基于物联网智能大棚设计方案
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案一、引言智能农业大棚物联网解决方案是基于物联网技术的创新应用,旨在提高农业生产效率、降低能源消耗、优化资源利用,实现智能化管理和可持续发展。
本文将详细介绍智能农业大棚物联网解决方案的设计原理、关键技术和应用场景。
二、设计原理1. 智能感知技术:通过在大棚内部部署各类传感器,实时监测大棚内的温度、湿度、光照强度、土壤湿度等关键参数。
传感器采集到的数据将通过物联网网关传输至云平台进行处理和分析。
2. 数据传输与处理:物联网网关将传感器数据通过无线通信技术传输至云平台,云平台利用大数据分析和人工智能算法对数据进行处理和分析,提取有价值的信息,如作物生长状态、病虫害预警等。
3. 远程控制与管理:利用物联网技术,农户可以通过手机、平板电脑等终端设备实现对大棚内的灌溉、通风、温度调节等设备的远程控制和管理,提高农业生产的灵活性和效率。
4. 数据可视化与决策支持:通过云平台提供的数据可视化界面,农户可以直观地了解大棚内各项指标的变化趋势和关联关系,辅助农户做出决策,如调整灌溉时间、施肥量等,以优化农业生产。
三、关键技术1. 传感器技术:选择合适的传感器来监测大棚内的环境参数,如温度传感器、湿度传感器、光照传感器、土壤湿度传感器等。
传感器的准确性和稳定性对于数据采集的可靠性至关重要。
2. 无线通信技术:选择适合农业大棚环境的无线通信技术,如LoRaWAN、NB-IoT等,实现传感器数据的远程传输,确保数据的实时性和可靠性。
3. 云计算与大数据分析:利用云平台提供的计算和存储能力,对传感器数据进行处理和分析,提取有价值的信息,并为农户提供决策支持。
4. 移动终端应用开发:开发适配于手机、平板电脑等移动终端设备的应用程序,实现远程控制和数据可视化,方便农户随时随地监控和管理大棚。
四、应用场景1. 温室蔬菜种植:通过监测大棚内的温度、湿度和光照强度等参数,实现精确的温室控制,提高蔬菜的生长速度和产量。
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案一、引言智能农业大棚物联网解决方案是基于物联网技术的应用方案,旨在提高农业大棚的生产效率和管理水平。
本文将详细介绍智能农业大棚物联网解决方案的设计原理、系统架构、关键技术以及预期效果。
二、设计原理智能农业大棚物联网解决方案的设计原理基于以下几点:1. 传感器监测:通过在农业大棚内部布置各种传感器,实时监测温度、湿度、光照等环境参数,以及土壤湿度、营养成分等植物生长相关参数。
2. 数据采集与传输:通过物联网技术,将传感器采集到的数据传输到云平台,并进行实时存储和分析处理。
3. 决策支持系统:基于云平台的数据分析,利用机器学习和人工智能算法,为农业大棚提供决策支持,如自动控制温度、湿度、光照等环境参数,以及自动灌溉、施肥等植物生长管理措施。
三、系统架构智能农业大棚物联网解决方案的系统架构包括以下几个关键组件:1. 传感器节点:包括温度传感器、湿度传感器、光照传感器、土壤湿度传感器等,用于采集环境参数和植物生长相关数据。
2. 网关设备:负责将传感器节点采集到的数据传输到云平台,同时可实现与其他设备的通信和控制。
3. 云平台:接收并存储传感器节点采集到的数据,进行实时分析和处理,并提供决策支持服务。
4. 决策支持系统:基于云平台的数据分析结果,利用机器学习和人工智能算法,为农业大棚提供决策支持。
四、关键技术智能农业大棚物联网解决方案涉及以下关键技术:1. 传感器技术:选择适合农业大棚环境的传感器,并确保其准确度和可靠性。
2. 物联网通信技术:选择合适的通信协议和网络技术,实现传感器数据的可靠传输。
3. 云计算技术:构建可扩展的云平台,实现大规模数据存储、实时分析和决策支持。
4. 机器学习和人工智能技术:利用机器学习和人工智能算法,对传感器数据进行分析和建模,为决策支持系统提供准确的预测和建议。
五、预期效果通过智能农业大棚物联网解决方案的实施,预期可以达到以下效果:1. 提高生产效率:通过自动控制环境参数和植物生长管理措施,优化农作物生长环境,提高产量和质量。
基于物联网的温室大棚监控系统设计与实现

谢谢观看
应用层主要包括云平台和客户端两部分。云平台负责数据的存储和处理,客 户端则可以通过电脑、手机等设备访问云平台,查看温室大棚的实时数据,并对 环境因素进行控制。
三、系统功能实现
1、数据采集:通过各类传感器采集温室大棚内的环境因素数据,如温度、 湿度、光照、二氧化碳等。
2、数据传输:通过无线通信技术将采集的数据传输到云平台。
2、数据存储和远程控制
为了方便用户对历史数据进行查询和分析,本系统需要将采集到MySQL数据库进行数据存储,并通过Java 程序实现数据的备份和恢复。
同时,为了实现远程控制,本系统需要将执行器与云平台进行连接。用户可 以通过手机APP或Web端对大棚内的设备进行远程控制,包括开关设备、调整设备 参数等。本系统使用Zookeeper进行设备管理,保证设备的可靠连接和稳定运行。
一、设计思路
基于物联网的温室大棚监控系统旨在通过各种传感器和执行器,实时监测大 棚内的环境参数,如温度、湿度、光照等,同时根据监测数据进行自动化调控, 以提供最适宜的农作物生长环境。
本系统的设计主要包括硬件和软件两部分。硬件部分主要包括各种传感器、 执行器、通讯模块和电源模块等;软件部分主要包括数据采集、处理、存储和远 程控制等功能。
二、硬件设计
1、传感器和执行器
本系统需要使用多种传感器和执行器,以实现环境参数的全面监测和调控。 传感器包括温度传感器、湿度传感器、光照传感器等,用于监测大棚内的环境参 数;执行器包括通风设备、灌溉设备、遮阳设备等,用于调控大棚内的环境条件。
2、通讯模块
通讯模块是连接传感器、执行器和数据中心的桥梁。本系统采用GPRS无线通 讯模块,实现数据的高速传输和实时监控。此外,系统还支持多种联网方式,如 Wi-Fi、以太网等,以满足不同用户的需求。
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案引言概述随着科技的不断发展,智能农业大棚物联网解决方案逐渐成为农业领域的热门话题。
物联网技术的应用使得农业生产更加智能化、高效化,为农民提供了更多便利和支持。
本文将详细介绍智能农业大棚物联网解决方案的优势和应用。
一、环境监测1.1 温度和湿度监测:智能农业大棚通过传感器实时监测大棚内外的温度和湿度情况,帮助农民掌握大棚内部环境变化,及时调整温湿度,提高作物生长效率。
1.2 光照监测:物联网技术可以实时监测大棚内的光照强度,帮助农民合理利用自然光资源,提高作物的光合作用效率。
1.3 CO2浓度监测:传感器监测大棚内CO2浓度,帮助农民及时通风换气,提高作物的光合作用效率。
二、水肥管理2.1 土壤湿度监测:物联网技术可以实时监测土壤湿度,帮助农民合理浇水,避免土壤干旱或过湿。
2.2 水肥一体化管理:智能农业大棚通过物联网技术实现水肥一体化管理,根据作物需求自动施肥,提高养分利用率。
2.3 水资源节约:通过智能灌溉系统,根据天气情况和作物需求进行智能灌溉,节约水资源的同时提高作物产量。
三、病虫害监测3.1 病虫害预警:物联网技术可以监测大棚内的病虫害情况,及时发现并预警,帮助农民采取措施防治。
3.2 精准喷药:智能农业大棚通过物联网技术实现精准喷药,减少农药使用量,降低环境污染。
3.3 病虫害数据分析:通过物联网技术收集的病虫害数据,帮助农民进行病虫害趋势分析,制定更加科学的防治方案。
四、远程监控4.1 远程控制:农民可以通过手机或电脑远程监控大棚内的环境情况,实时调整大棚内的温湿度、光照等参数。
4.2 实时数据传输:物联网技术可以实现大棚内传感器数据的实时传输,帮助农民及时掌握大棚生产情况。
4.3 远程报警:智能农业大棚通过物联网技术实现远程报警功能,一旦发生异常情况,农民可以第一时间收到报警信息并采取措施。
五、数据分析与决策5.1 数据采集与存储:物联网技术可以帮助农民实现大棚内各种传感器数据的采集和存储,为后续数据分析提供支持。
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案一、引言智能农业大棚物联网解决方案是基于物联网技术的现代农业发展模式,旨在提高农业生产效率、降低能源消耗、提升农产品质量和农业可持续性。
本文将详细介绍智能农业大棚物联网解决方案的设计原理、关键技术和应用场景。
二、设计原理智能农业大棚物联网解决方案的设计原理主要包括传感器网络、数据采集与处理、远程监控与控制和决策支持系统。
1. 传感器网络通过在大棚内部布置温湿度传感器、光照传感器、土壤湿度传感器等多种传感器,实时感知大棚内的环境参数,并将数据传输至数据采集与处理系统。
2. 数据采集与处理数据采集与处理系统负责接收传感器网络传输的数据,并进行实时处理和分析。
通过对大量数据的采集和处理,可以了解大棚内的环境变化趋势,提供农作物生长所需的精确环境参数。
3. 远程监控与控制基于物联网技术,智能农业大棚物联网解决方案可以实现远程监控与控制。
农户可以通过手机、平板电脑等终端设备,随时随地监控大棚内的环境参数,并进行远程控制,如调节温湿度、光照等。
4. 决策支持系统决策支持系统是智能农业大棚物联网解决方案的核心部份。
通过对大量数据的分析和处理,结合农作物生长的特点和需求,系统可以提供农户决策所需的农业管理建议,如施肥、浇水、病虫害防治等。
三、关键技术智能农业大棚物联网解决方案的实现离不开以下关键技术的支持:1. 物联网通信技术物联网通信技术是实现大棚内传感器与数据采集系统、远程监控与控制系统之间的数据传输的基础。
常用的物联网通信技术包括无线传感器网络、蓝牙、ZigBee 等。
2. 数据采集与处理技术数据采集与处理技术是实现大棚内环境参数采集、实时处理和分析的关键。
该技术涉及传感器选择、数据传输协议、数据存储与管理等方面。
3. 远程监控与控制技术远程监控与控制技术是实现农户对大棚内环境参数的远程监控和控制的关键。
该技术包括远程通信协议、终端设备开辟等。
4. 数据分析与决策支持技术数据分析与决策支持技术是实现对大量数据的分析和处理,并提供农业管理建议的关键。
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案随着科技的不断发展,智能农业大棚物联网解决方案逐渐成为农业生产的新趋势。
通过物联网技术的应用,农业大棚可以实现智能化管理,提高生产效率,降低生产成本,保障农作物的质量和产量。
本文将详细介绍智能农业大棚物联网解决方案的相关内容。
一、传感器技术的应用1.1 温度传感器:通过安装温度传感器,可以实时监测大棚内的温度变化,及时调节温度,保持适宜的生长环境。
1.2 湿度传感器:湿度传感器可以监测大棚内的湿度水平,匡助农民及时进行浇水或者通风,保持适宜的湿度。
1.3 光照传感器:光照传感器可以监测大棚内的光照强度,匡助农民调节遮阳网或者灯光,保证作物的光合作用正常进行。
二、智能灌溉系统的应用2.1 土壤湿度监测:通过土壤湿度传感器监测土壤湿度,智能灌溉系统可以根据土壤湿度情况自动进行灌溉,避免浪费水资源。
2.2 水肥一体化:智能灌溉系统可以根据作物的生长需求,自动调节水肥比例,提高施肥效率,减少化肥的使用量。
2.3 节水节能:智能灌溉系统可以根据大气温湿度、风速等因素进行智能调控,实现节水节能,降低生产成本。
三、远程监控与控制3.1 远程监控:通过手机App或者电脑端,农民可以随时随地监测大棚内的温度、湿度、光照等数据,及时发现问题并进行处理。
3.2 远程控制:农民可以通过手机App或者电脑端远程控制大棚内的灯光、通风设备、灌溉系统等,实现智能化管理。
3.3 数据分析:通过物联网技术,大棚内的各种数据可以进行实时记录和分析,匡助农民制定科学的种植计划,提高生产效率。
四、生产数据管理与分析4.1 数据采集:智能农业大棚物联网解决方案可以实现大棚内各种数据的自动采集,包括温度、湿度、光照、CO2浓度等。
4.2 数据存储:采集的数据可以进行云端存储,农民可以随时查看历史数据,分析作物生长情况,为生产决策提供依据。
4.3 数据分析:通过大数据分析技术,可以对历史数据进行深入分析,发现作物生长规律,预测病虫害发生风险,提高农作物的产量和质量。
基于物联网的智能农业大棚控制系统设计与开发

基于物联网的智能农业大棚控制系统设计与开发智能农业大棚控制系统是基于物联网技术的一种创新应用,通过集成传感器、无线通信、数据采集与分析等技术,实现对大棚环境、植物生长情况等的实时监测和控制。
本文将对基于物联网的智能农业大棚控制系统的设计与开发进行探讨。
一、系统架构设计为了实现对大棚环境和作物生长状态的精确监测和智能控制,基于物联网的智能农业大棚控制系统主要包括传感器节点、无线通信模块、数据采集与处理中心以及用户终端等组件。
1. 传感器节点传感器节点是智能农业大棚控制系统的核心组成部分,用于感知大棚内部环境参数以及植物生长状态。
传感器节点可以包括温度传感器、湿度传感器、光照传感器、CO2传感器等,通过测量这些参数,可以实现对大棚内部环境的实时监测。
2. 无线通信模块为了实现数据的及时传输,智能农业大棚控制系统需要使用无线通信模块。
通过无线传输技术(如Wi-Fi、ZigBee等),传感器节点采集到的数据可以被传送到数据采集与处理中心,以供进一步的数据分析和控制决策。
3. 数据采集与处理中心数据采集与处理中心扮演着数据处理和控制的核心角色。
通过接收传感器节点传来的数据,数据采集与处理中心可以对环境参数和植物生长状态进行分析和处理。
在此基础上,通过采用数据挖掘、机器学习等算法,可以为大棚环境和作物生长状态提供精准的预测和控制。
4. 用户终端用户终端可以是手机、平板电脑等智能设备。
通过与数据采集与处理中心的无线连接,用户可以实时获取大棚环境参数和作物生长状态的信息,也可以通过手机应用等方式,对大棚进行远程控制和管理。
二、系统功能设计基于物联网的智能农业大棚控制系统在实现传感数据采集的基础上,还应具备以下功能:1. 远程监控与控制用户可以通过手机或其他终端设备远程监控大棚的温度、湿度、光照等参数,并进行灌溉、通风、施肥等控制操作。
远程监控与控制功能方便了用户的管理和处理,提高了工作效率。
2. 实时报警与预警当大棚内部环境参数超过预定阈值时,智能控制系统可以通过短信、手机推送等方式实时报警,提醒用户采取相应的控制措施。
智能农业大棚物联网解决方案

智能农业大棚物联网解决方案一、背景介绍智能农业大棚物联网解决方案是基于物联网技术的农业生产管理系统,旨在提高农业生产效率、降低成本,并实现农业生产的智能化和可持续发展。
该方案通过将传感器、控制器、通信设备等物联网技术应用于农业大棚中,实现对环境参数的实时监测和控制,从而优化农作物的生长环境,提高产量和质量。
二、方案架构智能农业大棚物联网解决方案主要包括以下组成部份:1. 传感器节点:安装在农业大棚内的传感器节点负责采集环境参数数据,如温度、湿度、光照强度、土壤湿度等。
2. 网关设备:将传感器节点采集到的数据通过无线通信技术传输给云平台,同时负责控制器与传感器节点之间的通信。
3. 控制器:根据云平台的指令,对农业大棚内的设备进行控制,如灌溉系统、通风系统等。
4. 云平台:接收传感器节点采集的数据,并进行分析和处理,提供农业生产管理功能,如数据可视化、智能决策等。
5. 挪移终端:通过手机或者平板等挪移设备,用户可以随时随地监控农业大棚的环境参数和设备状态,进行远程控制和管理。
三、方案功能1. 实时监测:通过传感器节点对农业大棚内的环境参数进行实时监测,如温度、湿度、光照强度、土壤湿度等,用户可以随时了解农作物的生长环境。
2. 远程控制:用户可以通过挪移终端对农业大棚内的设备进行远程控制,如灌溉系统、通风系统等,实现自动化管理。
3. 数据分析:云平台接收传感器节点采集的数据,并进行分析和处理,提供农业生产管理功能,如数据可视化、智能决策等,匡助用户优化农作物的生长环境。
4. 报警功能:当农业大棚内的环境参数超过设定的阈值时,系统会自动发送报警信息给用户,提醒用户及时采取措施。
5. 历史数据记录:系统会将传感器节点采集的数据进行存储,用户可以随时查看历史数据,并进行数据分析和比对。
四、方案优势1. 提高生产效率:通过实时监测和远程控制,用户可以及时调整农作物的生长环境,提高生产效率和产量。
2. 降低成本:智能农业大棚物联网解决方案可以自动化管理农业生产过程,减少人力成本,并降低能源和水资源的消耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于物联网的农业生产管理解决方案西安旭丰科技有限公司2015年4月目录1. 项目概述 (2)2. 总体思路 (4)3. 总体设计 (5)4. 需求分析 (7)5. 解决方案 (4)园区智能监控系统 (9)设施农业地理信息系统 (15)智能节水灌溉系统 (18)精准作业管理系统 (21)农产品安全质量溯源管理系统 (27)数据中心 (41)1. 项目概述近年来,国家大力推进农业和农村信息化建设,2005年至2012年连续八年的中央一号文件中,均明确提出了大力发展农业和农村信息化建设的任务和要求。
《农业科技发展“十二五”规划(2011-2015年)》明确提出农业信息化相关技术研究作为重大关键技术攻关,研究信息快速获取与智能处理技术,搭建农业科技信息加工利用交互平台,提高农业信息化水平。
《2006—2020年国家信息化发展战略》指出推进农业信息化和现代农业建设,为建设社会主义新农村服务。
按照中央指示,全国各级地方政府纷纷出台政策、制定措施,积极投入到农业信息化建设的大潮中去。
为深入贯彻《中共中央关于推进农村改革发展若干重大问题的决定》,落实《2006—2020年国家信息化发展战略》的部署,充分发挥信息化在加快推进社会主义新农村建设、加快现代农业建设、推动城乡统筹发展中的重要作用,用现代信息技术改造传统农业。
推进农业信息化试点示范,普及应用信息技术,增强农业产业化龙头企业、农民专业合作组织的辐射带动作用,不断探索形成具有地方特色的农业信息化应用新典型和新模式。
积极发展优质、精准、高效和生态农业,提高农业规模化、精准化和设施化水平。
建成一批信息技术应用示范企业和农民专业合作组织。
以强化农业支撑保障能力、提高农业综合生产能力和改善农民生产生活条件为重点,突出组织实施好农业生产基地建设、重大农业建设工程和农业九大体系建设等,大力强调农业与农村信息服务体系建设,进一步提高农业部门信息化管理与服务水平。
为进一步凸显技术集聚、产业融合和推广示范的功能定位,提高现代化和信息化管理服务水平,加快农业信息化应用体系的建设步伐,将集成应用电子计算机网络、3S技术、通信技术和智能控制技术等现代农业信息技术,按照规模化、集约化、标准化、产业化的发展方向,充分应用现有基础设施设备,有步骤、有秩序地开展信息化建设和应用。
2. 总体思路1建设目标围绕农业信息化建设与农业产业化发展需求,结合国内外现代农业信息技术发展趋势,功能定位和产业化经济发展现状,依托资源优势、区位优势和政策优势,采用物联网、云服务、溯源技术、3S技术等前沿技术手段,建设基于统一数据中心的资源管理系统、智能监控系统、多媒体展示中心和综合门户网站,形成完善的技术服务体系,将信息技术与农业生产管理实践有机融合,实现科研、生产、物流、商务全产业链一体化支撑,满足快速发展的经营管理需求。
2建设内容以当前成熟的计算机网络技术、数据库技术、系统安全技术、GIS技术和数据交换等技术为手段,建设设施农业信息管理平台,充分利用当地已有的门户网站和服务模式,建设设施农业地理信息系统、生产信息管理与辅助决策系统和基于用户档案的信息推送系统,在设施农业建设现状摸底的基础上,掌握设施农产品生产和供给规模,引导特色种植;利用专家和当前主流的传播模式指导农户进行农事操作,为设施农业的标准化生产提供发展方向,为设施农业发展规划提供分析依据。
3. 总体设计设计原则智能农业物联网系统平台的设计,需要遵循以下一些原则:1、易用性原则易用性是指系统使用的方便程度。
由于平台的面向管理者较多:上到政府主管部门,下到应用示范企业的工作人员。
使用者的行业知识水平、对智能农业信息测控服务平台系统的了解程度都大不相同。
这就要求系统界面需要尽量简洁易懂,使系统使用者能够在短期内接受、了解、熟知并应用智能农业信息测控服务平台系统。
2、经济实用性原则系统使用的经济实用性是指系统使用成本经济,并且在使用功能上能够满足实际工作要求。
在系统开发时,需要对系统进行合理规划,确保系统在满足用户的业务要求的同时,以简单、方便、快捷、经济实用为目标,面向具体的工作应用需求。
在系统使用技术上,使用成熟、经济的技术,而不是单纯考虑技术的先进性;在系统数据显示深度上,根据实际需要确定,而不是越深越好,应该注重实用性。
3、稳定性原则系统稳定性是指系统保持正常运行的能力。
由于系统一旦建立,将嵌入到试点企业的日常农业生产活动中。
一旦系统出现不稳定的情况,将会对企业正常的生产活动造成很大的影响。
因此平台和各个软件系统和配置的各类硬件设备必须安全、稳定、可靠。
系统应该采用容错性设计,使得系统局部出现问题不会影响到整个系统的使用。
4、安全性原则系统安全性是指保护系统内重要机密信息不泄露,防御外部恶意攻击的能力。
此系统设计时需要考虑使用多重的安全体系,对于数据的安全和保密应该进行相应的处理,提高系统对于恶意攻击的防护能力,并保证与其它应用系统或异构系统间数据传输的安全可靠和一致性,确保不会有非授权操作和意外的非正常的操作,保证系统数据的安全完整。
5、可扩展升级原则可扩展升级是指系统在使用过程中、随着实际的需要进行进一步功能扩展或升级的能力。
一是随着系统覆盖面的扩大,参与企业数量增加,系统在信息存储计算能力上的扩展升级;二是随着农业物联网技术要求的发展,此工程可能会承担更多的管理功能,因此在系统功能上需要进一步扩展。
数据量的增加和服务功能的扩展,都需要硬件和系统软件的升级或增加,为了保证用户的原有系统平台在系统升级过程中能够平滑过渡,就要求系统在最初设计时就考虑系统软硬件的可扩展性。
设计思路系统建设要围绕现“十二五”规划确定的总目标,分期、分阶段推进信息化应用系统建设。
其总体建设思路是:统一规划、坚持标准、集中整合、全面推广,建设规范化的物联网管理平台;围绕建设总目标,实施分阶段分层次建设,建设一块、应用一块、巩固一块、发展一块,建设效益型的信息管理平台;坚持创新与改革,关注业务而不只是技术,积极采纳新的业务模式,以增强履行农业信息服务职责的能力,建设知识型的信息管理平台;共享生产及事务管理公共数据,为规划决策和服务三农提供各种有效信息,建设共享型的信息管理平台。
4 需求分析开发环境及相关需求分析(1)开发环境要求1、系统使用 B/S,用户可以浏览器根据权限访问平台应用;2、基于成熟产品定制化开发;3、后台数据库采用国际知名厂商的主流数据库产品;(2)项目实际需求分析1、可单独运行,也可通过与其它系统的接口和其它系统集成使用;2、提供导入、导出系统数据的功能;3、可根据需要提供开发接口程序所需的源代码和数据结构。
目标与范围根据种植基地生产、信息化及基础建设情况和具体的业务需求,建设符合实际情况的农业智能化物联网综合管理平台。
具体设计内容为:园区智能视频监控系统,设施地理信息系统,智能节水灌溉系统,精准作业管理系统,农产品安全质量溯源管理系统.5 解决方案总体架构农业智能物联网总体框架图园区智能监控系统1 视频监控应用系统1.1系统概述根据基地种植区域和蓄水池实际的情况,在基地相应位置布置视频采集点,每个视频采集节点分别把实时图像传输到物联网生产管理平台,以便能远程实时查看各基地全景和作物生长状态。
1.2系统架构1.3系统模块说明基地的视频采集部分主要采用球机对基地全景、各主要道路和办公楼以及大门进行定位监控。
实现长期的管理。
显示部分主要由硬盘录像机的电脑显示器和远程计算机进行运行观看。
硬盘录像机的电脑显示器上基地内的所有监控图像(后期各基地可以升级为电视墙形式的大屏一对一的摄像机监控以及通过视频矩阵进行有效切换)。
基地的监控系统采用数字硬盘录像机进行视频图像的存储,有利于对事件的取证和分析。
控制部分由硬盘录像机、高速球(数字矩阵)控制键盘组成。
在硬盘录像机上通过鼠标操作可以切换本机上的监控画面和控制本机上的高速球旋转、放大等功能。
数字矩阵主要是对电视墙上的监视器里的监控图像进行切换,可设置监控图像在监视器里自由切换、程序切换、定时切换等操作。
高速球控制键盘主要是配合高速球使用的。
控制键盘用来控制高速球比鼠标更方便,通过控制键盘还可调出高速球的菜单,实现高速球的两点扫描、巡航、花样扫描、设置预置点、调用预置点等功能。
数字硬盘录像机具有网络功能。
连入监控中心的局域网络,可以让局域网里的授权用户随时观看监控图像,达到可以在自己的电脑上就可以观看到高速公路上的监控实时情况。
数字硬盘录像机加装ADSL 就可以连入因特网,授权用户可通过因特网访问主机,观看到监控图像。
根椐现场实际需要,室内种植管理人员可通过监控中心视频或手机远程监控查看现场农作物是否存在病虫害。
室外种植区域不仅可以通过视频监控查还可在现场安装太阳能虫情测报灯。
虫情测报灯工作原理:1、太阳能供电。
2、采用不锈钢整体结构,符合GB/T4237。
3、采用光、电、数控技术。
4、白天自动关灯,夜间自动开灯,也可手动开关灯。
雨天自动关机。
5、在夜间工作状态下,不受瞬间强光照射改变工作状态。
6、虫体处理方式:三层滤网分离虫体,药熏处理。
7、根据昼夜智能控制充放电及开关灯。
8、防雷装置:能够有效防止雷击。
9、设计寿命:≥5年(灯管和蓄电池除外)。
10、可增设时间段控制:根据靶标害虫生活习性规律,可设定10个时间段。
太阳能虫情测报灯示意图2 智能温室环境监控系统物联网系统根据设施农业的不同类型和生产管理要求,结合温室作物种植特点、分布特点,运用传感器网络实时采集农业生产过程中的温度、湿度、光照、二氧化碳、土壤墒情等环境因子信息,全面掌握温室作物种植过程信息,为温室智能化监控提供辅助决策指导,实现农业生产的精细化管理、精准化作业。
智能环境监控系统构成图3 智能室外环境监控系统针对室外监测环境建设土壤温湿度和空气温湿度传感器,对室外大田生长环境的空气温湿度变化和土壤温湿度信息进行实时采集和监测,并依托有线或无线网络,实现多点监测网,将所有前端数据汇总上传至数据中心计算机进行数据的管理和分析,实时监控室外大田作物不同生长期的生长环境信息变化,为农业生产管理决策提供支持。
4 室外气象站和土壤墒情采集系统为实时监测不同区域作物生长环境的气象变化和土壤墒情变化,针对地形特征以及室外主要农作物的种植管理特点,选择具有典型代表意义的区域建立气象土壤墒情监测站,对小区域气候及土壤墒情数据进行实时监测。
监测的环境信息包括空气温度、湿度、风速、风向、辐射、降雨量、土壤温湿度和含水量等关键参数,数据通过无线通讯模块实时传输到园区的数据中心,为作物生长管理提供精准监测和科学管理。
室外气象监测站示意图设施农业地理信息系统1 系统概述地理信息系统(GIS)作为一项集空间物体地理分布信息采集、存储、管理、处理、检索、分析和显示等功能的成熟技术,在农业领域已有广泛深入的应用,体现在以下四个层次:(1)作为农业资源调查的工具——主要特点是建立农业资源地理数据库,实现空间数据库的浏览、检索,绘制农业资源分布图,生成农业资源报表;(2)作为农业资源分析的工具——以图形及数据的重新处理等分析工作为特征,用于各种目标的分析和重新导出新的信息,产生专题地图和进行地图数据的叠加分析;(3)作为农业生产管理的工具——建立各种模型和拟订各种决策方案,直接用于农业生产;(4)作为农业管理的辅助决策工具——利用GIS系统的模型功能、空间动态分析、预测能力,与专家系统、决策支持系统有机集合。