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】先根据点P(a,b)在第二象限判断出a<0,b>0,据此可得1﹣a>0,从而得出答案.【详解】∵若点P(a,b)在第二象限,∴a<0,b>0,则1﹣a>0,∴点Q(b,1-a)所在象限应该是第一象限,故选:A.【点睛】本题是象限的考查,解题关键是判断横、纵坐标的正负11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.12.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.如图所示,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2, 0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度秒匀速运动,物体乙按顺时针方向以2个单位长度秒匀速运动,则两个物体运动后的第2020次相遇点的坐标是( )A.(2,0) B.(-1,-1) C.( -2,1) D.(-1, 1)【答案】D【解析】利用行程问题中的相遇问题,由于长方形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答;【详解】∵A (2,0),四边形BCDE 是长方形,∴B (2,1),C (-2,1),D (-2,-1),E (2,-1),∴BC=4,CD=2,∴长方形BCDE 的周长为()2422612⨯+=⨯=,∵甲的速度为1,乙的速度为2,∴第一次相遇需要的时间为12÷(1+2)=4(秒),此时甲的路程为1×4=4,甲乙在(-1,1)相遇,以此类推,第二次甲乙相遇时的地点为(-1,-1),第三次为(2,0),第四次为(-1,1),第五次为(-1,-1),第六次为(2,0),L L ,∴甲乙相遇时的地点是每三个点为一个循环,∵202036733÷=L ,∴第2020次相遇地点的坐标为(-1,1);故选D.【点睛】本题主要考查了规律型:点的坐标,掌握甲乙运动相遇时点坐标的规律是解题的关键.14.已知()0,2A 、()10B ,,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标为( ) A .()6,0B .()4,0-C .()4,0-或()6,0D .无法确定【答案】C【解析】【分析】根据A 点的坐标可知BP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明BP=5,已知点B 的坐标,可求P 点坐标.【详解】解:∵B (1,0),A (0,2),点P 在x 轴上,∴BP 边上的高为2,又△PAB 的面积为5,∴BP=5,而点P 可能在点B (1,0)的左边或者右边,∴P (-4,0)或(6,0).【点睛】本题考查了直角坐标系中,利用三角形的面积公式来求出三角形的底边.15.如果代数式m mn -+有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.16.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.17.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于( )A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f 、g 的规定进行计算即可得解.【详解】g [f (3,2)]=g (3,﹣2)=(﹣3,2).故选C .【点睛】本题考查了点的坐标,读懂题目信息,理解f 、g 的运算方法是解题的关键.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )A.3<x<5 B.-5<x<3 C.-3<x<5 D.-5<x<-3【答案】A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.20.点A(-4,3)和点B(-8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度【答案】A【解析】【分析】先根据A,B两点的坐标确定AB平行于x轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.。

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

最新人教版初中数学七年级数学下册第三单元《平面直角坐标系》测试题(有答案解析)(2)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )A .()2,0-B .()2,2-C .()2,0D .()5,12.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1C .1或3D .2或33.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3)B .(2,-3)C .(3,2)D .不能确定4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1)5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.点A (n+2,1﹣n )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( ) A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)-8.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( ) A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3-10.如图,在直角坐标系中,边长为2的等边三角形12OA A 的一条边2OA 在x 的正半轴上,O 为坐标原点;将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……则顶点2019A 的坐标是( )A .()2690,0B .()2692,0C .()2694,0D .无法确定 11.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .47二、填空题13.下列四个命题中: ①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等; ③如果两个实数的平方相等,那么这两个实数也相等; ④当0m ≠时,点()2,P m m -在第四象限内. 其中真命题有________(填序号).14.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.15.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.16.写一个第三象限的点坐标,这个点坐标是_______________.17.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.18.已知两点A(-2,m),B(n ,-4),若AB//y 轴,且AB=5,则m=_______;n=_______________.19.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=, (1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.20.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.三、解答题21.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形 ()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OABS=?若存在,求出点B 的坐标;若不存在说明理由.22.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=.(1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积. (3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.23.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).24.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.25.请在图中建立平面直角坐标系,使学校的坐标是()2,5,并写出儿童公园,医院,水果店,宠物店,汽车站的坐标.26.已知()4,0A ,点B 在x 轴上,且5AB =. (1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标. (3)若点()3,2D a a -+,且15ABDS=,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 的平移规律,求出点'C 的坐标即可. 【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,,故选:C.【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.3.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A解析:A【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2020的坐标.【详解】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.5.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D.【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.6.C解析:C【分析】确定出n+2为负数时,1-n一定是正数,再根据各象限内点的坐标特征解答.【详解】解:当n+2<0时,n<﹣2,所以,1﹣n>0,即点A的横坐标是负数时,纵坐标一定是正数,所以,点A不可能在第三象限,有可能在第二象限;当n+2>0时,n>﹣2,所以,1﹣n有可能大于0也有可能小于0,即点A的横坐标是正数时,纵坐标是正数或负数,所以,点A可能在第一象限,也可能在第四象限;综上所述:点A不可能在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7.A解析:A 【分析】先解绝对值方程和平方根确定x 、y 的值,然后根据第二象限坐标特点确定M 的坐标即可. 【详解】解:∵230,40x y -=-= ∴x=±3,y=±2∵点(,)M x y 在第二象限 ∴x <0,y >0 ∴x=-3,y=2∴M 点坐标为(-3.2). 故答案为A . 【点睛】本题考查了解绝对值方程和平方根以及直角坐标系内点坐标的特征,掌握坐标系内点坐标的特征是解答本题的关键.8.C解析:C 【分析】由于线段CD 是由线段AB 平移得到的,而点A (-1,4)的对应点为C (4,7),比较它们的坐标发现横坐标增加5,纵坐标增加3,利用此规律即可求出点B (-4,-1)的对应点D 的坐标. 【详解】∵线段CD 是由线段AB 平移得到的, 而点A (-1,4)的对应点为C (4,7),∴由A 平移到C 点的横坐标增加5,纵坐标增加3,则点B (-4,-1)的对应点D 的坐标为(-4+5,-1+3),即(1,2). 故选:C . 【点睛】本题考查了坐标与图形变化-平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.A解析:A 【分析】根据轴对称的性质分别求出P 1, P 2,P 3,P4,P 5,P 6的坐标,找出规律即可得出结论. 【详解】解:∵P (-3,1),∴点P 关于直线y=x 的对称点P 1(1,-3),P 1关于x 轴的对称点P 2(1,3), P 2关于y 轴的对称点P 3(-1,3), P 3关于直线y=x 的对称点P 4(3,-1), P 4关于x 轴的对称点P 5(3,1), P 5关于y 轴的对称点P 6(-3,1), ∴6个点后循环一次,∵当n=2019时, 2019÷6=336…3, ∴2019P 的坐标与P 3(-1,3)的坐标相同, 故选:A . 【点睛】本题考查的是坐标的对称变化,根据各点坐标找出规律是解答此题的关键.10.B解析:B 【分析】由题意易得121223341....2n n OA OA A A A A A A A A +=======,则根据平移方式可得每三个连续的点构成一个等边三角形的顶点,故可得2019A 所在位置,然后进行求解即可. 【详解】解:由题意及图像得:121223341....2n n OA OA A A A A A A A A +=======, 将12OA A △沿x 轴正方向依次向右移动2个单位,依次得345A A A △,678A A A ……,∴每三个连续的点构成一个等边三角形的顶点, ∴20193673÷=, ∴2019A 在x 轴上,()()()3694,0,8,0,12,0....A A A∴2019A 的横坐标为:6734=2692⨯, ∴()20192692,0A ;故选B . 【点睛】本题主要考查点的坐标规律,关键是根据题意得到点的坐标规律,然后进行求解即可.11.B解析:B 【分析】在平面直角坐标系中,第二象限的点的横坐标小于0,纵坐标大于0,据此可以作出判断. 【详解】解:∵﹣2019<0,2018>0,∴在平面直角坐标系中,点P (﹣2019,2018)所在的象限是第二象限. 故选:B .【点睛】此题主要考查了象限内点的坐标符号特征,要熟练掌握.12.B解析:B【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2016个点是(45,9),所以,第2016个点的横坐标为45.故选:B.二、填空题13.①【分析】根据对顶角相等平行线的性质实数的平方不同象限内点的坐标的特征进行判断【详解】解:①对顶角相等故①是真命题;②如果两条平行线被第三条直线所截那么同位角相等故②是假命题;③如果两个实数的平方相解析:①【分析】根据对顶角相等、平行线的性质、实数的平方、不同象限内点的坐标的特征进行判断.【详解】解:①对顶角相等,故①是真命题;②如果两条平行线被第三条直线所截,那么同位角相等,故②是假命题;③如果两个实数的平方相等,那么这两个实数相等或互为相反数,故③是假命题;④当m≠0时,点P(m2,﹣m)在第四象限内或第一象限内,故④是假命题;故答案为:①.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.14.【分析】(1)根据向上向右走均为正向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件可知从而得到点向右走个格点向上走个格点到点反过来即可得到答案【详解】解:(1)∵规定:向上向右走为正向下向 解析:3+ 4+ 2+ 0 D 2- ()2,2--【分析】(1)根据向上向右走均为正,向下向左走均为负分别写出各点的坐标即可;(2)根据已知条件,可知5(3)2a a ---=,2(4)2b b ---=,从而得到点A 向右走2个格点,向上走2个格点到点N ,反过来即可得到答案.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负∴A C →记为()3,4++,B C →记为()2,0+,C D →记为()1,2+-;(2)∵()3,4→--M A a b ,()5,2→--M N a b∴5(3)2a a ---=,2(4)2b b ---=∴点A 向右走2个格点,向上走2个格点到点N∴N A →应记为()2,2--.故答案是:(1)3+,4+,2+,0,D ,2-;(2)()2,2--【点睛】本题考查了利用坐标确定点的位置的方法,解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.15.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论. 16.(−1−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点解答即可【详解】∵第三象限的角平分线上的点的横纵坐标相等并且都为负数∴只要根据特点写出横纵坐标相等并且都为负数的一组数即可如( 解析:(−1,−1)(答案不唯一)【分析】根据在第三象限角平分线上点的坐标的特点,解答即可.【详解】∵第三象限的角平分线上的点的横、纵坐标相等,并且都为负数,∴只要根据特点写出横纵坐标相等,并且都为负数的一组数即可,如(−1,−1). 故答案为:(−1,−1)(答案不唯一).【点睛】本题主要考查了点的坐标,解答此题的关键是掌握第三象限的角平分线上的点的横纵坐标相等且都为负数.17.(ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 18.或-2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值然后根据直线的定义求出m 的值【详解】∵A (-2m )B (n-4)AB ∥y 轴且AB=5∴∴或故答案为:或;【点睛】本题考查了坐标与图形性质以及解析:9-或1 -2【分析】根据平行于y 轴的直线上点的横坐标相同求出n 的值,然后根据直线的定义求出m 的值.【详解】∵A (-2,m ),B (n ,-4),AB ∥y 轴,且AB=5,∴2n =-,()45m --=,∴9m =-或1,故答案为:9-或1;2-.【点睛】本题考查了坐标与图形性质以及两点之间的距离公式,主要利用了平行于y 轴的直线上点的横坐标相同的性质.19.或【分析】(1)分和两种情况分别代入方程求解即可得;(2)先求出再根据x 轴上方的点的纵坐标大于0建立不等式求解即可得【详解】(1)由题意得:或①当时代入方程得:解得则因此点A 的坐标为②当时代入方程得 解析:(2,2)A 或(1,1)A - 43x >【分析】(1)分x y =和x y =-两种情况,分别代入方程求解即可得;(2)先求出34y x =-,再根据x 轴上方的点的纵坐标大于0建立不等式,求解即可得.【详解】(1)由题意得:x y =或x y =-①当x y =时代入方程得:34y y -=,解得2y =则2x =因此,点A 的坐标为(2,2)A②当x y =-时代入方程得:34y y --=,解得1y =-则1x =因此,点A 的坐标为(1,1)A -综上,点A 的坐标为(2,2)A 或(1,1)A -故答案为:(2,2)A 或(1,1)A -;(2)方程34x y -=可变形为34y x =-当点A 在x 轴上方时,点A 的纵坐标一定大于0,即0y >则340x -> 解得43x > 故答案为:43x >. 【点睛】本题考查了点坐标、点到坐标轴的距离等知识点,掌握平面直角坐标系中,点坐标的特征是解题关键.20.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.三、解答题21.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=, 即3b =,点B 在第一象限, 3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.22.(1)B 点坐标为(4,6),A 点坐标为(4,0),C 点坐标为(0,6);(2)3;(3)点P 的坐标为(2,32-)或(2,92). 【分析】(1)根据非负数的性质得a-b+2=0,2a-b-2=0,解得a=4,b=6,则B 点坐标为(4,6),由于线段BA ⊥x 轴于A 点,线段BC ⊥y 轴于C 点,易得A 点坐标为(4,0),C 点坐标为(0,6);(2)利用线段中点坐标公式得到点D 的坐标为(4,3),点E 的坐标为(2,32),再根据三角形面积公式和AEC AOC AOE COE S S S S =--△△△△进行计算;(3)由于点P (2,a ),点E 的坐标为(2,32),,则32PE a =-,利用三角形面积公式即可求解.【详解】(1)∵2(2)|22|0a b a b -++--=, ∴20a b -+=,220a b --=,∴4a =,6b =,∴B 点坐标为 (4,6),∵线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,∴A 点坐标为(4,0),C 点坐标为(0,6);(2)∵点D 是AB 的中点,∴点D 的坐标为(4,3),∵点E 是OD 的中点,∴点E 的坐标为(2,32), ∴AEC AOC AOE COE S S S S =--△△△△1131644622222=⨯⨯-⨯⨯-⨯⨯ 3=.(3)∵点P 的坐标为(2,a ),点E 的坐标为(2,32), ∴32PE a =-, ∵AEP AEC S S =△△, ∴132322a ⨯⨯-=, ∴32a =-或92, ∴点P 的坐标为(2,32-)或(2,92). 【点睛】本题考查了坐标与图形性质、偶次方和算术平方根的非负性质、矩形的性质等知识.记住坐标轴上点的坐标特征是解题的关键.23.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 24.(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.25.儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【分析】直接利用学校的坐标是()2,5,得出原点位置进而得出答案.【详解】如图所示:建立平面直角坐标系,儿童公园(-2,-1),医院(2,-1),水果店(0,3),宠物店(0,-2),汽车站(3,1).【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.26.(1)()1,0B -或()9,0;(2)()0,4C或()0,4-;(3)()1,6D 或()11,6D -- 【分析】(1)由题意知A 和B 都在x 轴上,根据两点间的距离可得B 的坐标;(2)设点C 的坐标为()0,C y ,则1102ABC S AB y =⋅⋅=△,求解即可; (3)由题意可得15122ABD A S B a =⋅⋅=+△,求出a 的值代入即可. 【详解】解:(1)∵()4,0A ,点B 在x 轴上,且5AB =,∴()1,0B -或()9,0;(2)设()0,C y ,则1102ABC S AB y =⋅⋅=△, 解得4y =±,∴点C 的坐标为()0,4C 或()0,4-;(3)根据题意可得15122ABD A S B a =⋅⋅=+△, 解得4a =或8a =-, ∴点D 的坐标为()1,6D 或()11,6D --.【点睛】本题考查坐标与图形,掌握三角形的面积公式是解题的关键.。

七年级数学平面直角坐标系综合测试题2

七年级数学平面直角坐标系综合测试题2

2011~2012学年度七年级第二学期数学单元测试卷(二)(第二章平面直角坐标系)班级:___________ 座号:_________ 姓名:__________ 分数:____________一、选择题:(每小题3分,总共30分)1、下列说法正确的是()A、平面内,两条互相垂直的直线构成数轴。

B、坐标原点不属于任何象限。

C、X轴上的点必是纵坐标为0,横坐标不为0。

D、坐标为(3, 4)与(4,3)表示同一个点。

2、下列说法正确的是()A、点p(0,5)在X轴上B、点M(-a,a)在第二象限C、点A(-3,4)与点B(3,-4)在X轴的同一侧D、坐标平面内的点与有序数对是一一对应3、在平面直角坐标系中,点(-1,m2+1)一定在()A、第一象限B、第二象限C、第三象限D、第四象限4、小虫在小方格上沿着小方格的边爬行,它的起始位置是A(2,2)先爬到B (2,4),再爬到C(5,4),最后爬到D(5,6),则小虫共爬了()A、7个单位长度B、5个单位长度C、4个单位长度D、3个单位长度5、若点A(-X,-Y)在第二象限,则点B(X,Y)在()A、第一象限B、第二象限C、第三象限D、第四象限6、点P(m+3,m+1)在x轴上,则点p坐标为()A(0,-4) B(4,0) C(0,-2) D(2,0)7、下列说法正确地有()(1)点(1,-a)一定在第四象限(2)坐标上的点不属于任一象限(3)横坐标为0的点在Y轴上纵坐标为0的点在X轴上。

(4)直角坐标系中,在Y轴上且到原点的距离为5的点的坐标是(0,5)。

A 1个B 2个C 3个D 4个8、点p(a,b),ab>0,a+b<0,则点p在()A、第一象限B、第二象限C、第三象限D、第四象限9、点M在第四象限,它到X轴、Y轴的距离分别为8和5,则点M的坐标为()A(8,5) B(5,-8) C(-5,8) D(-8,5)10、过点A(-3,2)和点B(-3,5)作直线则直线AB()A 平行于Y轴B 平行于X轴C 与Y轴相交D 与y轴垂直二、填空题(每小题5分,总共30分)11、如果将一张“5排3号”的电影票记为(5,3),李珊珊同学买了一张标号为(15,2)的电影票,那么她应该坐在排号。

人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版数学七年级下册第7章平面直角坐标系单元测试(Word版含答案)

人教版初中七年级数学下册第7章平面直角坐标系班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为()A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是()A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为()A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为()A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是()A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为()A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为()A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为.14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是.15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为.16.(东湖区期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P 为“和谐点”,若某个“和谐点”到x轴的距离为3,则该点的坐标为.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.25.(本题满分12分) 如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为;线段BC与线段AD的位置关系是;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t s,回答下列问题.①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,四边形ABCP的面积为4,求点P的坐标.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为(B)A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是(C)A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是(C)A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为(B)A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为(D)A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为(B)A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是(A)A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是(D)A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为(D)A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为(A)A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为(北偏东40°,47海里).14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是(5,-4).15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为(-2,0).16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x 轴的距离为3,则该点的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫34,-3. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A ,B ,C ,D ,E 的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.解:(1)A(3,3),B(-5,2),C(-4,-3),D(4,-3),E(5,0).(2)如图所示.点P 在第三象限,点Q 在第四象限,点S 在第一象限, 点T 在第二象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.解:(1)画坐标轴如图所示,火车站(0,0),体育场(-4,3),医院(-2,-2).(2)如图所示.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.解:(1)四边形ABCD的面积为(5-2)×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?解:(1)北偏东40°方向上有两个目标:敌方舰艇B和小岛,要想确定敌方舰艇B的位置,还需知道敌方舰艇B距我方舰艇3号的距离.(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有两艘:敌方舰艇A和敌方舰艇C.(3)要确定每艘敌方舰艇的位置,各需要两个数据:距离和方位角.(如对我方舰艇3号来说,敌方舰艇A在正南方向,图上距离为0.6 cm 处;敌方舰艇B在北偏东40°方向,图上距离为1 cm处;敌方舰艇C在正东方向,图上距离为0.6 cm处)21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.解:(1)如图所示,△A1B1C1为所求.(2)如图所示.(3)点A1的坐标为(2,6).22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?解:(1)过点B 作BF ⊥x 轴于点F ,过点A 作AG ⊥x 轴于点G ,如图所示.∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102 =2 500(m 2).(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2 500 m 2.23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.解:由点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4), 得D(-2,2),E(2,2).∵点D ,E 的纵坐标相等,且都不为0,∴DE ∥x 轴,又∵AB 在x 轴上,∴DE ∥AB.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.解:(1)∵MN∥y轴,∴点M的横坐标和点N的横坐标相同,∴m-6=5,得m=11,故点M的坐标为(5,25).(2)∵MN∥x轴,∴点M的纵坐标和点N的纵坐标相同,∴b=2,∵MN=3,∴|a-5|=3,解得a=8或a=2,故点M的坐标为(8,2)或(2,2).(3)∵点M到两坐标轴距离相等,点M的横坐标和纵坐标不能同时为0,∴点M不在原点上,分别在第一、三象限或第二、四象限,当在第一、三象限时,可知m-6=2m+3,得m=-9,点M的坐标为(-15,-15),当在第二、四象限时,可知m-6=-(2m+3),得m=1,点M的坐标为(-5,5),故点M的坐标为(-15,-15)或(-5,5).25.(本题满分12分)(官渡区月考)如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为(-4,2);线段BC与线段AD的位置关系是平行;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D 停止.若点P 的速度为每秒1个单位长度,运动时间为t s ,回答下列问题.①直接写出点P 在运动过程中的坐标(用含t 的式子表示); ②当5<t <7时,四边形ABCP 的面积为4,求点P 的坐标.解:(2)①当0≤t <2时,p(-1,t);当2≤t ≤5时,p(-t +1,2);当5<t ≤7时,p(-4,7-t).②由题意知AB =2,AD =3,PD =7-t ,∴S 四边形ABCP =S 四边形ABCD -S △ADP =4,∴2×3-12×3×(7-t)=4,解得t =173,∴7-t =7-173=43, ∴点P ⎝⎛⎭⎪⎫-4,43.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3

帅炮
2014年平面直角坐标系测试题
(时间:90分钟 满分:120分) 一、选择题(每题3分,共计36分) 1、.点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )
A .(0,-2)
B .(2,0)
C .(0,2)
D .(0,-4) 2、点P (x ,y ),且xy <0,则点P 在( )
A 、第一象限或第二象限
B 、第一象限或第三象限
C 、第一象限或第四象限
D 、第二象限或第四象限
3、如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位 于点(3,-2)上,则○炮位于点( )
A 、(1,-2)
B 、(-2,1)
C 、(-2,2)
D 、(2,-2)
4、将△ABC 的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是( )
A 、将原图形向x 轴的正方向平移了1个单位
B 、将原图形向x 轴的负方向平移了1个单位
C 、将原图形向y 轴的正方向平移了1个单位
D 、将原图形向y 轴的负方向平移了1个单位 5、在坐标系中,已知A (2,0),B (-3,-4),C (0,0),则△ABC 的面积为( ) A 、4 B 、6 C 、8 D 、3
6、三角形A’B’C’是由三角形ABC 平移得到的,点A (-1,-4)的对应点为A ’(1,-1),则点B (1,1)的对应点B ’、点C (-1,4)的对应点C ’的坐标分别为( ) A 、(2,2)(3,4) B 、(3,4)(1,7) C 、(-2,2)(1,7) D 、(3,4)(2,-2)
7、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A 、向右平移了3个单位B 、向左平移了3个单位C 、向上平移了3个单位D 、向下平移了3个单位
8、已知点P 的坐标为()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( ) A.(3,3) B.(3,-3) C. (6,-6) D.(3,3)或(6,-6)
9、若4,5==b a ,且点M (a ,b )在第二象限,则点M 的坐标是( ) A 、(5,4) B 、(-5,4) C 、(-5,-4) D 、(5,-4)
10、若A (a ,6),B (2,a ),C (0,2)三点在同一条直线上,则a 的值为( )
A .4或-2
B .4或-1
C .-4或1
D .-4或2
11、已知点A (2,0)、点B (-1
2,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则
第四个顶点不可能在( ) A .第一象限 B .第二象限C .第三象限 D .第四象限
12.已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( ) A .一定大于90° B .一定小于90° C .一定等于90° D .以上三种情况都有可能 A .3 B .5 C .6 D .7 二、填空题(每题2分,共计20分)
13、点A (-1,2)关于y 轴的对称点坐标是 ;点A 关于原点的 对称点的坐标为 。

点A 关于x 轴对称的点的坐标为
14、已知AB 在x 轴上,A 点的坐标为(3,0),并且AB =5,则B 的坐标为 15、.已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为 。

16、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于
10,则a 的值是________________
17、已知点A 在x 轴上方,到x 轴的距离是3,到y 轴的距离是4,那么点A 的坐标是______________。

18、已知点A (-4,a ),B (-2,b )都在第三象限的角平分
线上,则a +b +ab 的值等于________。

1. 如图所示,在一个规格为84⨯的球台上,有两只小球P 和Q ,
设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,
若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则点O 的位置可以表示为 .
20、已知两点A ()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 . 21、、点P (x -1,x +1)不可能在第 象限。

22、在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为________________
23、已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于
10,则a 的值是________________
Q
P D C
B
A
24、如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方
向不断地移动,每移动一个单位,得到点A 1 (0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n+1(n 为自然数)的坐标为 (用n 表示)
三、解答题(共计64分) 25、(6分)如图所示,是一个规格为88 的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.
26.(6分) 在坐标平面内描出点A (2,0),B (4,0),C (-1,0),D (-3,0).
(1)分别求出线段AB 中点,线段AC 中点及线段CD 中点的坐标,则线段AB 中点的坐
标与点A ,B 的坐标之间有什么关系?对线段AC 中点和点A ,C 及线段CD 中点和点C ,D 成立吗?
(2)已知点M (a ,0),N (b ,0),请写出线段MN 的中点P 的坐标. . 27、(8分)如图10,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-
5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置,最后求出它的面积.
.
图10
(1,1)
(-4,-1)C (-1,4)B A
x
y
01
234
5-1
-2-3-4
-5-4-3-2
-15
4321D C B
A
28、(6分)在平面直角坐标系内,已知点(1-2a ,a -2)在第三象限的角平分线上,求a 的
值及点的坐标?
29、(6分)已知点P ()y x ,的坐标满足()0622
=++
-y x ,求点P 关于原点的对称点的
坐标
30.(6分)如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y -1)
在坐标平面内的什么位置?
31.(6分)已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,求点P 的坐标
32.(6分)已知点P ()3,3b a +与点Q ()b a 2,5+-关于x 轴对称,求a,b 的值.
33、(6分)在平面直角坐标系内,已知点(1-2a ,a -2)在第三象限的角平分线上,求a
的值及点的坐标?
34、(8分)如图6-4,四边形ABCD 各个顶点的坐标分别为 (– 2,8),(– 11,6),(– 14,0),(0,0).
(1)确定这个四边形的面积。

(2)如果把原来ABCD 各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
X
y
0D
C B
A (-2,8)
(-11,6)(-14,0)。

相关文档
最新文档