给力《计算固体力学原理与方法》配套习题答案—2教程

合集下载

《固体物理学》基础知识训练题及其参考答案

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将错误!未找到引用源。

两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将错误!未找到引用源。

组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

(完整版)计算力学复习题答案

(完整版)计算力学复习题答案

计算力学试题答案1. 有限单元法和经典Ritz 法的主要区别是什么?答:经典Ritz 法是在整个区域内假设未知函数,适用于边界几何形状简单的情形;有限单元法是将整个区域离散,分散成若干个单元,在单元上假设未知函数。

有限单元法是单元一级的Ritz 法。

2、单元刚度矩阵和整体刚度矩阵各有什么特征?刚度矩阵[K ]奇异有何物理意义?在 求解问题时如何消除奇异性?答:单元刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷平面图形相似、弹性矩阵D 、厚度t 相同的单元,e K 相同⑸e K 的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两列,其位置与结点位置对应。

整体刚度矩阵的特征:⑴对称性⑵奇异性⑶主元恒正⑷稀疏性⑸非零元素呈带状分布。

[]K 的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。

为消除[]K 的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。

3. 列式说明乘大数法引入给定位移边界条件的原理?答:设:j j a a =,则将 jj jj k k α=j jj j P k a α=即:修改后的第j 个方程为112222j j jj j j n n jj j k a k a k a k a k a αα+++++=由于得 jj j jj j k a k a αα≈ 所以 j j a a ≈对于多个给定位移()12,,,l j c c c =时,则按序将每个给定位移都作上述修正,得到全部进行修正后的K 和P ,然后解方程即可得到包括给定位移在内的全部结点位移值。

4. 何为等参数单元?为什么要引入等参数单元?答:等参变换是对单元的几何形状和单元内的场函数采用相同数目的结点参数及相同的插值函数进行变换,采用等参变换的单元称之为等参数单元。

借助于等参数单元可以对于一般的任意几何形状的工程问题和物理问题方便地进行有限元离散,其优点有:对单元形状的适应性强;单元特性矩阵的积分求解方便(积分限标准化);便于编制通用化程序。

《固体物理学》房晓勇主编教材-习题解答参考02第二章 晶体的结合和弹性

《固体物理学》房晓勇主编教材-习题解答参考02第二章 晶体的结合和弹性
2
2
)
12
+
( 4 / 3)
6
6
(
6 1 +0 +0
2 2 2
)
12
+
( 4 / 3)
2
6
(
12 12 + 12 + 02
)
12
+ = =
( 4 / 3)
(
24
(3 / 2)
2
+ (1/ 2 ) + (1/ 2 )
2
)
12
( 4 / 3)
6
(
8 12 + 12 + 12
)
12
+
( 4 / 3)
mi
1
2 2 n12 + n2 + n3
) (
=
mi
2 2 n12 + n2 + n3
)
12
雷纳德-琼斯参数
A6 = ∑ A6,i = ∑
i =1 i =1 N N
N
N
( (
mi
2 2 + n3 n12 + n2
)
A12 = ∑ A12,i = ∑
i =1 i =1
mi
2 2 + n3 n12 + n2
mn mn −U 0 = U 0 2 9V0 9V0
(2)惰性分子晶体原子之间的相互作用势可以下式描述
σ ⎤ ⎡σ u (r ) = 4ε ⎢( )12 − 2( )6 ⎥ r ⎦ ⎣ r
……(7)
A2 ⎛B⎞ 此时 m=12,n=6,式中 σ = ⎜ ⎟ , ε ≡ ,称为雷纳德-琼斯参数。 4B ⎝ A⎠

固体物理 课后习题解答(黄昆版)第二章

固体物理 课后习题解答(黄昆版)第二章

′ ωbcc u (r0 )bcc A62 A6 12.252 / 9.11 = = ( ) /( ) = = 0.957 ′ 14.452 /12.13 ω fcc u (r0 ) fcc A12 A12
2.7 对 于 H2 , 从 气 体 的 测 量 得 到 的 林 纳 德 - 琼 斯 势 参 数 为
σ ⎤ 1 σ ⎤ ⎡σ ⎡ σ 解: u (r ) = 4ε ⎢( )12 − ( ) 6 ⎥ , u (r ) = N (4ε ) ⎢ An ( )12 − Al ( ) 6 ⎥ 2 r ⎦ r r ⎦ ⎣ r ⎣
A62 A12 6 1 ⎛ du (r ) ⎞ 6 r u = 0 ⇒ = 2 σ ⇒ = − N ε 0 0 ⎜ ⎟ A6 2 A12 ⎝ r ⎠r
w
w
. e h c 3 . w
-5-
m o c
解答(初稿)作者
季正华
α e2
1 (1 − ) 当 e 变为 2e 时,有 r0 n
n 4α e 2 1 (1 − ) = u (e) × 4 n −1 r0 (2e) n
2.3 若一晶体两个离子之间的相互作用能可以表示为 计算: 1) 平衡间距 r0
解答(初稿)作者 季正华 -1-
u (r ) = −
α
r
m
+
β
rn
黄昆 固体物理 习题解答
2.5 假设Ⅲ-Ⅴ族化合物中,Ⅲ族、Ⅴ族原子都是电中性的(q*=0) , 求出其电离度 fi 。
解:对于Ⅲ族原子的有效电荷为 q* = (3 − 8
w
. e h c 3 . w
β
r010 + 2W ]
α = 7.5 × 10 −19 eV ⋅ m 2

固体物理复习题答案完整版

固体物理复习题答案完整版

一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。

(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

固体物理习题参考答案

固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。

证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。

固体物理第2章 思考题(陈万军)

固体物理第2章 思考题(陈万军)

线的斜率主要取决于排斥力。 因此,
固体的弹性强弱主要由排斥作用决 定.
《固体物理学》 微电子与固体电子学院 2
思考题3
• 固体呈现宏观弹性的微观本质是什么?
解答:固体受到外力作用时发生形变, 外力撤消后形变消失
的性质称为固体的弹性. 设无外力时相邻原子间的距离为 r0, 当相邻原子间的距离r>r0时, 吸引力起主导作用; 当 相邻原子间的距离r<r0时, 排斥力起主导作用。当固体受 挤压时,r<r0, 原子间的排斥力抗击着这一形变. 当固体
金属结合中, 原子实依靠原子实与电子云间的库仑力紧紧
地吸引着.
《固体物理学》 微电子与固体电子学院
9
思考题8
分子结合中, 是电偶极矩把原本分离的原子结合成了晶体.
电偶极矩的作用力实际就是库仑力.
氢键结合中, 氢先与电负性大的原子形成共价结合后, 氢 核与负电中心不在重合, 迫使它通过库仑力再与另一个电 负性大的原子结合.
思考题1
• 晶体的结合能, 晶体的内能, 原子间的相互作用势能有何
区别?
解答:自由粒子结合成晶体过程中释放出的能量, 或者把晶 体拆散成一个个自由粒子所需要的能量, 称为晶体的结合 能。原子的动能与原子间的相互作用势能之和为晶体的内 能。在0K时, 原子还存在零点振动能. 但零点振动能与原
子间的相互作用势能的绝对值相比小得多. 所以, 在0K时
受拉伸时,r>r0, 原子间的吸引力抗击着这一形变. 因此,
固体呈现宏观弹性的微观本质是原子间存在着相互作用力, 这种作用力既包含着吸引力, 又包含着排斥力.
《固体物理学》 微电子与固体电子学院 3
思考题4
• 你是如何理解弹性的, 当施加一定力, 形变大的弹性 强呢, 还是形变小的强? 解答:对于弹性形变, 相邻原子间的距离在r0附近变化. 令r=r0+Δr, 则有 r m (r0 r ) m r0 m (1 r ) m r0 m (1 m r )

固体物理基础参考解答

固体物理基础参考解答

当 T > 0 K 时,费米分布函数有

⎪1
f

)
=
⎪ ⎨0
⎪ ⎪
1
⎩2
ε << µ ε >> µ
ε =µ
下图给出了在基态 T=0K 和较低温度下 T > 0 K 时的费米分布函数。
基态和较低温度下的费米分布函数

− ∂f ∂ε
=
1 kBT
1 e(ε −µ ) kBT
1 + 1 e-(ε −µ ) kBT
三维自由电子体系,在低能态的能态密度趋于零,因而低温下所引起的热涨落极
小,体系可具有长程序。对一维自由电子体系来说,从图中可以看出,在低能态
的能态密度很大,而且随能量的降低而趋于无穷,因而低温下所引起的热涨落极
大,导致一维体系不具长程序。从图中可以看出,二维自由电子体系的能态密度
是常数,介于一维和三维中间,体系可具有准长程序,而且极易出现特殊相变,
费米分布函数可表示为:
f
(εi )
=
1 e(εi −µ ) kBT
+1
上 式 直 接 给 出 了 体 系 在 热 平 衡 态 (温 度 为 T)时 ,能 量 为 εi 的 单 电 子 本 征 态 被 一
个电子占据的概率。根据泡利原理,一个量子态只能容纳一个电子,所以费米分
布函数实际上给出了一个量子态的平均电子占据数。
∵εF =
2kF 2 2m
,
kF 3
=

2n
2
2
( ) ∴εF
= 2m
3π 2n
3
( ) 1.0557 ×10−34 2
2
( ) ∴ε F = 2 × 9.11×10−31 × 3× 3.142 ×8.48×1028 3 = 1.13×10−18 J = 7.06eV
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档