厦门市一中选修一第三单元《圆锥曲线的方程》测试卷(有答案解析)

合集下载

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试(答案解析)(1)

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试(答案解析)(1)

一、填空题1.直线l :240x y +-=与椭圆C :22416+=x y 交于A ,B 两点,则弦长AB =___________.2.已知动圆M 过定点()30A -,,并且内切于定圆()22:364B x y -+=,则动圆圆心M 的轨迹方程._______3.若椭圆C :22184x y +=的右焦点为F ,且与直线l :320x y -+=交于P ,Q 两点,则PQF △的周长为_______________.4.已知圆的方程为224x y +=,若抛物线过点()1,0A -,()1,0B ,且以圆的切线为准线,则抛物线的焦点轨迹方程是________.5.若椭圆22221(0)x y a b a b+=>>与双曲线()2211221110,0x y a b a b -=>>有相同的焦点12,F F ,点P 是两条曲线的一个交点,122F PF π∠=,椭圆的离心率为1e ,双曲线的离心率为2e ,122e e ,则2212e e +=__________.6.在平面直角坐标系xOy 中,已知双曲线2222:1(,0)x y C a b a b -=>的右焦点为F ,定点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭和动点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭满足:2POF QOF ∠=∠,且POF 是底边长为43的等腰三角形,则双曲线C 的标准方程为__________.7.如图所示,抛物线形拱桥的跨度是20米,拱高是4米,在建桥时,每隔4米需要用一支柱支撑,则其中最长的支柱的长度为____________米.8.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.9.设1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅=,O 为坐标原点,且123PF PF =,则该双曲线的离心率为__________.10.已知O 为坐标原点,点(1,2)P 在抛物线C :24y x =上,过点P 作两直线分别交抛物线C 于点A ,B ,若0PA PB k k +=,则AB OP k k ⋅的值为______.11.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.12.已知双曲线22221(0,0)x y a b a b-=>>与方向向量为(6,6)k =的直线交于A ,B 两点,线段AB 的中点为(4,1),则该双曲线的渐近线方程是_______.13.在平面直角坐标系xOy 中,已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与椭圆C 交于A ,B 两点.若223AF F B =,1AB BF =,则椭圆C 的标准方程为______.二、解答题14.已知椭圆()222210x y a b a b+=>>中,短轴的一个端点与两个焦点的连线互相垂直,且焦距为22.(1)求椭圆的标准方程.(2)如图,已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆相交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程. 15.已知椭圆的左焦点为()3,0F ,右顶点为()2,0D ,设点A 的坐标是11,2⎛⎫⎪⎝⎭. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程. 16.(1)已知双曲线的渐近线方程为230x y ±=,且双曲线经过点)6,2P .求双曲线方程.(2)若直线2x y -=与抛物线24y x =交于A ,B 两点,求线段AB 的中点坐标;17.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的四个顶点围成的四边形的面积为4323e = (1)求椭圆C 的方程;(2)是否存在斜率为1-的直线l 与椭圆C 相交于两点M ,N 使得11FM F N =(1F 为椭圆的左焦点)?若存在,求出直线l 的方程;若不存在,说明理由.18.已知椭圆1C 的中心在坐标原点,焦点在x 轴上,左焦点为(),0F c -,右顶点为(),0A a ,短轴长为2b ,点E 的坐标为()0,c ,EFA △的面积为22b .(1)求椭圆1C 的离心率;(2)若椭圆过(2,6),求椭圆的方程.19.已知椭圆E :()222210x y a b a b +=>>的离心率为63,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标.20.已知点Q 是圆M :()22116x y ++=上一动点(M 为圆心),点N 的坐标为()1,0,线段QN 的垂直平分线交线段QM 于点C ,动点C 的轨迹为曲线E .(1)求曲线E 的轨迹方程;(2)求直线1y x =-与曲线E 的相交弦长;(3)曲线E 的右顶点为B ,直线l :y kx m =+与椭圆E 相交于点S ,T ,则直线BS ,BT 的斜率分别为1k ,2k 且123k k +=,BD ST ⊥,D 为垂足,问是否存在某个定点A ,使得以AB 为直径的圆经过点D ?若存在,请求出A 的坐标;若不存在,请说明理由?21.如图,椭圆E :22221(0)x y a b a b +=>>的左、右顶点分别为,A B ,离心率5e =,长轴与短轴的长度之和为10.(1)求椭圆E 的标准方程;(2)在椭圆E 上任取点P (与,A B 两点不重合),直线PA 交y 轴于点C ,直线PB 交y 轴于点D ,证明:OC OD ⋅为定值.22.已知椭圆()222210x y a b a b +=>>2,短轴长为22(1)求椭圆的标准方程.(2)已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程.23.已知抛物线2:2(0)C y px p =>的焦点(1,0),F O 为坐标原点,,A B 是抛物线C 上异于O 的两点.(1)求抛物线C 的方程; (2)若直线,OA OB 的斜率之积为12-,求证:直线AB 过定点,并求出定点坐标. 24.已知命题p :()()22210t a t a a t --+-<∈R ,命题q :方程()22113x y t t t+=∈+-R 表示焦点在x 轴上的椭圆. (1)若10,2t ⎛⎫∈ ⎪⎝⎭时,命题p 为真命题,求实数a 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.25.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,153F B =,124F F =.(1)试建立适当的坐标系,求截口BAC 所在的椭圆的方程;(2)如图,若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,若1260F PF ∠=︒求12F PF △的面积.26.求符合下列条件的双曲线的标准方程:(1)焦点在x 轴上,中心为坐标原点焦距为6,实轴长为4;(2)焦点在x 轴上,中心为坐标原点,渐近线方程为y x =±,且过点(5,1)--.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】将直线与椭圆方程联立根据韦达定理确定根与系数关系再利用弦长公式求得弦长【详解】由直线:与椭圆:交于两点设得弦长故答案为:【点睛】解决直线与椭圆的综合问题时要注意:(1)注意观察应用题设中的每解析:【分析】将直线与椭圆方程联立,根据韦达定理确定根与系数关系,再利用弦长公式AB =求得弦长.【详解】由直线l :240x y +-=与椭圆C :22416+=x y 交于A ,B 两点 设11(,)A x y ,22(,)B x y22240416x y x y +-=⎧⎨+=⎩得240x x -= 12124,0x x x x +=⋅=弦长AB ===.故答案为:【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.2.【分析】由圆的标准方程有圆心为半径为8根据圆内切于定圆且过定点即有即知轨迹为椭圆写出轨迹方程即可【详解】由圆方程知:圆的圆心为半径为8∵圆过定点且内切于圆若设圆的圆心为∴由题意知:而故可知在以为焦点解析:221167x y += 【分析】由圆的标准方程有圆心为(3,0)B ,半径为8,根据圆M 内切于定圆B 且过定点()30A -,,即有||||8AM BM +=,||6AB =即知M 轨迹为椭圆,写出轨迹方程即可.【详解】由圆方程知:圆B 的圆心为(3,0)B ,半径为8,∵圆M 过定点()30A -,且内切于圆B ,若设圆M 的圆心为(,)M x y ,∴由题意知:||||8AM BM +=,而||6AB =,故可知M 在以,A B 为焦点的椭圆上,∴2224,c 3,b 7a a c ===-=,即圆心M 的轨迹方程:221167x y +=.【点睛】关键点点睛:根据动圆过定点且与另一圆内切,即两圆圆心的距离加上动圆到定点的距离为定值,又两圆心距离为定值,即可知动圆圆心轨迹.3.【分析】求出左焦点坐标利用直线经过椭圆的左焦点结合椭圆的定义求三角形的周长即可【详解】由题得椭圆的左焦点所以直线经过左焦点的周长故答案为:【点睛】方法点睛:解答圆锥曲线的问题时如果遇到了焦半径要联想 解析:82【分析】求出左焦点坐标,利用直线经过椭圆的左焦点,结合椭圆的定义求三角形的周长即可. 【详解】由题得椭圆C 的左焦点(2,0)F '-, 所以直线:320l x -+=经过左焦点F ',PQF ∴的周长||||||PQ PF QF ++||||||||PF PF QF QF ''=+++482a ==,故答案为:2 【点睛】方法点睛:解答圆锥曲线的问题时,如果遇到了焦半径,要联想到圆锥曲线的定义,利用定义优化解题.4.【分析】根据题意可知:焦点到和的距离之和等于和分别到准线的距离和;而距离之和为和的中点到准线的距离的二倍即所以焦点的轨迹方程是以和为焦点的椭圆由此能求出该抛物线的焦点的轨迹方程【详解】解:设抛物线焦解析:22143x y +=(0)y ≠ 【分析】根据题意可知:焦点到A 和B 的距离之和等于A 和B 分别到准线的距离和;而距离之和为A 和B 的中点O 到准线的距离的二倍,即24r =,所以焦点的轨迹方程C 是以A 和B 为焦点的椭圆,由此能求出该抛物线的焦点F 的轨迹方程. 【详解】解:设抛物线焦点为F ,过A ,B ,O 作准线的垂线1AA ,1BB ,1OO ,则|有11124AA BB OO +==; 由抛物线定义得11AA BB FA FB +=+,4FA FB ∴+=,故点F 的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点),∴ 抛物线的焦点轨迹方程22143x y +=(0)y ≠.故答案为:22143x y +=(0)y ≠.【点睛】关键点点睛:抛物线方程中,抛物线上的点到焦点F 的距离等于到准线的距离,牢记它对解题非常有益.5.【分析】设PF1=sPF2=t 由椭圆的定义可得s+t =2a 由双曲线的定义可得s ﹣t =2a1利用勾股定理和离心率公式得到化简计算即可得出结论【详解】不妨设P 在第一象限再设PF1=sPF2=t 由椭圆的定 解析:8【分析】设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a ,由双曲线的定义可得s ﹣t =2 a 1,利用勾股定理和离心率公式得到2212224e e =+,化简计算即可得出结论. 【详解】不妨设P 在第一象限,再设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a , 由双曲线的定义可得s ﹣t =2a 1, 解得s =a +a 1,t =a ﹣a 1, 由∠F 1PF 22π=,在三角形F 1PF 2中,利用勾股定理可得22222221114()()22c s t a a a a a a =+=++-=+. ∴2212224e e =+, 化简221222221212121=e e e e e e ++=,又由e 1e 2=2,所以22221212=28e e e e +=. 故答案为:8. 【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.在解题的过程中要合理的利用平面几何的思想,适当利用勾股定理,建立离心力的关系式,在化简的过程中根据题目的条件和结论合理构造和变形,这样解题会轻松一点.6.【分析】根据题意可以判断点在渐近线点在渐近线根据渐近线关于坐标轴对称可得由是底边长为的等腰三角形可得在中由正弦定理可得:结合即可求出和的值进而求得双曲线的标准方程【详解】由题意知:双曲线的渐近线方程解析:221412x y -=【分析】根据题意可以判断点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭在渐近线2:bl y x a =-,点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭在渐近线1:bl y x a =,根据渐近线关于坐标轴对称可得3QOF π∠=,b a=POF是底边长为6OFP OPF π∠=∠=,PF =,在POF 中,由正弦定理可得:4c =,结合222c a b =+,即可求出a 和b 的值,进而求得双曲线C 的标准方程. 【详解】由题意知:双曲线的渐近线方程为:by x a=±, 所以点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭在渐近线2:bl y x a =-, 点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭在渐近线1:bl y x a =,设1:b l y x a =的倾斜角为α,则2:bl y x a=-的倾斜角为2α, 所以1l 平分∠POF ,且2ααπ+=,解得3πα=,即直线1l 的斜率是:tan 33b a π==23POF π∠=,因为POF 是底边长为3 所以6OFP OPF π∠=∠=,43PF =,在POF 中,由正弦定理可得:2sinsin 63OFPF ππ=,即43132c =,解得:4c =, 由22234ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩解得223a b =⎧⎪⎨=⎪⎩,所以双曲线C 的标准方程为221412x y -=,故答案为:221412x y -=【点睛】关键点点睛:解决本题的关键是能判断P 和Q 两点在双曲线的渐近线上,求出3QOF π∠=,3b a =,23POF π∠=,判断出43PF =,在POF 中可以求出4OF c ==,即可得出a 和b 的值.7.(或)【分析】以抛物线的顶点为坐标原点抛物线的对称轴所在直线为轴建立平面直角坐标系设所求抛物线的方程为由题意可得出点在该抛物线上可求得的值然后将代入抛物线的方程进而可求得结果【详解】以抛物线的顶点为解析:9625(或3.84) 【分析】以抛物线的顶点为坐标原点,抛物线的对称轴所在直线为y 轴建立平面直角坐标系,设所求抛物线的方程为22x py =-,由题意可得出点()10,4A --在该抛物线上,可求得p 的值,然后将2x =代入抛物线的方程,进而可求得结果. 【详解】以抛物线的顶点O 为坐标原点,抛物线的对称轴所在直线为y 轴建立平面直角坐标系,设抛物线的方程为22x py =-,由题意可知点()10,4A --在该抛物线上,所以,()10024p =-⨯-,解得252p =,所以,抛物线的方程为225x y =-, 当2x =时,2242525y =-=-,因此,最长的支柱的长度为49642525-=(米). 故答案为:9625(或3.84). 【点睛】利用解析法解决平面几何问题的步骤如下: (1)建立合适的坐标系;(2)将几何元素用代数形式加以表示; (3)将几何关系转化为数学运算;(4)将数学结果转化为实际结论.8.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题9.【分析】取的中点由可得由是的中位线得到由双曲线的定义求出和的值进而在中由勾股定理可得结论【详解】解:取的中点则∵∴∴∵是的中位线∴由双曲线的定义得∵∴中由勾股定理得∴∴故答案为:【点睛】本题考查求双 31【分析】取2PF 的中点A ,由()220OP OF F P +⋅=,可得2OA F P ⊥,由OA 是12PF F △的中位线,得到12PF PF ⊥,由双曲线的定义求出1PF 和2PF 的值,进而在12PF F △中,由勾股定理可得结论. 【详解】解:取2PF 的中点A ,则 ∵()220OP OF F P +⋅=, ∴220OA F P ⋅=, ∴2OA F P ⊥,∵OA 是12PF F △的中位线, ∴12PF PF ⊥,112OA PF =. 由双曲线的定义得122PF PF a -=,∵12PF =,∴2PF =,1PF =. 12PF F △中,由勾股定理得222124PF PF c +=,∴2224c +=, ∴1e =.1. 【点睛】本题考查求双曲线的离心率,考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,判断12PF F △是直角三角形,是解题的关键.10.-2【分析】可先设由斜率的定义表示出结合抛物线方程进行坐标代换全部代换成关于纵坐标的表达式通过即可求解【详解】设则同理∵∴得∴又∴故答案为-2【点睛】本题考查抛物线的几何性质设而不求方法的具体应用运解析:-2 【分析】可先设()11,A x y ,()22,B x y ,由斜率的定义表示出AB k ,PA k ,PB k ,结合抛物线方程进行坐标代换,全部代换成关于纵坐标的表达式,通过0PA PB k k +=即可求解 【详解】设()11,A x y ,()22,B x y ,则212122212112444AB y y y y k y y x x y y --===-+-.1121112241214PA y y k y x y --===-+-,同理242PBk y =+. ∵0PA PBk k +=,∴1244022y y +=++,得124y y +=-. ∴414AB k ==--. 又221OP k ==,∴122AB OP k k ⋅=-⨯=-.故答案为-2 【点睛】本题考查抛物线的几何性质,设而不求方法的具体应用,运算能力,属于中档题11.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a . 由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =, 则43c e a ==.故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.12.【分析】设代入到双曲线的方程中运用点差法可求得可得答案【详解】设则且因为线段的中点为所以由题意可得直线的斜率为1所以即故双曲线的渐近线方程为故答案为:【点睛】本题考查点差法的运用之得双曲线的渐近线方解析:12y x =±【分析】设()()1122,,,A x y B x y ,代入到双曲线的方程中,运用点差法可求得12b a =,可得答案. 【详解】设()()1122,,,A x y B x y ,则2211221x y a b -=且2222221x y a b-=,因为线段AB 的中点为(4,1),所以()()2221212221214b x x y y b x x a y y a+-==-+, 由题意可得直线AB 的斜率为1,所以2241b a=,即12b a =,故双曲线的渐近线方程为12y x =±. 故答案为:12y x =±. 【点睛】本题考查点差法的运用之得双曲线的渐近线方程,属于中档题.13.【分析】首先利用椭圆的定义求出abc 的值进一步求出椭圆的方程【详解】解:在平面直角坐标系xOy 中已知椭圆C 的焦点为F1(﹣20)F2(20)过F2的直线与椭圆C 交于AB 两点若AF2=3F2BAB =B解析:221106x y +=【分析】首先利用椭圆的定义求出a 、b 、c 的值,进一步求出椭圆的方程. 【详解】解:在平面直角坐标系xOy 中,已知椭圆C 的焦点为F 1(﹣2,0),F 2(2,0), 过F 2的直线与椭圆C 交于A ,B 两点.若AF 2=3F 2B ,AB =BF 1,设F 2B =x ,则AF 2=3x ,AB =BF 1=4x ,根据椭圆的定义,整理得AF 1=2x , 由于△AF 1B 为等腰三角形,所以121cos 4AF F ∠=,利用余弦定理222121212122cos 16F F F F F A A A AF A F F ==+-⋅⋅∠,整理得22116492234x x x x =+-⋅⋅⋅, 解得2168105x ==,故x =所以2a =5x =,解得:a ,由于c =2,所以b , 所以椭圆的方程为221106x y +=.故答案为:221106x y +=.【点睛】本题考查的知识要点:椭圆的定义和椭圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.二、解答题14.(1)22142x y +=;(2)220x y ++=或220x y .【分析】(1)由已知即可得b c ==2a =,写出椭圆方程即可.(2)由面积关系知M 为AB 的中点,法一:()2,0A -设()00,M x y 有()0022,2B x y +,由M 在圆上,B 在椭圆上,代入求00,x y ,进而得到直线方程;法二:设直线AB 的方程为()2y k x =+,联立抛物线方程求得B 的横坐标,即可得到M 的坐标,由M 在圆上求k 值,即可得直线方程. 【详解】(1)由短轴的一个端点与两个焦点的连线互相垂直且焦距为易得:b c ==2a =,即椭圆的方程为22142x y +=.(2)因为2AOB AOM S S =△△,所以2AB AM =,即M 为AB 的中点,方法一:根据椭圆的方程22142x y +=,有()2,0A -,设()00,M x y ,则()0022,2B x y +,∴22089x y +=①,()()2200222142x y ++=②,得200918160x x --=,解得023x =-,083x =(舍去),把023x =-代入①,得023y =±,有12AB k =±. 因此,直线AB 的方程为()122y x =±+,即220x y ++=或220x y . 方法二: 设直线AB 的方程为()2y k x =+,由()221422x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222128840k xk x k +++-=,∴()()22212420x k x k ⎡⎤+++-=⎣⎦,解得222412B k x k -=+, ∴()2224212B M x k x k+--==+,()22212M M ky k x k =+=+, 代入2289x y +=,得2222242812129k k k k ⎛⎫-⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭,化简得422820k k +-=,即()()2272410kk +-=,解得12k =±,所以,直线AB 的方程为()122y x =±+,即220x y ++=或220x y . 【点睛】 关键点点睛:(1)根据已知确定,,a b c 关系并求值,写出椭圆方程即可.(2)由直线与圆、椭圆的关系,以及三角形面积的数量关系确定M 为AB 的中点,通过设点或直线方程,结合点在曲线上求参数,即可得到直线方程.15.(1)2214x y +=;(2)22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)设椭圆的标准方程为()222210x y a b a b+=>>,根据题意可求得a 、c 的值,进而可求得b 的值,由此可得出椭圆的标准方程;(2)设点()00,P x y 、(),M x y ,利用重点坐标公式可得0021122x x y y =-⎧⎪⎨=-⎪⎩,代入220014x y +=化简可得点M 的轨迹方程. 【详解】(1)设椭圆的标准方程为()222210x y a b a b +=>>,c由题意可得20c a b ⎧==⎪⎪=⎨⎪>⎪⎩,解得21a b =⎧⎨=⎩,因此,椭圆的标准方程为2214x y +=;(2)设点()00,P x y 、(),M x y ,则220014x y +=,由中点坐标公式可得0012122x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得0021122x x y y =-⎧⎪⎨=-⎪⎩, 代入220014x y +=得()222112142x y -⎛⎫+-= ⎪⎝⎭,即22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 因此,线段PA 的中点M 的轨迹方程为22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程. 16.(1)2231143y x -=;(2)()4,2. 【分析】(1)由渐近线方程设双曲线方程为()22094x y λλ-=≠,代入点P 的坐标可得双曲线方程;(2)设()11,A x y ,()22,B x y ,直线方程代入双曲线方程,应用韦达定理和中点坐标公式可得. 【详解】(1)由双曲线的渐近线方程23y x =±,可设双曲线方程为()22094x y λλ-=≠.∵双曲线过点)P,∴6494λ-=,13λ=-,故所求双曲线方程为2231143y x -=.(2)由224x y y x-=⎧⎨=⎩得2840x x -+=,设()11,A x y ,()22,B x y ,则128x x +=,121244y y x x +=+-=, 故线段AB 的中点坐标为()4,2. 【点睛】方法点睛:本题考查求双曲线方程,考查弦中点坐标.已知双曲线的渐近线方程为0mx ny ±=,则双曲线方程可设为2222m x n y λ-=,代入其他条件求得λ即可得,这种方法不需要考虑双曲线的焦点所在轴.17.(1)22162x y +=;(2)不存在,理由见解析.【分析】(1)由离心率得2223c a =,由面积可得2ab =,结合222a b c =+即可求出,a b ,得出椭圆方程;(2)设出直线方程y x t =-+,联立直线与椭圆,利用判别式可得t -<<由11FM F N =可求得4t =-,即可判断. 【详解】 (1)由ce a ==2223c a =,又因为四个顶点围成的四边形的面积为2ab =, 由222a b c =+,得a =b =故椭圆C 的方程为:22162x y +=(2)不存在符合题意的直线.假设存在满足条件的直线l ,设直线l 的方程为y x t =-+,由22162x y y x t ⎧+=⎪⎨⎪=-+⎩,得223()60x x t +-+-=,即2246360x tx t -+-=,由()222(6)163612960t t t ∆=---=-+>,解得t -<<设11(,)M x y ,22(,)N x y ,则1232t x x +=,212364t x x -=,由于11||||F M F N =,设线段MN 的中点为E , 则1F E MN ⊥,故111F E MNk k =-=,又1(2,0)F -,1212,22x x y y E ++⎛⎫⎪⎝⎭,即3,44t t E ⎛⎫ ⎪⎝⎭, 所以141324F E t k t==+,解得4t =-.当4t =-时,不满足t -<, 所以不存在满足条件的直线l . 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.18.(1)12;(2)221129x y +=.【分析】(1)由题意,||AF a c =+,||EO c =,再由EFA △的面积可得22c ac b +=,结合222a b c =+即可求椭圆1C 的离心率;(2)椭圆1C 的中心在坐标原点,焦点在x 轴上,设方程为22221(0)x ya b a b+=>>,由椭圆的离心率、椭圆过定点及222a b c =+可求椭圆方程. 【详解】(1)椭圆1C 的离心率为ce a=, 依题意有:||AF a c =+,||EO c =,所以21()||||222EFAc a c b SAF EO +=⋅==,即22c ac b +=,又222a b c =+,所以2220c ac a +-=,即2210e e +-=,01e <<, 椭圆1C 的离心率12e =. (2)22214c e a ==,222114b e a =-=,2234b a =椭圆1C 的中心在坐标原点,焦点在x 轴上,所以方程为22221(0)x y a b a b+=>>,2222134x y a a+=,2246134a a +=,212a =,29b =, 椭圆的方程为221129x y +=.【点睛】方法点睛:本题考查椭圆的几何性质,第一问的关键点是由EFA △的面积得出22c ac b +=,然后得到e 的齐次方程,考查椭圆方程的求法,考查运算求解能力.19.(1)2213x y +=;(2)证明见解析;定点10,2⎛⎫- ⎪⎝⎭.【分析】(1)运用离心率公式和基本量a ,b ,c 的关系,以及点满足椭圆方程,解方程可得椭圆方程;(2)由已知可得直线l 的斜率存在,设直线l 的方程为()1y kx t t =+≠,与椭圆方程联立,整理得()()222136310kxktx t +++-=.由0AP AQ ⋅=,利用根与系数的关系求得t值,从而可证明直线l 过定点10,2⎛⎫- ⎪⎝⎭. 【详解】(1)解:椭圆E :()222210x y a b a b +=>>,且过点31,22⎛⎫ ⎪⎝⎭,可得c e a ==,222a c b -=,且2291144a b +=,解得a =1b =,c =则椭圆方程为2213x y +=.(2)证明:由0AP AQ ⋅=,可知AP AQ ⊥,从而直线l 与x 轴不垂直, 故可设直线l 的方程为()1y kx t t =+≠,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩,整理得()()222136310k x ktx t +++-=. 设()11,P x y ,()22,Q x y ,则122613kt x x k -+=+,()21223113t x x k-=+,()* 由()()222(6)413310kt k t∆=-+⨯->,得2231k t >-,由0AP AQ ⋅=,得()()1122,1,1AP AQ x y x y ⋅=-⋅-()()2212121(1)(1)0k x x k t x x t =++-++-=,将()*代入,得12t =-, 所以直线l 过定点10,2⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查椭圆方程的求法,直线与椭圆的综合,及定点问题,解题时要认真审题,注意函数与方程思想的合理运用. (1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.20.(1)22143x y +=;(2)247;(3)存在;()2,1A -.【分析】(1)因为点E 在线段QN 的垂直平分线上,所以EQ EN =,再由题意得42EM EQ EM EQ MQ MN +=+==>=,所以点E 的轨迹是以M ,N 为焦点的椭圆,从而可得其方程;(2)将直线方程与椭圆方程联立,消去x ,利用根与系数的关系,然后利用弦长公式可求得答案; (3))联立223412y kx m x y =+⎧⎨+=⎩,消去y ,再利用根与系数的关系,342834km x x k +=-+,234241234m x x k -=+ ,从而得()()()3434343412224324kx x m k x x m k k x x x x +-+-+==-++,解得2m k =-或21m k =--,经验证21m k =--,则直线()21y kx m k x =+=--,且过定点()2,1-,从而可得答案【详解】解:(1)因为点E 在线段QN 的垂直平分线上,所以EQ EN =又QM 是圆的半径,所以42EM EQ EM EQ MQ MN +=+==>= 所以点E 的轨迹是椭圆 因为24a =,所以2a =,1c = 所以23b =所以动点E 的轨迹方程为22143x y +=(2)设直线1y x =-与曲线E 相交于1122(,),(,)x y x y 联立2213412y x x y =-⎧⎨+=⎩消去y 得27880x x --=,则121288,77x x x x +==-, 于是28478288∆=+⨯⨯=所以弦长12247l x x =-==(3)设3344(,),(,)S x y T x y , 联立223412y kx mx y =+⎧⎨+=⎩消去y 得()2223484120kxkmx m +++-=判别式()()2222226416483419248144k m m kkm ∆=--+=-+342834km x x k +=-+,234241234m x x k-=+ ()()()()()()344334343412222222kx m x kx m x y yk k x x x x +-++-+=+=---- ()()()34343434224324kx x m k x x mx x x x +-+-==-++化简得()()()343423264120k x x m k x x m -+-++--= 即()()()()()()2223412268412340k m m k km m k--+-+--++=也即()()2210m k m k +++= 解得2m k =-或21m k =--当2m k =-时,直线()2y kx m k x =+=-过点B ,不合题意所以21m k =--,此时直线()21y kx m k x =+=--,且过定点()2,1- 又因为D 在以AB 为直径的圆上所以A 在直线()21y kx m k x =+=--上 所以存在定点()2,1A -满足条件. 【点睛】关键点点睛:此题考查轨迹方程的求法,考查直线与椭圆的位置关系,解题的关键是设出直线方程,与椭圆方程联立方程组,消元后利用根与系数的关系,再结合已知条件列方程求解,考查计算能力,属于中档题21.(1)22194x y +=;(2)证明见解析.【分析】(1)由条件建立关于,,a b c 的方程,再写出椭圆方程;(2)解法1:设()00,P x y ,()10,C y ,()20,D y ,利用,,P C A 和,,P B D 三点共线,表示12,y y ,再利用点P 在椭圆上,化简OC OD ⋅为定值,解法2:由公式22PA PB b k k a⋅=-,写出直线PA 和PB ,并求直线与y 轴的交点,利用公式22PA PBb k k a⋅=-,化简OC OD ⋅为定值;解法3:如图所示,||||OC OD OC OD ⋅=⋅||||||||||||OC OD OA OB OA OB =⋅⋅⋅,利用公式22PA PB bk k a ⋅=-,化简OC OD ⋅为定值. 【详解】 (1)由题可知,2210,3c e a b a ==+=解得3,2a b == 故椭圆E 的标准方程为22:194x y E +=(2)解法1:设00(,)P x y ,直线PA 交y 轴于点1(0,)C y ,直线PB 交y 轴于点2(0,)D y.则2200194x y +=,即2020949y x =-.易知OC 与OD 同向,12OC OD y y ⋅=⋅ 因为(3,0),(3,0)A B -,所以得直线PA 的方程为00003y y x x y x --=---,令0x =,则01033y y x =+;直线PB 的方程为00003y y x x y x --=--,令0x =,则02033y y x =-所以212294,9y OC OD y y x ⋅=⋅==-为定值. 解法2:22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,2200194x y+=,即22949yx=-,∴2000200043399PA PBy y yk kx x x⋅=⋅==-+--,由(1)知,设直线,PA PB斜率分别为12,k k,则124.9k k⋅=-直线PA的方程为1(3)y k x=+,令0x=得113y k=;直线PB的方程为2(3)y k x=-令0x=得223y k=-.所以121294OC OD y y k k⋅==-=解法3:22194x y+=的左、右顶点分别为,A B,由解法2可知,4.9PA PBk k⋅=-如题图所示,||||OC OD OC OD⋅=⋅||||||||()33||||PA PBOC ODOA OB k kOA OB=⋅⋅⋅=⋅-⨯⨯()3394PA PB PA PBk k k k=⋅-⨯⨯=-⋅=.【点睛】结论点睛:本题第三问,当点P在椭圆上,并且,A B为长轴端点时,则22PA PBbk ka⋅=-. 22.(1)22142x y+=;(2)220x y±+=.【分析】(1)根据条件得到2cba==222a b c=+计算出22,a b的值,由此求解出椭圆的标准方程;(2)根据条件分析出M点位置,设出M点坐标并根据位置关系表示出B点坐标,结合圆的方程和椭圆方程求解出M点坐标,则直线AB的方程可求.【详解】(1)根据条件可知:22222caba b c⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,所以2242ab⎧=⎨=⎩,所以椭圆的标准方程为:22142x y+=;(2)因为AOB的面积是AOM的面积的2倍,所以M为AB的中点,设()00,M x y,又()2,0A-,所以()0022,2B x y+,因为M在圆上且B在椭圆上,。

厦门市选修一第三单元《圆锥曲线的方程》测试卷(含答案解析)

厦门市选修一第三单元《圆锥曲线的方程》测试卷(含答案解析)

一、填空题1.已知A 为椭圆22221(0)x y a b a b+=>>的左顶点,O 为坐标原点,若直线:2l x c =上存在点P 使得45APO ∠=︒,则椭圆离心率的最大值为__________.2.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为______.3.已知F 是双曲线22145x y -=的右焦点,若点P 是双曲线的左支上一点,(0,66)A ,则APF 周长的最小值为______.4.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为25.π记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为_______.5.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xoy ,根据图上尺寸, 溢流孔ABC 所在抛物线的方程为_________, 溢流孔与桥拱交点A 的横坐标...为 ___________ .6.已知1F ,2F 分别为椭圆()222210x y a b a b+=>>的左、右焦点,且离心率23e =,点P是椭圆上位于第二象限内的一点,若12PF F △是腰长为4的等腰三角形,则12PF F △的面积为_______.7.已知1F 为双曲线()222210,0x y a b a b -=>>的左焦点,P 是双曲线右支上一点,线段1PF 与以该双曲线实轴为直径的圆相交于A ,B 两点,且1F A AB BP ==,则该双曲线的离心率为______.8.设点P 在圆22:(6)5C x y +-=,点Q 在抛物线24x y =上,则||PQ 的最小值为_________.9.设M ,N 是抛物线2y x =上的两个不同点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则下列结论①42OM ON +;②O 到直线MN 的距离不大于2;③直线MN 过抛物线2y x =的焦点;④MN 为直径的圆的面积大于4π,不正确的有__10.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.11.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是______.12.已知双曲线()222210,0x y a b a b-=>>,则其渐近线与圆()22214x a y a -+=的位置关系是________. 13.在平面直角坐标系xOy 中,已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与椭圆C 交于A ,B 两点.若223AF F B =,1AB BF =,则椭圆C 的标准方程为______.二、解答题14.已知椭圆()2222:10x y E a b a b+=>>的焦距为()0,2P 关于直线y x =-的对称点在椭圆E 上.(1)求椭圆E 的方程.(2)如图,过点P 的直线l 与椭圆E 交于两个不同的点C ,D (点C 在点D 的上方),试求COD △面积的最大值.15.已知椭圆()2222:10x y G a b a b +=>>过点33,P ⎛⎫ ⎪ ⎪⎝⎭,且它的一个焦点在直线220x y ++=.(1)求椭圆G 的方程;(2)设直线y x m =+与椭圆G 相交于不同的两点,M N ,且()0,1B -,是否存在实数m ,使得BM BN =?若存在,求出实数m ;若不存在,请说明理由.16.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.17.已知椭圆()2222:10x y C a b a b +=>>过点231,3E ⎛⎫ ⎪ ⎪⎝⎭,1A ,2A 为椭圆的左右顶点,且直线1A E ,2A E 的斜率的乘积为23-.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线交直线l 于点P ,交直线2x =-于点Q ,求PQMN的最小值.18.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点()0,2-.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.19.已知椭圆M :22213x y a +=()0a >的一个焦点为()1,0F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆M 方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记△ABD 与△ABC 的面积分别为1S 和2S ,求12S S -的最大值. 20.已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),求|PA |+|PM |的最小值21.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.22.如图,椭圆E :22221(0)x y a b a b +=>>的左、右顶点分别为,A B ,离心率53e =,长轴与短轴的长度之和为10.(1)求椭圆E 的标准方程;(2)在椭圆E 上任取点P (与,A B 两点不重合),直线PA 交y 轴于点C ,直线PB 交y 轴于点D ,证明:OC OD ⋅为定值.23.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,椭圆上的点31,2A ⎛⎫⎪⎝⎭到两焦点的距离之和为4;(2)离心率为35,短轴长为8 24.如图,已知圆221:(22)48O x y ++=,点2(22,0)O ,P 是圆1O 上的一动点,N 是1PO 上一点,M 是平面内一点,满足2PM MO =,20NM PO ⋅=.(1)求点N 轨迹Γ的方程;(2)若,,(3,)(0)A B Q t t >均为轨迹Γ上的点,且以AB 为直径的圆过Q ,求证:直线AB 过定点.25.已知圆22:(2)1M x y +-=,动圆P 与圆M 外切,且与直线1y =-相切. (1)求动圆圆心P 的轨迹C 的方程.(2)若直线:2l y kx =+与曲线C 交于A ,B 两点,分别过A ,B 作曲线C 的切线,交于点Q .证明:Q 在一定直线上.26.已知椭圆的中心在坐标原点,右焦点F 的坐标为()3,0,直线l :220x y +-=交椭圆于A 、B 两点,线段AB 的中点为11,2M ⎛⎫⎪⎝⎭. (1)求椭圆的方程;(2)动点N 满足0NA NB ⋅=,求动点N 的轨迹方程.参考答案【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】设则利用直线倾斜角及两角差的正切可得在上有解该分式方程可转化为一元二次方程利用判别式可得的不等式从而可求离心率的最大值【详解】设右焦点为则故因为直线上存在点P 使得故在上有解即在上有解所以即故解析:14【分析】设()2,P c t ,则利用直线,AP OP 倾斜角及两角差的正切可得()2122att c c a =++在R 上有解,该分式方程可转化为一元二次方程,利用判别式可得,a c 的不等式,从而可求离心率的最大值. 【详解】设()2,P c t ,右焦点为F , 则tan 2t PAO c a ∠=+,tan 2tPOF c∠=, 故()()2222tan 22122t tat c c a APO t t c c a c c a -+∠==++++,因为直线:2l x c =上存在点P 使得45APO ∠=︒, 故()2122att c c a =++在R 上有解即()2220t at c c a -++=在R 上有解, 所以()2820a c c a -+≥即216810e e +-≤,故104e <≤..故答案为:14. 【点睛】方法点睛:离心率的取值范围的计算,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组,有时也可以根据题设条件构建关于,,a b c 的等量关系,可根据方程有解得到基本量的不等式.2.【分析】作出图形设过椭圆右焦点且垂直于长轴的弦为计算出再利用椭圆的定义可得出关于的等式进而可求得椭圆的离心率的值【详解】如下图所示设椭圆的左右焦点分别为设过椭圆右焦点且垂直于长轴的弦为则由勾股定理可【分析】作出图形,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,计算出1AF ,再利用椭圆的定义可得出关于a 、c 的等式,进而可求得椭圆的离心率的值. 【详解】如下图所示,设椭圆()222210x ya b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==, 由勾股定理可得2212125AF AF F F c =+=,由椭圆的定义可得122AF AF a +=52c c a +=,所以,该椭圆的离心率为()()25151515151c e a -====++-. 51-. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.3.34【分析】把到右焦点的距离转化为到左焦点的距离后易得最小值【详解】双曲线中即设是双曲线的左焦点则∵在双曲线的左支上∴即∴周长为显然当且仅当是线段与双曲线的交点时等号成立∴周长的最小值为故答案为:3解析:34 【分析】把P 到右焦点F 的距离转化为P 到左焦点的距离后易得最小值. 【详解】双曲线22145x y -=中,2,5a b ==,453c =+=,即(3,0)F ,设F '是双曲线的左焦点,(3,0)F '-,则15AF AF ==='∵P 在双曲线的左支上,∴24PF PF a '-==,即4PF PF '=+, ∴APF 周长为41519l PF PA AF PF PA PA PF ''=++=+++=++,显然15PA PF AF ''+≥==,当且仅当P 是线段AF '与双曲线的交点时等号成立.∴APF 周长l 的最小值为151934+=. 故答案为:34. 【点睛】方法点睛:本题考查双曲线上的点到定点和双曲线一个焦点距离和(或差)的最值问题.解题关键是掌握转化思想,根据双曲线的定义,如果涉及的是PF ,则把PF 转化为到另一焦点的距离,如果涉及的是1PF e,则转化为到相应准线的距离. 4.【分析】以矩形的中心为原点圆锥的轴为x 轴建立平面直角坐标系由题得从而可得到本题答案【详解】以矩形的中心为原点圆锥的轴为轴建立平面直角坐标系设双曲线的标准方程为圆锥的底面直径均为4则半径侧面积均为可得【分析】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,由题,得1ba=,从而可得到本题答案. 【详解】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,设双曲线的标准方程为22221x y a b-=,圆锥的底面直径均为4,则半径2r,侧面积均为.可得2OA AM ==,则1,tan 2OM AOM =∠=,即2ba=,所以e ===.5【点睛】关键点点睛: 根据圆锥曲线的定义将问题抽象为平面解析几何问题,关键利用渐近线求出2ba=,考查了计算求解能力以及转化能力. 5.【分析】根据题意设桥拱所在抛物线的方程为溢流孔ABC 所在方程为运用待定系数法求得可得右边第二个溢流孔所在方程联立抛物线方程可得所求【详解】设桥拱所在抛物线方程由图可知曲线经过代入方程解得:所以桥拱所 解析:()236145x y -=-14013【分析】根据题意,设桥拱所在抛物线的方程为22x py =-,溢流孔ABC 所在方程为()21:142(0)C x p y p ''-=->,运用待定系数法,求得p ,p ',可得右边第二个溢流孔所在方程,联立抛物线方程,可得所求. 【详解】设桥拱所在抛物线方程22x py =-,由图可知,曲线经过()20,5-,代入方程()22025p =-⨯-,解得:40p =,所以桥拱所在抛物线方程280x y =-; 四个溢流孔轮廓线相同,所以从右往左看, 设第一个抛物线()21:142C x p y '-=-,由图抛物线1C 经过点()20,5A -,则()()2201425p '-=-⨯-,解得185p '=, 所以()2136:145C x y -=-, 点A 即桥拱所在抛物线280x y =-与()2136:145C x y -=-的交点坐标,设(),,714A x y x <<由()228036145714x y x y x ⎧=-⎪⎪-=-⎨⎪<<⎪⎩,解得:14013x = 所以点A 的横坐标为14013. 故答案为:()236145x y -=-;14013【点睛】关键点点睛:此题考查根据实际意义求抛物线方程和交点坐标,关键在于合理建立模型正确求解,根据待定系数法,及平移抛物线后方程的形式即可.6.【分析】由题意可计算出由是腰长为4的等腰三角形且点在第二象限可得的值过作于点可得的值可得的面积【详解】解:由题意知则又∴由椭圆的定义得又是腰长为4的等腰三角形且点在第二象限∴过作于点则∴的面积为故答【分析】由题意可计算出2c =,3c =,由12PF F △是腰长为4的等腰三角形,且点P 在第二象限,可得2PF 、1PF 的值,过2F 作21F D PF ⊥于点D ,可得PD ,2DF 的值,可得12PF F △的面积.【详解】解:由题意知24c =,则2c =, 又23c e a ==,∴3a =,由椭圆的定义得1226PF PF a +==, 又12PF F △是腰长为4的等腰三角形,且点P 在第二象限,∴24PF =,12=PF , 过2F 作21F D PF ⊥于点D ,则1PD =,2DF = ∴12PF F △的面积为122⨯=【点睛】本题主要考查椭圆的定义及简单的几何性质、三角形面积的计算,考查学生的逻辑推理能力、数学计算能力,属于中档题.7.【分析】先取的中点证明是的中点再设得到最后建立方程并求双曲线的离心率即可【详解】设为双曲线的右焦点取的中点则如图因为所以是的中点则设则因为所以则又因为所以即该双曲线的离心率故答案为:【点睛】本题考查解析:975【分析】先取AB 的中点M ,证明M 是1PF 的中点,再设AB t =,得到65t a =,1185PF a =,285PF a =,最后建立方程2221212PF PF F F +=并求双曲线的离心率即可.【详解】设2F 为双曲线22221x y a b-=的右焦点,取AB 的中点M ,则1OM PF ⊥,如图.因为1F A AB BP ==,所以M 是1PF 的中点,则2//OM PF ,212OM PF =. 设AB t =,则13PF t =,232PF t a =-,2t AM =. 因为222OM AMOA =+,所以65t a =,则1185PF a =,285PF a =.又因为2221212PF PF F F +=,所以29725e =, 即该双曲线的离心率97e =.故答案为:975. 【点睛】本题考查圆的几何性质、求双曲线的离心率,考查数形结合的数学思想,是基础题.8.【分析】根据题意将问题转化为圆心到点的最小值与半径差的问题再根据两点间的距离公式求解即可【详解】解:设其中由题易知圆心圆的半径则当时所以故答案为:【点睛】本题考查两个动点间的距离最值问题解题的关键是 5【分析】根据题意,将问题转化为圆心C 到点Q 的最小值与半径差的问题,再根据两点间的距离公式求解即可. 【详解】解:设(,)Q x y ,其中24x y =. 由题易知圆心(0,6)C,圆的半径r =则|0)QC y ===≥∣.当4y =时,min ||QC =,所以min min ||||PQ QC r =-==【点睛】本题考查两个动点间的距离最值问题,解题的关键是将问题转化为圆心与点Q 的距离最小值与半径差的问题,考查化归转化思想,是中档题.9.①③④【分析】当直线的斜率不存在时根据斜率公式即可求得的方程当斜率存在时设直线的方程代入抛物线方程利用韦达定理及直线的斜率公式即可求得直线恒过定点然后判断出以为直径的圆的面积再根据抛物线几何性质求得解析:①③④ 【分析】当直线MN 的斜率不存在时,根据斜率公式,即可求得MN 的方程,当斜率存在时,设直线MN 的方程,代入抛物线方程,利用韦达定理及直线的斜率公式即可求得直线MN 恒过定点,然后判断出OM ON +=<||MN =,以MN 为直径的圆的面积2π,再根据抛物线几何性质求得焦点坐标求得答案. 【详解】当直线MN 的斜率不存在时,设200(,)M y y ,200(,)N y y -,因为斜率之积为12-,所以20112y -=-,即202y =, 所以MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx my x =+⎧⎨=⎩,可得20ky y m -+=.设1(M x ,1)y ,2(N x ,2)y ,则12m y y k =,2122m x x k=,所以12121·2OM ON y y k k k x x m ===-,即2m k =-. 所以直线方程为2(2)y kx k k x =-=-.则直线MN 过定点(2,0).则O 到直线MN 的距离不大于2.故②正确.当MN 的直线方程为2x =时,(2,2),(2,2)M N -,此时2642OM ON +=<,故①错误;当MN 的直线方程为2x =时,(2,2),(2,2)M N -,此时||22MN =,以MN 为直径的圆的面积2π,故④错误;抛物线2y x =的焦点是1(,0)4,故③错误; 故答案为:①③④. 【点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,直线的斜率公式的应用以及直线恒过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.10.6【解析】因为双曲线的右焦点为所以解析:6 【解析】因为双曲线22145x y -=的右焦点为(3,0) ,所以3,62p p ==11.【分析】由双曲线方程求得渐近线方程当过焦点的两条直线与两条渐近线平行时这两条直线与双曲线右支分别只有一个交点利用数形结合可求出符合条件直线的斜率取值范围【详解】双曲线的渐近线方程当过焦点的直线与两条解析:33,⎡⎤-⎢⎥⎣⎦【分析】由双曲线方程求得渐近线方程33y x =±,当过焦点的两条直线与两条渐近线平行时,这两条直线与双曲线右支分别只有一个交点,利用数形结合,可求出符合条件直线的斜率取值范围. 【详解】双曲线221124x y -=的渐近线方程3y x =,当过焦点的直线与两条渐近线平行时, 直线与双曲线右支分别只有一个交点(因为双曲线正在与渐近线无限接近中),由图可知,斜率不在⎡⎢⎣⎦的所有直线与双曲线右支有两点交点(如图中直线2l ),斜率在⎡⎢⎣⎦的所有直线都与双曲线右支只有一个交点(如图中直线m ).所以此直线的斜率的取值范围.⎡⎢⎣⎦故答案为,.33⎡-⎢⎣⎦【点睛】本题主要考查双曲线的几何性质以及直线与双曲线的位置关系,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.12.相离【分析】由双曲线的离心率可得出然后计算出圆心到双曲线的渐近线的距离并与圆的半径作大小比较由此可得出结论【详解】双曲线的离心率为可得所以双曲线的渐近线方程为圆的圆心坐标为半径为圆心到直线的距离为因解析:相离 【分析】由双曲线的离心率可得出b a =,然后计算出圆心到双曲线的渐近线的距离,并与圆的半径作大小比较,由此可得出结论. 【详解】双曲线()222210,0x y a b a b -=>>的离心率为c e a ====b a =,所以,双曲线的渐近线方程为0x y ±=,圆()22214x a y a -+=的圆心坐标为(),0a ,半径为2ar =,圆心到直线0x y ±=的距离为122d r a ==>=, 因此,双曲线的渐近线与圆()22214x a y a -+=相离. 故答案为:相离. 【点睛】本题考查直线与圆的位置关系的判断,涉及双曲线的离心率以及渐近线方程的应用,求出b 与a 的等量关系是解答的关键,考查计算能力,属于中等题.13.【分析】首先利用椭圆的定义求出abc 的值进一步求出椭圆的方程【详解】解:在平面直角坐标系xOy 中已知椭圆C 的焦点为F1(﹣20)F2(20)过F2的直线与椭圆C 交于AB 两点若AF2=3F2BAB =B解析:221106x y +=【分析】首先利用椭圆的定义求出a 、b 、c 的值,进一步求出椭圆的方程. 【详解】解:在平面直角坐标系xOy 中,已知椭圆C 的焦点为F 1(﹣2,0),F 2(2,0), 过F 2的直线与椭圆C 交于A ,B 两点.若AF 2=3F 2B ,AB =BF 1,设F 2B =x ,则AF 2=3x ,AB =BF 1=4x ,根据椭圆的定义,整理得AF 1=2x , 由于△AF 1B 为等腰三角形,所以121cos 4AF F ∠=, 利用余弦定理222121212122cos 16F F F F F A A A AF A F F ==+-⋅⋅∠,整理得22116492234x x x x =+-⋅⋅⋅, 解得2168105x ==,故x =所以2a =5x =,解得:a ,由于c =2,所以b , 所以椭圆的方程为221106x y +=.故答案为:221106x y +=.【点睛】本题考查的知识要点:椭圆的定义和椭圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.二、解答题14.(1)2214x y +=;(2)1.【分析】(1)根据椭圆的焦距为c =()0,2P 关于直线y x =-的对称点在椭圆E 上,得到()2,0-在椭圆E 上,进而得到a 即可.(2)设过点()0,2P 的直线方程为2y mx =+,与椭圆方程联立,求得弦长CD 以及点O 到直线CD 的距离,代入面积公式求解. 【详解】(1)因为椭圆()2222:10x y E a b a b +=>>的焦距为2c ∴=c =()0,2P 关于直线y x =-的对称点在椭圆E 上,()2,0∴-在椭圆E 上,2a ∴=, 2221b a c ∴=-=,2214x y ∴+=. (2)设过点()0,2P 的直线方程为2y mx =+,联立方程组可得22214y mx x y =+⎧⎪⎨+=⎪⎩, 消y 可得()221416120mxmx +++=,2430m =->△,设(),C C C x y ,(),y D D D x ,21614C D m x x m ∴+=-+,21214C D x x m=+,CD ∴== ∴点O 到直线CD 的距离d =142CODS CD d ∴=⋅=△, 设214m t +=,则4t >,CODS ∴===△ 当8t =时,取得最大值,即为1. 【点睛】方法点睛:圆锥曲线中的三角形最值问题的求法:一般由直线与曲线联立求得弦长及相应点的直线的距离,得到含参数的△OMN 的面积的表达式,再应用基本不等式或函数法求最值.15.(1)2213x y +=;(2)不存在,理由见解析.【分析】(1)由直线方程求得焦点坐标,结合点的坐标可列出关于,a b 的方程组,解之可得; (2)直线方程与椭圆方程联立方程组,消元后,由判别式大于0得m 的范围,设交点坐标()()1122,,,M x y N x y ,应用韦达定理得1212,x x x x +,从而可得中点坐标,若存在,则利用等腰三角形性质,得垂直,从而由向量数量积为0求出m ,若m 满足判别式大于0,说明存在,不满足说明不存在. 【详解】(1)在20x y ++=中,令0y =得x c =-=所以224a b -=又过点22P ⎛ ⎝⎭所以22222214ab a b ⎧⎪⎪⎝⎭⎝⎭⎨+=⎪⎪-=⎩解得2231a b ⎧=⎨=⎩所以椭圆G 的方程为2213x y +=;(2)由2213x y y x m ⎧+=⎪⎨⎪++⎩得()2246310x mx m ++-=所以()2223648104m m m ∆=-->⇒< 设()()1122,,,M x y N x y则()1221232314m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩设,M N 的中点为(),p p P x y 则3,44p p p m mx y x m =-=+= 若BM BN =,则MN BP ⊥,则0MN BP ⋅=又()30,1,,144m m B BP ⎛⎫-=-+ ⎪⎝⎭所以()3,11,1044m m ⎛⎫-+⋅= ⎪⎝⎭解得2m = 所以与24m <矛盾所以不存在实数m ,使得BM BN =. 【点睛】方法点睛:本题考查求椭圆的标准方程,考查直线与椭圆相交中的存在性问题.解题方法是“设而不求”的思想方法,即设交点坐标为1122(,),(,)x y x y ,直线方程与椭圆方程联立方程组后消元应用韦达定理得1212,x x x x +,然后把这个结论代入题中其他条件去证明、去求参数.在在性问题一般都是假设存在,按照存在的性质求解,如果能求出相应参数值,说明存在,求不出说明不存在.16.(1)22143x y +=;(2)证明见解析;22127x y +=.【分析】(1)根据条件得出221914a b +=且12c a =,解出,a b 即可得出方程; (2)设出直线方程,联立直线与椭圆,由OA OB ⊥得0OA OB ⋅=,由此可得=. 【详解】(1)由椭圆经过点31,2P ⎛⎫⎪⎝⎭,离心率12e =得: 221914a b +=且12c a =. 解得2a =,1c =,b =所以椭圆C :22143x y +=.(2)当直线AB l 的斜率不存在时,设直线为x m =,则由OA OB ⊥可得(),A m m ±,代入椭圆得22143m m +=,解得2127m =,则与直线AB l相切且圆心为原点的圆的半径为m =, 即圆的方程为22127x y +=;当斜率存在时,设直线AB l 的方程为:y kx b =+,()11,A x y ,()22,B x y ,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b +++-=.所以122834kbx x k +=-+,()21224334b x x k-=+. 因为OA OB ⊥,所以12120OA OB x x y y ⋅=+=, 又因为11y kx b =+,22y kx b =+,故()()12121212x x y y x x kx b kx b +=+++()()22121210k x x kb x x b =++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r ===所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.17.(1)22132x y +=;(2【分析】(1)由题可得221413a b+=,233113a a ⋅=-+-,解得,ab ,即可得椭圆C 的方程;(2)由题可设直线l :1x my =+,代入椭圆方程,利用韦达定理,弦长公式计算出点P ,MN,计算得2PQMN =,令t =,采用换元法求解最小值. 【详解】 (1)依题意有,221413a b+=,233113a a ⋅=-+-, 解得23a =,22b =,椭圆的方程为22132x y +=;(2)由题意知直线l 的斜率不为0,设其方程为1x my =+, 设点()11,M x y ,()22,N x y ,联立方程()2222123440321x y m y my x my ⎧+=⎪⇒++-=⎨⎪=+⎩, 得到122423m y y m -+=+,122423y y m -=+ 由弦长公式MN =整理得22123m MN m +=+,又1222223P y y m y m +-==+,2323Px m =+,2P PQ x =-=212PQMN =,令t =,1t≥,上式24554t t t t +⎫==+≥⎪⎝⎭, 当254t =,即12m =±时,PQ MN【点睛】方法点睛:求解弦长问题通常应用弦长公式: 直线与圆锥曲线交于点()()1122,,,A x y B x y,则弦长1212AB x y =-=-(k 为直线的斜率). 18.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值. 【详解】 (1)由题意,a =2c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A Bx x k ⋅=-+, ∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122F F =则21112ABF S ===≤△.=,即0k =时,2ABFS.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围.19.(Ⅰ)22143x y +=;(Ⅱ)247;(Ⅲ)12||S S -【分析】(Ⅰ)根据椭圆的几何性质求出,a b 可得结果; (Ⅱ)联立直线与椭圆,根据弦长公式可求得结果;(Ⅲ)设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立直线l 与椭圆M 的方程,利用韦达定理求出12y y +,12||S S -=212||34t t +,变形后利用基本不等式可求得最大值. 【详解】(Ⅰ)因为椭圆的焦点为()1,0F -,所以1c =且23b =,所以222314a b c =+=+=,所以椭圆M 方程为22143x y +=.(Ⅱ)因为直线l 的倾斜角为45,所以斜率为1,直线l 的方程为1y x =+,联立221143y x x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得27880x x +-=,设11(,)C x y ,22(,)D x y , 则1287x x +=-,1287x x =-,所以||CD =247=. (Ⅲ)由(Ⅰ)知(2,0),(2,0)A B -,设直线l :1x ty =-(0)t ≠,11(,)C x y ,22(,)D x y ,联立221143x ty x y =-⎧⎪⎨+=⎪⎩,消去x 并整理得22(34)690t y ty +--=,则122634ty y t +=+,123934y y t =-+0<,所以12,y y 异号, 所以121211|||4||4|||22S S y y -=⨯-⨯⨯122||||||y y =-122||y y =+212||34t t =+ 1243||||t t =+≤==当且仅当||3t =时,等号成立.所以12||S S -.【点睛】关键点点睛:第(Ⅲ)问中将三角形面积用,C D 两点的纵坐标表示,并利用韦达定理和基本不等式解决是解题关键.20.51-【分析】根据抛物线标准方程有焦点(0,1)F ,准线方程为1y =-,根据抛物线定义||||||||1PA PM PA PF +=+-,结合三角形三边的性质即可求||||PA PM +最小值.【详解】抛物线标准形式为24x y =,则焦点(0,1)F ,准线方程为1y =-,延长PM 交准线于N ,连PF ,由抛物线定义知:||||||||1||||1PA PM PA PN PA PF +=+-=+-,而在△PFA 中,||||||PA PF AF +>,∴仅当F 、P 、A 共线时,||||||5PA PF AF +==为最小值, ∴此时||||51PA PM +=为最小值. 【点睛】关键点点睛:由抛物线的定义将问题转化为求||||||||1PA PM PA PF +=+-最小值,由三角形三边的性质知:三点共线时||||PA PF +有最小值. 21.(1)28y x =;(2)480x y +-=. 【分析】(1)由题意可设抛物线方程为:22y px =(0p >),再将点()2,4-代入抛物线的方程中得到p 的值,最后写出抛物线的方程即可;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,联立直线与抛物线的方程可得28160y my --=,由韦达定理可得128y y m +=,再由线段AB 中点的纵坐标为1-可得122y y +=-,进而求出m 的值,最后写出直线的方程即可.【详解】(1)由题意可设抛物线方程为:22y px =(0p >), ∵抛物线过点()2,4-,∴1644p p =⇒=, ∴28y x =;(2)设l 的方程为2x my =+,()11,A x y ,()22,B x y ,则由22881602y xy my x my ⎧=⇒--=⎨=+⎩,264640m ∆=+>, 所以128y y m +=, 由题意1212122y y y y +=-⇒+=-,121824y y m m +==-⇒=-, 故124804x y x y =-+⇒+-=, 即直线l 的方程为480x y +-=.【点睛】方法点睛:对于第二问,有两种方法:方法一:设点()11,A x y ,()22,B x y ,根据中点纵坐标即可利用点差法求得直线的斜率,再由点斜式写出直线的方程;方法二:设出直线的方程,联立直线与抛物线的方程,根据韦达定理和中点的纵坐标,即可求得直线的方程.22.(1)22194x y +=;(2)证明见解析.【分析】(1)由条件建立关于,,a b c 的方程,再写出椭圆方程;(2)解法1:设()00,P x y ,()10,C y ,()20,D y ,利用,,P C A 和,,P B D 三点共线,表示12,y y ,再利用点P 在椭圆上,化简OC OD ⋅为定值,解法2:由公式22PA PB b k k a⋅=-,写出直线PA 和PB ,并求直线与y 轴的交点,利用公式22PA PBb k k a⋅=-,化简OC OD ⋅为定值;解法3:如图所示,||||OC OD OC OD ⋅=⋅||||||||||||OC OD OA OB OA OB =⋅⋅⋅,利用公式22PA PB b k k a ⋅=-,化简OC OD ⋅为定值. 【详解】(1)由题可知2210,c e a b a ==+=解得3,2a b == 故椭圆E 的标准方程为22:194x y E +=(2)解法1:设00(,)P x y ,直线PA 交y 轴于点1(0,)C y ,直线PB 交y 轴于点2(0,)D y.则2200194x y +=,即2020949y x =-.易知OC 与OD 同向,12OC OD y y ⋅=⋅ 因为(3,0),(3,0)A B -,所以得直线PA 的方程为00003y y x x y x --=---,令0x =,则01033y y x =+;直线PB 的方程为00003y y x x y x --=--,令0x =,则02033y y x =-所以212294,9y OC OD y y x ⋅=⋅==-为定值. 解法2:22221(0)x y a b a b+=>>的左、右顶点分别为,A B ,2200194x y +=,即2020949y x =-,∴ 2000200043399PA PB y y y k k x x x ⋅=⋅==-+--, 由(1)知,设直线,PA PB 斜率分别为12,k k ,则124.9k k ⋅=-直线PA 的方程为1(3)y k x =+,令0x =得113y k =;直线PB 的方程为2(3)y k x =- 令0x =得223y k =-.所以121294OC OD y y k k ⋅==-=解法3:22194x y +=的左、右顶点分别为,A B ,由解法2可知,4.9PA PB k k ⋅=-如题图所示,||||OC OD OC OD ⋅=⋅||||||||()33||||PA PB OC OD OA OB k k OA OB =⋅⋅⋅=⋅-⨯⨯ ()3394PA PB PA PB k k k k =⋅-⨯⨯=-⋅=.【点睛】结论点睛:本题第三问,当点P 在椭圆上,并且,A B 为长轴端点时,则22PA PBb k k a⋅=-.23.(1)22143x y +=;(2)2212516x y +=或2212516y x +=.【分析】(1)由椭圆的定义求得2a =,再根据点在椭圆上可得23b =,从而可得答案; (2)根据离心率为35,短轴长为8,列方程组求得,a b 的值,注意讨论焦点的位置即可. 【详解】(1)因为椭圆上的点31,2A ⎛⎫⎪⎝⎭到两焦点的距离之和为4, 所以24,2a a ==, 因为椭圆焦点在x 轴上,。

人教版高中数学选修一第三单元《圆锥曲线的方程》测试(有答案解析)

人教版高中数学选修一第三单元《圆锥曲线的方程》测试(有答案解析)

一、填空题1.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,若以12F F 为直径的圆和曲线C 在第一象限交于点P ,且2POF 恰好为正三角形,则双曲线C 的离心率为______.2.直线l :240x y +-=与椭圆C :22416+=x y 交于A ,B 两点,则弦长AB =___________.3.在平面直角坐标系中,已知抛物线24y x =的准线与双曲线22221x y a b-=(0a >,0b >)的渐近线分别交于P ,Q 两点,若POQ △的内切圆半径为13,则双曲线的离心率为________.4.已知动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,则动圆圆心Q 的轨迹方程为__________.5.如图,过椭圆2222:1(0)x y E a b a b+=>>的左焦点1F 作直线l 交椭圆E 于A ,B 两点,O为坐标原点,连接BO 并延长交椭圆E 于C 点,若1CF AB ⊥,且113CF AF =,则该椭圆E 的离心率e 为____________.6.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为25.π记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为_______.7.已知O 为坐标原点,点(1,2)P 在抛物线C :24y x =上,过点P 作两直线分别交抛物线C 于点A ,B ,若0PA PB k k +=,则AB OP k k ⋅的值为______.8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.9.如图所示,已知A 、B 、C 是椭圆2222:1(0)x y E a b a b+=>>上的三点,BC 过椭圆的中心O ,且,2AC BC BC AC⊥=.则椭圆的离心率为_______.10.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF 、||AB 、2AF 成等差数列,则C 的离心率为___________.11.已知抛物线C :24y x =的焦点为F ,直线l :210x -=与C 交于P 、Q (P 在x 轴上方)两点,若PF FQ λ=,则实数λ的值为_______12.已知点()1,0A -是抛物线22y px =的准线与x 轴的交点,F 为抛物线的焦点,P 是抛物线上的动点,则PFPA最小值为_____.13.已知抛物线方程为24y x =-,直线l 的方程为240x y +-=,在抛物线上有一动点A ,点A 到y 轴的距离为m ,点A 到直线l 的距离为n ,则m n +的最小值为______.二、解答题14.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 15.已知A ,B 分别为椭圆2222:+=1(>>0)x y E a b a b的左右项点,G 为E 的上顶点,直线AG ,BG 的斜率之积为34-,且点3(1,)2P 在椭圆上. (1)求椭圆E 的方程;(2)过点(1,0)F 的直线l 交椭圆E 于C ,D 两点,交直线=4x 点Q .设直线,,PC PD PQ的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=k k k λ?若存在求λ的值;若不存在,说明理由.16.在①01PF x =+,②0022y x ==,③PF x ⊥轴时,2PF =这三个条件中任选一个,补充在下面的问题中,并回答.问题:已知抛物线2:3(0)C y px p =>的焦点为F ,点()00,P x y 在抛物线C 上,且______,(1)求抛物线C 的标准方程;(2)若直线:20l x y --=与抛物线C 交于A ,B 两点,求ABF 的面积.17.已知椭圆()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的方程;(2)O 是坐标原点,过椭圆的右焦点F 直线1l 交椭圆于P ,Q 两点,求OPQ △的最大值.18.在平面直角坐标系xOy 中,已知圆()22:21F x y -+=,动圆M 与直线:1l x =-相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C ,求曲线C 的方程;(2)已知()2,0A -,曲线C 上一点P 满足PA ,求PAF ∠的大小.19.已知椭圆()2222:10x y C a b a b +=>>过点1,3E ⎛⎫ ⎪ ⎪⎝⎭,1A ,2A 为椭圆的左右顶点,且直线1A E ,2A E 的斜率的乘积为23-.(1)求椭圆C 的方程;(2)过右焦点F 的直线l 与椭圆C 交于M ,N 两点,线段MN 的垂直平分线交直线l 于点P ,交直线2x =-于点Q ,求PQMN的最小值. 20.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且椭圆上的点到焦点的最长距离为12+.(1)求椭圆C 的方程;(2)过点(0,2)P 的直线l (不过原点O )与椭圆C 交于两点A 、B ,M 为线段AB 的中点. (i )证明:直线OM 与l 的斜率乘积为定值; (ii )求OAB 面积的最大值及此时l 的斜率.21.如图,已知圆221:(22)48O x y ++=,点2(22,0)O ,P 是圆1O 上的一动点,N 是1PO 上一点,M 是平面内一点,满足2PM MO =,20NM PO ⋅=.(1)求点N 轨迹Γ的方程;(2)若,,(3,)(0)A B Q t t >均为轨迹Γ上的点,且以AB 为直径的圆过Q ,求证:直线AB 过定点.22.已知P 是圆22:4O x y +=上一动点,P 点在x 轴上的射影是D ,点M 满足12DM DP =. (1)求动点M 的轨迹曲线C 的方程;(2)若点)N t 在曲线C 上,求12F NF △的面积.23.已知椭圆22:1126y x Γ+=,F 是Γ的下焦点,过点()0,6R 的直线l 交Γ于M 、N 两点,(1)求F 的坐标和椭圆Γ的焦距;(2)求MNF 面积的最大值,并求此时直线l 的方程;(3)在y 轴上是否存在定点S ,使得RSM RSN π∠+∠=恒成立?若存在,求出定点S 的坐标;若不存在,请说明理由.24.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合.过F 且与x 轴重直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为6,求1C 与2C 的标准方程.25.已知椭圆C :()222210x y a b a b+=>>的左焦点为()1,0F -,且经过点(.(1)求椭圆C 的标准方程;(2)过点F 的直线l 与椭圆C 交于A ,B 两点,若154AB =,求直线l 的方程.26.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且经过点1)2.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于M N 、两点,B 为椭圆C 的上顶点,那么椭圆C 的右焦点F 是否可以成为BMN △的垂心..?若可以,求出直线l 的方程;若不可以,请说明理由.(注:垂心是三角形三条高线的交点)【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】根据题意得是直角三角形进而得再结合双曲线的定义得进而可求得离心率【详解】解:如图为正三角形则因为为圆上的一点且为圆的直径所以因为所以在中又因为为双曲线右支上的一点所以所以则故答案为:【点睛】解析:31+【分析】根据题意得12PF F △是直角三角形,进而得2PF c =,13PF c =,再结合双曲线的定义得32c c a -=,进而可求得离心率. 【详解】解:如图,2POF 为正三角形,则260POF ∠=︒, 因为P 为圆O 上的一点,且12F F 为圆O 的直径, 所以1290F PF ∠=︒,1230PF F ∠=︒,因为122F F c =,所以在12Rt PF F △中,2PF c =,13PF c =, 又因为P 为双曲线右支上的一点,所以122PF PF a -=,所以32c c a -=, 则31==+ce a. 故答案为:31+【点睛】本题解题的关键在于根据三角形的边角关系得2PF c =,13PF c =,进而结合双曲线的定义求解,是双曲线焦点三角形中的常考题型,考查数形结合思想与运算求解能力,是中档题.2.【分析】将直线与椭圆方程联立根据韦达定理确定根与系数关系再利用弦长公式求得弦长【详解】由直线:与椭圆:交于两点设得弦长故答案为:【点睛】解决直线与椭圆的综合问题时要注意:(1)注意观察应用题设中的每 解析:5【分析】将直线与椭圆方程联立,根据韦达定理确定根与系数关系,再利用弦长公式AB =求得弦长.【详解】由直线l :240x y +-=与椭圆C :22416+=x y 交于A ,B 两点 设11(,)A x y ,22(,)B x y22240416x y x y +-=⎧⎨+=⎩得240x x -= 12124,0x x x x +=⋅=弦长AB ===.故答案为:【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.【分析】先求出的面积再利用等积法可求的关系从而可求离心率【详解】不妨设在轴的上方在轴的下方抛物线的准线方程为:双曲线的渐近线方程为:故故而故所以故故答案为:【点睛】关键点点睛:圆锥曲线的离心率的计算解析:3【分析】先求出POQ △的面积,再利用等积法可求,,a b c 的关系,从而可求离心率. 【详解】不妨设P 在x 轴的上方,Q 在x 轴的下方.抛物线24y x =的准线方程为:1x =-,双曲线的渐近线方程为:b y x a=±. 故1,b P a ⎛⎫- ⎪⎝⎭,1,b Q a ⎛⎫-- ⎪⎝⎭,故1212POQb b S a a =⨯⨯=△.而c OP OQ a ===,故122123b c b a a a ⎛⎫⨯+⨯= ⎪⎝⎭,所以2c b =,故3c e a ===.故答案为:3. 【点睛】关键点点睛:圆锥曲线的离心率的计算,关键是利用已知条件构建关键,,a b c 的等量关系式,遇到三角形的内切圆半径的计算问题时,一般利用等积法来沟通半径与三角形的边的关系.4.【分析】根据题意和双曲线的定义得到动圆圆心Q 的轨迹是以为焦点的双曲线的上支求得的值即可求得轨迹方程【详解】设动圆Q 的半径为因为动圆Q 与圆外切与圆内切可得所以由双曲线的定义可得动圆圆心Q 的轨迹是以为焦解析:221(0)97y x y -=>【分析】根据题意和双曲线的定义,得到动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支,求得,,a b c 的值,即可求得轨迹方程. 【详解】设动圆Q 的半径为R , 因为动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,可得123,3QC R QC R =+=-,所以121268QC QC C C -=<=, 由双曲线的定义,可得动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支, 其中26,28a c ==,解得3,4a c ==, 又由2221697b c a =-=-=,所以动圆圆心Q 的轨迹方程为221(0)97y x y -=>.故答案为:221(0)97y x y -=>.【点睛】求曲线的轨迹方程的常用方法:直接法:直接利用条件建立,x y 之间的关系式或0(),F x y =,直接化简求解; 待定系数法:已知所求曲线的类型,先根据条件设出所求曲线的方程,再由条件确定其待定稀释;定义法:先根据条件得出动点的轨迹是某种曲线,再由曲线的定义直接写出动点的轨迹方法;代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,将00,x y 代入已知曲线求解.5.【分析】设椭圆的右焦点为连根据点的对称性和推出四边形为矩形所以设利用椭圆定义得到和根据勾股定理可得从而可得离心率【详解】设椭圆的右焦点为连如图:因为关于原点对称关于原点对称所以四边形为平行四边形又所解析:22【分析】设椭圆的右焦点为2F ,连2BF ,2CF ,2AF ,根据点的对称性和1CF AB ⊥推出四边形12BF CF 为矩形,所以2AB BF ⊥,设1||AF m =,利用椭圆定义得到2||AF 和1||BF ,根据勾股定理可得2a c =,从而可得离心率.【详解】设椭圆的右焦点为2F ,连2BF ,2CF ,2AF ,如图:因为,B C 关于原点对称,12,F F 关于原点对称,所以四边形12BF CF 为平行四边形, 又1CF AB ⊥,所以四边形12BF CF 为矩形,所以2AB BF ⊥,设1||AF m =,因为113CF AF =,所以1||3CF m =,所以2||3BF m =,22||AF a m =-,1||23BF a m =-,在直角三角形2ABF 中,由22222||||||AB BF AF +=得222(23)(3)(2)a m m m a m -++=-,化简得3a m =,所以1||BF a =, 2||BF a =,在直角三角形12BF F 中,由2221212||||||BF BF F F +=得2224a a c +=,即2a c =,所以椭圆E 的离心率e 2c a ==. 故答案为:22【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中利用椭圆定义以及勾股定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.6.【分析】以矩形的中心为原点圆锥的轴为x 轴建立平面直角坐标系由题得从而可得到本题答案【详解】以矩形的中心为原点圆锥的轴为轴建立平面直角坐标系设双曲线的标准方程为圆锥的底面直径均为4则半径侧面积均为可得解析:5【分析】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,由题,得1ba=,从而可得到本题答案. 【详解】以矩形ABCD 的中心为原点,圆锥的轴为x 轴建立平面直角坐标系,设双曲线的标准方程为22221x y a b-=,圆锥的底面直径均为4,则半径2r,侧面积均为25.π可得,52OA AM ==,则1,tan 2OM AOM =∠=,即2ba=, 所以2222215a b b e a a+==+=.5【点睛】关键点点睛: 根据圆锥曲线的定义将问题抽象为平面解析几何问题,关键利用渐近线求出2ba=,考查了计算求解能力以及转化能力. 7.-2【分析】可先设由斜率的定义表示出结合抛物线方程进行坐标代换全部代换成关于纵坐标的表达式通过即可求解【详解】设则同理∵∴得∴又∴故答案为-2【点睛】本题考查抛物线的几何性质设而不求方法的具体应用运解析:-2 【分析】可先设()11,A x y ,()22,B x y ,由斜率的定义表示出AB k ,PA k ,PB k ,结合抛物线方程进行坐标代换,全部代换成关于纵坐标的表达式,通过0PA PB k k +=即可求解 【详解】设()11,A x y ,()22,B x y ,则212122212112444AB y y y y k y y x x y y --===-+-.1121112241214PA y y k y x y --===-+-,同理242PBk y =+. ∵0PA PBk k +=,∴1244022y y +=++,得124y y +=-. ∴414AB k ==--. 又221OP k ==,∴122AB OP k k ⋅=-⨯=-.故答案为-2 【点睛】本题考查抛物线的几何性质,设而不求方法的具体应用,运算能力,属于中档题8.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查解析:3【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m aQF a m a QF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩, 此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a+-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.9.【分析】由BC 关于原点的对称性所以|BC|=2|AC|可得|OC|=|AC|由此可得C 点的横坐标由AC ⊥BC 可求出C 点的纵坐标再由点C 在椭圆上可求得abc 的一个关系式结合椭圆中a2=b2+c2即可求【分析】由B 、C 关于原点的对称性,所以|BC |=2|AC |可得|OC |=|AC |,由此可得C 点的横坐标,由AC ⊥BC 可求出C 点的纵坐标,再由点C 在椭圆上可求得a 、b 、c 的一个关系式,结合椭圆中a 2=b 2+c 2,即可求出离心率. 【详解】由|BC |=2|AC |可得|OC |=|AC |,所以C 点的横坐标为2a ,设C (2a,y ), 由AC ⊥BC ,则224a y =,又因为点C 在椭圆上,代入椭圆方程得:223a b =,所以22222213c b e a a ==-=,所以e =. 【点睛】本题考查椭圆的离心率的求解,求得点C 坐标是关键,考查逻辑推理能力和运算能力.10.【分析】由已知设据勾股定理有;由椭圆定义知的周长为4a 由勾股定理可得选项【详解】由已知设所以根据勾股定理有解得;由椭圆定义知所以的周长为4a 所以有;在直角中由勾股定理∴离心率故答案为:【点睛】本题考解析:2【分析】由已知,设2BF x =,||AB x d =+,22AF x d =+,据勾股定理有3x d =;由椭圆定义知2ABF 的周长为4a ,由勾股定理,2224a c =,可得选项. 【详解】由已知,设2BF x =,||AB x d =+,22AF x d =+,所以根据勾股定理有()()222+2++x d x x d =,解得3x d =;由椭圆定义知1212++2AF AF BF BF a ==,所以2ABF 的周长为4a ,所以有3a d =,21BF a BF ==;在直角2BF F △中,由勾股定理,2224a c =,∴离心率2e =.故答案为:2. 【点睛】本题考查椭圆离心率,椭圆的定义,重在对问题的分析,抓住细节,同时考查计算能力,属于中档题.11.【分析】先求出再求出和最后建立方程求即可【详解】解:由题意联立方程组解得或因为P 在x 轴上方所以因为抛物线C 的方程为所以所以因为所以解得:故答案为:【点睛】本题考查直线与抛物线的位置关系抛物线的几何性解析:5+【分析】先求出(5P +、(526,Q -、(1,0)F,再求出(4PF =---和(4FQ =-,最后建立方程求λ即可.【详解】解:由题意联立方程组2410y x x ⎧=⎪⎨--=⎪⎩,解得5x y ⎧=+⎪⎨=⎪⎩5x y ⎧=-⎪⎨=⎪⎩因为P 在x轴上方,所以(5P +、(5Q -, 因为抛物线C 的方程为24y x =,所以(1,0)F ,所以(426,PF =---,(4FQ =-因为PFFQ λ=,所以(4(4λ---=-, 解得:5λ==+,故答案为:5+【点睛】本题考查直线与抛物线的位置关系、抛物线的几何性质、利用共线向量求参数,是中档题12.【分析】利用已知条件求出p 设出P 的坐标然后求解的表达式利用基本不等式即可得出结论【详解】解:由题意可知:设点P 到直线的距离为d 则所以当且仅当x 时的最小值为此时故答案为:【点睛】本题考查抛物线的简单性解析:2【分析】利用已知条件求出p ,设出P 的坐标,然后求解PFPA的表达式,利用基本不等式即可得出结论. 【详解】解:由题意可知:2p =,设点(),P x y ,P 到直线1x =-的距离为d ,则1d x +=,所以PFd PAPA ====≥, 当且仅当x 1x =时,PF PA的最小值为2,此时1x =,. 【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题.13.【分析】过点作直线的垂线垂足为过点作准线的垂线垂足为交轴于点根据抛物线的定义可知所以过点作直线的垂线垂足为当点在与抛物线的交点时最小从而可求出答案【详解】如图焦点为抛物线的准线方程为过点作直线的垂线1 【分析】过点A 作直线l 的垂线,垂足为H ,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,根据抛物线的定义可知,1AF AC m ==+,所以1m n AF AH +=+-,过点F 作直线l 的垂线,垂足为1H ,当点A 在1FH 与抛物线的交点时,AF AH +最小,从而可求出答案. 【详解】如图,焦点为()1,0F -,抛物线的准线方程为1x =, 过点A 作直线l 的垂线,垂足为H ,则AH n =,过点A 作准线的垂线,垂足为C ,交y 轴于点B ,则AB m =,1AC m =+, 根据抛物线的定义可知,1AF AC m ==+, 所以1m n AF AH +=+-,过点F作直线l的垂线,垂足为1H,则12465 5FH--==,当点A在1FH与抛物线的交点时,AF AH+最小,为165FH=,此时,m n+取得最小值6515-.故答案为:651-.【点睛】本题考查抛物线的性质,考查点到直线距离公式的应用,考查学生的计算求解能力,属于中档题.二、解答题14.(1)()22416x y-+=;(2)224x y+=.【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y,()00,P x y,由1F M MP→→=得0242x xy y=+⎧⎨=⎩,代入圆的方程即得解.【详解】(1)由已知得212a=,24b=,故224c a b=+=,所以()14,0F-、()24,0F,因为C是以2F为圆心且过原点的圆,故圆心为()4,0,半径为4,所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程.15.(1)22143x y +=;(2)存在实数2λ=.【分析】(1)由椭圆方程确定A ,B ,G 的坐标,再由已知条件有22191344AG BG a b k k +⎧⋅=-⎪⎪⎨=⎪⎪⎩即可求得2a ,2b ,写出椭圆E 的方程;(2)由题意有直线l 的方程为(1)y k x =-,联立椭圆方程、设11(,)C x y ,22(,)D x y ,()4,3Q k ,结合根与系数关系有12x x +,12x x ⋅,由斜率的两点公式可证1232k k k +=,即可确定λ的值; 【详解】解:(1)由题意,(),0A a -,(),0B a ,()0,G b ,22341914AG BG a b b b k k a a ⎧⋅=⋅=-⎪⎪-⎨+=⎪⎪⎩,解得24a =,23b =, 故椭圆E 的方程为:22143x y +=.(2)存在实数2λ=满足题意;由(1)知椭圆E 的方程:2234120x y +-=,直线l 的方程为(1)y k x =-,代入椭圆方程并整理,得2223484120()k x k x k +-+-=,设11(,)C x y ,22(,)D x y ,()4,3Q k 则有2122834k x x k +=+,212241234k x x k-⋅=+,()()121212121233331122221111y y k x k x k k x x x x ------+=+=+----22122212122282233342241282()12131234k x x kk k k k x x x x k k -+-+=-⋅=-⋅-⋅-++-+-+22222386822412834k k k k k k --=-⋅--++21k =-, 3332222141k k k -=⋅=--,即1232k k k +=, 故存在实数2λ=满足题意. 【点睛】关键点点睛:由直线斜率关系,椭圆过定点,应用待定系数法求2a ,2b ,写出椭圆E 的方程;根据直线与椭圆关系,联立方程由根与系数关系有12x x +,12x x ⋅,再由斜率的两点公式确定123,,k k k 的数量关系.16.(1)任选一个条件,抛物线方程都为24y x =;(2) 【分析】(1)选①:由抛物线的性质可得02pPF x =+,即可求出p ;选②:由题将点P 代入抛物线即可求出p ;选③:由题可得222p pPF p =+==; (2)联立直线与抛物线方程,利用弦长公式求出AB ,利用点到直线距离公式求出高,即可得出面积. 【详解】解:(1)若选①:由抛物线的性质可得02p PF x =+ 因为01PF x =+,所以0012px x +=+,解得2p =. 故抛物线C 的标准方程为24y x =. 若选②:因为0022y x ==所以002,1y x ==,因为点()00,P x y 在抛物线C 上,所以2002y px =,即24p =,解得2p =, 故抛物线C 的标准方程为24y x =. 若选③:因为PF x ⊥轴,所以22p pPF p =+=, 因为2PF =,所以2p =.故抛物线C 的标准方程为24y x =.(2)设()()1122,,,A x y B x y 由(1)可知(1,0)F .联立2204x y y x--=⎧⎨=⎩,整理得2480y y --=,则1212124,8,y y y y y y +==--===故12AB y y =-== 因为点F 到直线l的距离2d ==, 所以ABF的面积为1122AB d ⋅=⨯= 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.17.(1)22143x y +=;(2)32.【分析】(1)将点代入椭圆方程,并根据离心率得到,a c 关系,代入求椭圆方程;(2)首先设直线1:1l x my =+与椭圆方程联立,得到根与系数的关系,并表示OPQ △的面积1212S OF y y =⨯-,代入根与系数的关系,表示面积,最后利用换元求面积最大值. 【详解】 解:(1)由12c e a ==得2a c =,所以223b c = 由点31,2⎛⎫⎪⎝⎭在椭圆上得22914143c c+=解得1c=,b ==所求椭圆方程为22143x y +=.(2)()0,1F ,设直线1:1l x my =+, 代入方程化简得()2234690m y my ++-=, 由韦达定理得122634m y y m -+=+,122934y y m -=+, OPQ △的面积为12||||2OF y y ⋅-,所以求ABC 的最大值即求21y y -的最大值.()()()()222121212223644434m y y y y y y m+-=+-=+.令211m t +=≥,上式可表示成21441441(31)96t t t t=+++, 196y t t=++在[)1,+∞单调递增,所以当1t =时取得最大值9,此时32OPQS=. 【点睛】思路点睛:本题考查椭圆中三角形面积的最值问题,因为面积是用纵坐标表示,所以设直线x my t =+,表示直线过x 轴一点(),0t ,其中包含斜率不存在的直线,但不包含过定点,斜率为0的直线,这样联立方程后用根与系数的关系表示面积时,比较简单. 18.(1)28y x =;(2)π4PAF ∠=. 【分析】(1)方法一,利用直线与圆的位置关系,以及圆与圆的位置关系,转化为抛物线的定义求曲线方程;方法二,利用等量关系,直接建立关于(),x y 的方程;(2)方法一,利用条件求点P 的坐标,再求PA k ;方法二,利用抛物线的定义,转化PF 为点P 到准线的距离,利用几何关系求PAF ∠的大小. 【详解】解:(1)设(),M x y ,圆M 的半径为r . 由题意知,1MF r =+,M 到直线l 的距离为r . 方法一:点M 到点()2,0F 的距离等于M 到定直线2x =-的距离,根据抛物线的定义知,曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线. 故曲线C 的方程为28y x =. 方法二:因为1MF r ==+,1x r +=,1x >-,2x =+,化简得28y x =,故曲线C 的方程为28y x =.(2)方法一:设()00,P x y,由PA ,得()()22220000222x y x y ⎡⎤++=-+⎣⎦,又2008y x =,解得02x =,故()42,P ±,所以1PA k =±,从而π4PAF ∠=. 方法二:过点P 向直线2x =-作垂线,垂足为Q . 由抛物线定义知,PQ PF =,所以PA =,在APQ 中,因为π2PQA ∠=, 所以sin 2PQ QAP PA ∠==, 从而π4QAP ∠=,故π4PAF ∠=. 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.19.(1)22132x y +=;(2 【分析】(1)由题可得221413a b+=,233113a a ⋅=-+-,解得,ab ,即可得椭圆C 的方程; (2)由题可设直线l :1x my =+,代入椭圆方程,利用韦达定理,弦长公式计算出点P ,MN,计算得212PQMN=,令t =,采用换元法求解最小值. 【详解】 (1)依题意有,221413a b +=,233113a a ⋅=-+-, 解得23a =,22b =,椭圆的方程为22132x y +=;(2)由题意知直线l 的斜率不为0,设其方程为1x my =+, 设点()11,M x y ,()22,N x y ,联立方程()2222123440321x y m y my x my ⎧+=⎪⇒++-=⎨⎪=+⎩, 得到122423m y y m -+=+,122423y y m -=+ 由弦长公式MN =整理得22123m MN m +=+, 又1222223P y y m y m +-==+,2323P x m =+,2P PQ x =-=2PQMN =,令t =,1t≥,上式2455412123t t t t +⎫=⋅=+≥⎪⎝⎭, 当254t =,即12m =±时,PQMN 取得最小值3. 【点睛】方法点睛:求解弦长问题通常应用弦长公式: 直线与圆锥曲线交于点()()1122,,,A x y B x y,则弦长1212AB x y =-=-(k 为直线的斜率). 20.(1)2212x y +=;(2)(i )证明见解析;(ii )OAB,此时l的斜率为2±. 【分析】(1)根据离心率为22,且椭圆上的点到焦点的最长距离为12+,由1222a cca⎧+=+⎪⎨=⎪⎩求解.(2)(i)设直线l为:2y kx=+,与椭圆方程联立,利用韦达定理求得M的坐标,进而求得OMk验证即可.(ii)由(i)求得弦长AB和点O到直线l的距离,由三角形面积公式12OABS d AB=⨯⨯求解.【详解】(1)由题意得122a cca⎧+=+⎪⎨=⎪⎩,解得21ac⎧=⎪⎨=⎪⎩,∴22a=,2221b a c=-=,∴椭圆C的方程为2212xy+=.(2)(i)设直线l为:2y kx=+,1122(,),(,),(,)M MA x yB x y M x y,由题意得22212y kxxy=+⎧⎪⎨+=⎪⎩,∴22(12)860k x kx+++=,∴28(23)0k∆=->,即232k>由韦达定理得:22121286,1212kx x x xk k-+==++∴2412Mkxk=-+,22212M My kxk=+=+∴12MOMMykx k==-,,∴12OMk k⋅=-∴直线OM与l的斜率乘积为定值(ii)由(i)可知:12AB x=-==,又点O到直线l的距离d=∴1122OABS d AB=⨯⨯==t=,则0t>,∴24442OABSt tt==≤=++,当且仅当2t=时等号成立,此时2k=±,且满足0∆>,∴OAB面积的最大值是2,此时l的斜率为2±【点睛】方法点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.(1)221124x y+=(2)见解析【分析】(1)根据向量的知识证明2NP NO=,从而得出21NO NO+=,再由椭圆的定义证明N点的轨迹是焦点在x轴上的椭圆,从而得出方程;(2)求出点Q的坐标,当直线AB的斜率存在时,联立椭圆以及直线AB的方程,由韦达定理结合0AQ BQ⋅=得出,k b的关系,借助直线的知识得出定点;当直线AB的斜率不存在时,由0AQ BQ⋅=以及椭圆方程得出AB的直线方程,从而求出定点.【详解】(1)22,0PM MO NM PO=⋅=M∴为线段2PO的中点且2MN PO⊥2NP NO∴=112112PO PN NO NO NO OO=+=+=>N∴点的轨迹是焦点在x轴上的椭圆,且2224128a cb a c===-=-=即点N轨迹Γ的方程为221124x y+=(2)221,11243t t +=∴=,即(3,1)Q当直线AB 的斜率存在时,设()()1122,,,A x y B x y ,:AB y kx b =+221124y kx b x y =+⎧⎪⎨+=⎪⎩,即()2221363120k x kbx b +++-= 21212223126,1313b kbx x x x k k-=+=-++∴ ()()()()12123311AQ BQ x x y y ⋅=--+--()()221212(3)1210kb k x x k x x b b =--++++-+()()2222213126(3)21001313k b kb kb k b b k k+---=-++-+=++ 即2299210k kb b b ++--=,整理得(321)(31)0k b k b +++-=解得13b k =-或3122b k =-- 若13b k =-时,13y kx k =+-,即1(3)y k x -=-,过定点(3,1),与Q 点重合,不符合题意; 若3122b k =--时,3122y kx k =--,即1322y k x ⎛⎫+=- ⎪⎝⎭,过定点31,22⎛⎫- ⎪⎝⎭当直线AB 的斜率不存在时,设(,),(,)A x y B x y -22(3)1AQ BQ x y ⋅=-+-2210643x x x ⎛⎫=-+-- ⎪⎝⎭2(23)(3)03x x =--= 解得32x =或3x =(舍),即直线AB 的方程为32x =,过定点31,22⎛⎫- ⎪⎝⎭综上,直线AB 过定点31,22⎛⎫- ⎪⎝⎭. 【点睛】本题的第一问主要是借助椭圆的定义求出轨迹方程,第二问中关键是对2299210k kb b b ++--=进行因式分解,得出,k b 的关系. 22.(1)2214xy +=;(2)2【分析】(1)设(),M x y ,利用已知条件得到(),2P x y ,代入圆的方程整理即可得出结果;(2)由(1)得12F F =)N t 在曲线C 上,可得2t =,利用三角形的面积公式求解即可. 【详解】(1)设(),M x y ,则(),0D x , 由12DM DP =, 知(),2P x y ,因为点P 在圆224x y +=上, 所以2244x y +=,故动点M 的轨迹C 的方程为2214x y +=;(2)由(1)得曲线C 的方程为:2214x y +=,得122F F c ====又点)N t 在曲线C 上,得2214t t +=⇒=所以121211222F NF S F F t ==⨯=所以12F NF △ 【点睛】方法总结:求点的轨迹方程的方法:(1)定义法;(2)直接法;(3)代入法;(4)参数法.23.(1)(0,F ,焦距为2c =2)MNF直线l 的方程为6y =+;(3)存在定点()0,2S ,使得RSM RSN π∠+∠=恒成立. 【分析】(1)利用椭圆方程求出a ,b ,然后求解c ,即可得到结果.(2)设直线:6l y kx =+,与椭圆方程联立.利用判别式以及韦达定理,结合弦长公式点到直线的距离公式,然后求解三角形的面积,利用基本不等式求解最值即可推出直线方程.(3)由(2)得122122kx x k -+=+,122242x x k =+,推出直线系方程,然后求解定点坐标.验证当直线l 的斜率不存在时,直线l 也过定点(0,2)S ,即可.【详解】(1)椭圆22:1126y x Γ+=,可得a =b,所以c =(0,F,焦距为2c =;(2)由题意得直线l 的斜率存在,设直线:6l y kx =+,由2211266y x y kx ⎧+=⎪⎨⎪=+⎩得()22212240k x kx +++=, 所以()()2221449624840k k k ∆=-+=->,故240k ->, 设()11,M x y ,()22,N x y ,则122122kx x k -+=+,122242x x k =+,所以12MN x =-=====(或用MN = 点F 到直线l的距离d =所以162MNFS MN d =⋅==△,令0t =>,则))216666MNF tS t t t==++△,所以6MNF S ≤=△,当且仅当k =时取等号,所以MNFl 的方程为6y =+; (3)当直线l 的斜率存在时,由(2)得122122kx x k -+=+,122242x x k =+, 因为RSM RSN π∠+∠=,所以0MS NS k k +=,。

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程单元测试卷(含解析)

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程单元测试卷(含解析)

第3章圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .87.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F2向∠F1QF2的平分线作垂线F2P,垂足为P,求P点的轨迹方程.18.(12分)已知点P到F1(0,3),F2(0,-3)的距离之和为4,设点P的轨迹为C,直线y=kx+1与轨迹C交于A,B两点.(1)求轨迹C的方程;(2)若|AB|=825,求k.19.(12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过20.(12分)如图,已知抛物线C1:y=14原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的左顶点为M(-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N(1,0)的直线AB交椭圆Γ于A,B两点;当MA→·MB→取得最大值时,求△MAB的面积.22.(12分)已知曲线C上任意一点S(x,y)都满足到直线l′:x=2的距离是它到点T(1,0)的距离的2倍.(1)求曲线C的方程;(2)设曲线C与x轴正半轴交于点A2,不垂直于x轴的直线l与曲线C交于A,B两点(异于点A2).若以AB为直径的圆经过点A2,试问直线l是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C:x2a2+y2b2=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若13<k<12,则椭圆离心率的取值范围是()2.若椭圆x2m+y2n=1(m>n>0)和双曲线x2a-y2b=1(a>b>0)有相同的左、右焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A.m-a B.12(m-a)C.m2-a2 D.m-a3.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .24.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.9.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.10.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l 与抛物线交于A,B两点,弦AB的中点为P,AB的垂直平分线与x轴交于E(x0,0).(1)求k的取值范围;(2)求证:x0<-3.13.设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为43 3.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若AC→·DB→+AD→·CB→=8,求k的值.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.第3章圆锥曲线的方程单元测试卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14 D.14答案C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=1答案C解析因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或0答案C解析由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .5答案B解析由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =ca= 5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()答案B解析方程ax 2-by 2=ab 变形为x 2b -y 2a=1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a =1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a =1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a =1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .8答案B解析由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3 D.2答案B解析如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =ca=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案D解析如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0)12=4x 1,22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x 2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ答案AD解析对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=θ(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=θF (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+1答案ABD 解析若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca =2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案CD解析设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取PF 1→·PF 2→2-142,--142,-=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案ABD解析设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =yx +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以y x +1·y x -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m =1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案38解析由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案2255解析抛物线y 2=2px (p >0)的准线方程为x =-p 2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p ×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案0或2或4解析设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案52解析利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax .=b a x ,-3y +m =0,得=-b a x ,-3y +m =0,得-am a +3b ,所以AB 的中点C设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a =52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b 2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|),即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y1),B (x 2,y 2).2+y 24=1,=kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析设A (x 1,y 1),B (x 2,y 2),(1)=x +m ,2=8x ,得x 2+(2m -8)x +m 2=0,=(2m -8)2-4m 2>0,1+x 2=8-2m ,1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),=k (x -t ),=14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,=-x 02t +1,-y 0=0,0=2t 1+t 2,0=2t 21+t 2.因此,点B(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA →·MB →取得最大值时,求△MAB 的面积.解析(1)由已知a =2,c a =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA →·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).ty +1,+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA →·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2t t 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA →·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA →·MB →的最大值为152.1,+y 22=1,=1,=6=1,=-62,不妨令|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析(1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),kx +m ,y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk 1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→·BA 2→=0.又AA 2→=(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =综上,直线l1.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是()答案C解析由题意知k =b 2a c +a=a -ca =1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是()A .m -a B.12(m -a )C .m 2-a 2D.m -a 答案A解析不妨取P 1|+|PF 2|=2m ,1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .2答案A解析利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.1+r 2=2a 1,1-r 2=2a 2,1=a 1+a 2,2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r 2=41-r 2r 14+34,当r 2r 1=12时,m max=163,∴max=433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案D解析根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A=2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=1答案AB解析因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab =2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c = 3.又c 2=a 2+b 2=3=2,=1=1,=2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案BD 解析∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则c k PO =kA 2B 1,∴b 2a -c =b -a,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案BD解析mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案2+1思路分析根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴b ,又∵点C ,F 在抛物线y 2=2px (p >0)上,2=pa ,2=2解得ba =2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案x 2+32y 2=1思路分析根据题意,求出点B 的坐标代入椭圆方程求解.解析设点B 的坐标为(x 0,y 0).∵x 2+y2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B -51-b 23,-将B -51-b 23,-x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案±1解析设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2)2=4x ,=k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即1+2k 2,又|FQ |=2,F (1,0),1+2k2-=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M ,23b 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设,23b ,代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析(1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),=k (x -1),2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3==-2k k 2=-2k.即直线PE 的方程为y +2k =-令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.解析(1)设F (-c ,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3.于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组k (x +1),+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k2.由已知得6+2k 2+122+3k 2=8,解得k =± 2.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.解析(1)椭圆x225+y29=1的右焦点为(4,0),所以抛物线C的方程为y2=16x.(2)设点M(a,0)(a≠0)满足题设,当PQ的斜率存在时,PQ的方程为y=k(x-a),2=16x,=k(x-a)⇒k2x2-2(ak2+8)x+a2k2=0,则x1+x2=2(ak2+8)k2,x1x2=a2.设P(x1,y1),Q(x2,y2),则由∠POQ=π2,得x1x2+y1y2=0.从而x1x2+k2(x1-a)(x2-a)=0⇒a2-16a=0⇒a=16,若PQ的方程为x=a,代入抛物线方程得y=±4a,当∠POQ=π2时,a=4a,即a=16,所以存在满足条件的点M(16,0).15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.解析(1)设M(x M,y M),∵F1(-c,0),∴x M=-c,y M=b2a,∴k OM=-b2ac.由题意知k AB=-ba,∵OM→与AB→是共线向量,∴-b2ac=-ba,∴b=c,∴a=2c,∴e=22(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,则r1+r2=2a.又|F1F2|=2c,∴由余弦定理,得cosθ=r12+r22-4c22r1r2=(r1+r2)2-2r1r2-4c22r1r2=a2r1r2-1a2-1=0,当且仅当r1=r2时等号成立,∴cosθ≥0,∴θ,π2..。

人教版高中数学选修一第三单元《圆锥曲线的方程》检测卷(答案解析)(1)

人教版高中数学选修一第三单元《圆锥曲线的方程》检测卷(答案解析)(1)

一、填空题1.ABC 的三个顶点都在抛物线E :232y x =上,其中A (2,8),ABC 的重心G 是抛物线E 的焦点,则BC 所在直线的方程为_________.2.已知双曲线22:221(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过原点O 作斜率的直线交C 的右支于点A ,若1223F AF π∠=,则双曲线的离心率为__________.3.若椭圆C :22184x y +=的右焦点为F ,且与直线l :20x +=交于P ,Q 两点,则PQF △的周长为_______________.4.已知双曲线M :()222210,0x y a b a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆()22x c y a -+=的两条切线互相垂直,则双曲线M 的离心率的取值范围是________.5.已知F 是双曲线22145x y -=的右焦点,若点P 是双曲线的左支上一点,A ,则APF 周长的最小值为______.6.已知动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,则动圆圆心Q 的轨迹方程为__________.7.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的两个焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆D :22(3)3x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2MN NF +的最大值是___________.8.设直线l :1y x =+与椭圆:C 22221(0)x y a b a b+=>>相交于,A B 两点,与x 轴相交于左焦点F ,且3AF FB =,则椭圆的离心率e =_________9.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过F 作C 的一条渐近线的垂线垂足为A ,且||2||OA AF =,O 为坐标原点,则C 的离心率为_________.10.如图所示,已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,双曲线C的右支上一点A ,它关于原点O 的对称点 为B ,满足90AFB ∠=︒,且3BF AF =,则双曲线C 的渐近线方程是______.11.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF 、||AB 、2AF 成等差数列,则C 的离心率为___________.12.M 是抛物线24y x =上一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角60xFM ∠=︒,则||FM =______.13.在平面直角坐标系xOy 中,已知椭圆C 的焦点为()12,0F -,()22,0F ,过2F 的直线与椭圆C 交于A ,B 两点.若223AF F B =,1AB BF =,则椭圆C 的标准方程为______.二、解答题14.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 15.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,其左,右焦点分别是12,F F ,椭圆上的4个点,,,A B M N 满足:直线AB 过左焦点1F ,直线AM 过坐标原点O ,直线AN 的斜率为32-,且2ABF 的周长为8 (1)求椭圆C 的方程. (2)求AMN 面积的最大值16.已知()11,0F -,()21,0F,动点P 满足124PF PF +=,动点P 的轨迹为曲线Γ. (1)求点P 的轨迹方程;(2)直线l 与曲线Γ交于A 、B 两点,且线段AB 的中点为()1,1M ,求直线l 的方程.17.已知椭圆()2222 :?10x y C a ba b +=>>的离心率32e =,原点到过点(),0A a ,()0,B b -的直线的距离是455.(1)求椭圆C 的方程; (2)如果直线()10y kx k =+≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.18.对于椭圆22221(0)x y a b a b+=>>,有如下性质:若点()00,P x y 是椭圆外一点,PA ,PB 是椭圆的两条切线,则切点A ,B 所在直线的方程是00221x x y ya b+=,可利用此结论解答下列问题.已知椭圆C :22143x y +=和点(4,)()P t t R ∈,过点P 作椭圆C 的两条切线,切点是A ,B ,记点A ,B 到直线PO (O 是坐标原点)的距离是1d ,2d .(1)当3t =时,求线段AB 的长;(2)求12||AB d d +的最大值.19.如图,椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F 上顶点为A ,过点A 与2AF 垂直的直线交x 轴负半轴于点Q ,且1F 恰是2QF 的中点,若过A ,Q ,2F 三点的圆与直线:330l x y --=相切.(1)求椭圆C 的方程;(2)设M ,N 为椭圆C 的长轴两端点,直线m 过点()4,0P 交C 于不同两点G ,H ,证明:四边形MNHG 的对角线交点在定直线上,并求出定直线方程.20.已知双曲线1C 的方程为22143x y -=,椭圆2C 与双曲线有相同的焦距,1F ,2F 是椭圆的上、下两个焦点,已知P 为椭圆上一点,且满足12PF PF ⊥,若12PF F △的面积为9. (1)求椭圆2C 的标准方程;(2)点A 为椭圆的上顶点,点B 是双曲线1C 右支上任意一点,点M 是线段AB 的中点,求点M 的轨迹方程.21.在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于,A B 两点.(1)求M 的轨迹方程; (2)求AOB 面积的最大值.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为22,且椭圆上的点到焦点的最长距离为12+(1)求椭圆C 的方程;(2)过点(0,2)P 的直线l (不过原点O )与椭圆C 交于两点A 、B ,M 为线段AB 的中点. (i )证明:直线OM 与l 的斜率乘积为定值; (ii )求OAB 面积的最大值及此时l 的斜率.23.在平面直角坐标系xOy 中,已知双曲线C 的焦点为(0,3、(3,实轴长为2.(1)求双曲线C 的标准方程;(2)过点()1,1Q 的直线l 与曲线C 交于M ,N 两点,且Q 恰好为线段MN 的中点,求直线l 的方程及弦MN 的长.24.已知椭圆()222210x y a b a b +=>>的离心率为22,短轴长为22(1)求椭圆的标准方程.(2)已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程.25.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且经过点1)2.(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于M N 、两点,B 为椭圆C 的上顶点,那么椭圆C 的右焦点F 是否可以成为BMN △的垂心..?若可以,求出直线l 的方程;若不可以,请说明理由.(注:垂心是三角形三条高线的交点)26.已知椭圆222:1(1)x E y a a +=>的离心率为2.(1)求椭圆E 的方程;(2)若直线:0l x y m -+=与椭圆交于E F 、两点,且线段EF 的中点在圆22+1x y =,求m 的值.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】根据重心坐标公式可得由此得到BC 的中点坐标再根据点差法得到BC 的斜率然后点斜式写出直线方程【详解】设由重心坐标公式又所以所以中点坐标为因为两式相减得所以直线的斜率为所以BC 所在直线的方程为即解析:4400+-=x y【分析】根据重心坐标公式可得1222x x +=,128y y +=-,由此得到BC 的中点坐标,再根据点差法得到BC 的斜率,然后点斜式写出直线方程. 【详解】设()11B x y , ,()22C x y ,,由重心坐标公式,12122833x x y y G ++++⎛⎫⎪⎝⎭,,又()80G ,, 所以1222x x +=,128y y +=-,所以BC 中点坐标为()11,4-,因为21132y x =,22232y x =,两式相减得12124y y x x -=--, 所以直线BC 的斜率为4-,所以BC 所在直线的方程为()4411y x +=--,即4400+-=x y . 故答案为:4400+-=x y【点睛】方法总结:涉及中点弦或者斜率问题时考虑使用点差法,即设点作差.2.【分析】由题意知结合已知条件可证明利用可计算在中利用余弦定理可计算出由即可求得离心率【详解】由题意知直线的斜率为所以所以又因为所以所以即可得在中由余弦定理可得解得:故双曲线的离心率为故答案为:【点睛解析:2【分析】由题意知123FOA π∠=,结合已知条件可证明112FOA F AF ,利用11112F O F AF A F F =可计算1F A =,在12F AF中,利用余弦定理可计算出2AF =,由 121222F F c e a AF AF ==-即可求得离心率. 【详解】由题意知直线OA23AOF π∠=,所以123FOA π∠=,又因为1223F AF π∠=,121AFO F F A ∠=∠, 所以112FOA F AF ,所以11112F O F A F A F F =,即112F cc A F A =可得1F A =, 在12F AF 中,由余弦定理可得22212121222cos3F F AF AF AF AF π=+-⋅,解得:2AF =,故双曲线的离心率为1212222F F c e a AF AF ====-,故答案为:2. 【点睛】123FOA π∠=,结合1223F AF π∠=可得112FOA F AF,即可求出1F A =,在12F AF 中,再利用余弦定理,可求出2AF ,由双曲线的定义可计算122a AF AF =-,121222F F c e a AF AF ==-即可.3.【分析】求出左焦点坐标利用直线经过椭圆的左焦点结合椭圆的定义求三角形的周长即可【详解】由题得椭圆的左焦点所以直线经过左焦点的周长故答案为:【点睛】方法点睛:解答圆锥曲线的问题时如果遇到了焦半径要联想 解析:82【分析】求出左焦点坐标,利用直线经过椭圆的左焦点,结合椭圆的定义求三角形的周长即可. 【详解】由题得椭圆C 的左焦点(2,0)F '-, 所以直线:320l x -+=经过左焦点F ',PQF ∴的周长||||||PQ PF QF ++||||||||PF PF QF QF ''=+++482a ==,故答案为:2 【点睛】方法点睛:解答圆锥曲线的问题时,如果遇到了焦半径,要联想到圆锥曲线的定义,利用定义优化解题.4.【分析】要使得经过点所作的圆的两条切线互相垂直必有而焦点到双曲线渐近线的距离为故利用双曲线的离心率的计算公式解答【详解】解:∵所以离心率圆是以为圆心半径的圆要使得经过点所作的圆的两条切线互相垂直必有 解析:(3【分析】要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,故2TF a b =≥,利用双曲线的离心率的计算公式解答.【详解】解:∵0b >,0a >,所以离心率211c b e a a ⎛⎫==+> ⎪⎝⎭,圆()22x c y a -+=是以(),0F c 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直, 必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,所以2TF a b =≥,即b a c e a ==,所以双曲线M 的离心率的取值范围是(.故答案为:(. 【点睛】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意双曲线性质的灵活运用.5.34【分析】把到右焦点的距离转化为到左焦点的距离后易得最小值【详解】双曲线中即设是双曲线的左焦点则∵在双曲线的左支上∴即∴周长为显然当且仅当是线段与双曲线的交点时等号成立∴周长的最小值为故答案为:3解析:34 【分析】把P 到右焦点F 的距离转化为P 到左焦点的距离后易得最小值. 【详解】双曲线22145x y -=中,2,a b ==,3c ==,即(3,0)F ,设F '是双曲线的左焦点,(3,0)F '-,则15AF AF ==='∵P 在双曲线的左支上,∴24PF PF a '-==,即4PF PF '=+, ∴APF 周长为41519l PF PA AF PF PA PA PF ''=++=+++=++,显然15PA PF AF ''+≥==,当且仅当P 是线段AF '与双曲线的交点时等号成立.∴APF 周长l 的最小值为151934+=. 故答案为:34. 【点睛】方法点睛:本题考查双曲线上的点到定点和双曲线一个焦点距离和(或差)的最值问题.解题关键是掌握转化思想,根据双曲线的定义,如果涉及的是PF ,则把PF 转化为到另一焦点的距离,如果涉及的是1PF e,则转化为到相应准线的距离. 6.【分析】根据题意和双曲线的定义得到动圆圆心Q 的轨迹是以为焦点的双曲线的上支求得的值即可求得轨迹方程【详解】设动圆Q 的半径为因为动圆Q 与圆外切与圆内切可得所以由双曲线的定义可得动圆圆心Q 的轨迹是以为焦解析:221(0)97y x y -=>【分析】根据题意和双曲线的定义,得到动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支,求得,,a b c 的值,即可求得轨迹方程. 【详解】设动圆Q 的半径为R , 因为动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,可得123,3QC R QC R =+=-,所以121268QC QC C C -=<=, 由双曲线的定义,可得动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支, 其中26,28a c ==,解得3,4a c ==, 又由2221697b c a =-=-=,所以动圆圆心Q 的轨迹方程为221(0)97y x y -=>.故答案为:221(0)97y x y -=>.【点睛】求曲线的轨迹方程的常用方法:直接法:直接利用条件建立,x y 之间的关系式或0(),F x y =,直接化简求解; 待定系数法:已知所求曲线的类型,先根据条件设出所求曲线的方程,再由条件确定其待定稀释;定义法:先根据条件得出动点的轨迹是某种曲线,再由曲线的定义直接写出动点的轨迹方法;代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,将00,x y 代入已知曲线求解.7.【分析】根据题中条件得到的最大值不小于即可由余弦定理结合基本不等式得到点为短轴的顶点时最大;不妨设点为短轴的上顶点记得出离心率的最小值连接得到根据椭圆的定义结合三角形的性质求出的最大值即可得出结果【解析:4+【分析】根据题中条件,得到12F PF ∠的最大值不小于23π即可,由余弦定理,结合基本不等式,得到点P 为短轴的顶点时,12F PF ∠最大;不妨设点P 为短轴的上顶点,记12F PF θ∠=,得出离心率的最小值,连接DN ,得到()()22maxmaxMN NF DN NF +=+,根据椭圆的定义,结合三角形的性质,求出2DN NF +的最大值,即可得出结果. 【详解】若想满足椭圆上存在一点P ,使得1223F PF π∠=,只需12F PF ∠的最大值不小于23π即可,由余弦定理,可得()22222112121221221424cos 22PF PF c PF PF PF PF c F PF PF PF PF PF +--=+-∠=2222221122221112b b b PF PF PF PF a =-≥-=-⎛⎫+ ⎪⎝⎭,当且仅当 12PF PF =,即点P 为短轴的顶点时,12F PF ∠的余弦值最小,即12F PF ∠最大; 如图,不妨设点P 为短轴的上顶点,记12F PF θ∠=,则 23πθ≥,于是离心率3sin 2c e a θ⎫==∈⎪⎪⎣⎭, 因此当椭圆C 的离心率取得最小值32时,24a =,则椭圆 22:14x C y +=;连接DN ,根据圆的性质可得:()()22maxmax3MN NF DN NF +=+,所以只需研究2DN NF +的最大值即可;连接1NF ,1DF ,21144423DN NF DN NF DF +=+-≤+=+当且仅当N ,D ,1F 三点共线(N 点在线段1DF 的延长线上)时,不等式取得等号, 所以2DN NF +的最大值为 423+ 因此2MN NF +的最大值是433+ 故答案为:433+ 【点睛】关键点点睛:求解本题的关键在于根据题中条件,得到椭圆离心率,求出椭圆方程,再由椭圆的定义,以及圆的性质,将动点到两点距离的最值问题,转化为椭圆上一动点到焦点,以及到定点的距离的最值问题,即可求解.8.【分析】设联立方程组可得由可得进而可得再由椭圆的焦点坐标可得即可得解【详解】设将直线:代入椭圆方程消去x 化简得所以又所以所以所以化简得又直线:过椭圆的左焦点所以所以所以或(舍去)所以椭圆离心率故答案解析:2【分析】设()()1122,,,A x y B x y ,联立方程组可得12y y +、12y y ,由3AF FB =可得123y y =-,进而可得()()2222240a ab a b +-+=,再由椭圆的焦点坐标可得a ,即可得解.【详解】设()()1122,,,A x y B x y ,将直线l :1y x =+代入椭圆方程,消去x 化简得222222()2(1)0a b y b y b a +-+-=,所以222121222222(1),b b a y y y y a b a b-+==++, 又3AF FB =,所以123y y =-,所以222222b y a b -=+,222222(1)3b a y a b--=+, 所以22222222(1)3b b a a b a b ⎛⎫---= ⎪++⎝⎭,化简得()()2222240a a b a b +-+=, 又直线l :1y x =+过椭圆C 的左焦点F , 所以()1,0F -,所以2221a b c -==, 所以22a =或21a =(舍去),所以a =2c e a ==.故答案为:2. 【点睛】关键点点睛:解决本题的关键是转化3AF FB =为123y y =-,再结合韦达定理即可得解.9.【分析】由已知求出渐近线的斜率得结合转化后可求得离心率【详解】由题意可得渐近线方程为∴故故答案为:【点睛】本题考查求双曲线的离心率解题关键是列出关于的一个等式本题中利用直角三角形中正切函数定义可得【分析】由已知求出渐近线的斜率,得ba,结合222c a b -=转化后可求得离心率. 【详解】由题意可得||||1tan ||2||2AF AF AOF OA AF ∠===, 渐近线方程为by x a=, ∴12b a =,222222222544a a c ab e a a a ++====,故e =. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的一个等式,本题中利用直角三角形中正切函数定义可得.10.【分析】利用双曲线的性质推出通过解三角形求出的关系再根据即可得到的关系从而得到渐近线方程【详解】解:双曲线的右焦点为双曲线的右支上一点它关于原点的对称点为满足且设左焦点为连接由对称性可得可得所以所以解析:2y x =±【分析】利用双曲线的性质,推出AF ,BF ,通过解三角形求出c 、a 的关系,再根据222c a b =+,即可得到b 、a 的关系,从而得到渐近线方程.【详解】解:双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足90AFB ∠=︒,且||3||BF AF =,设左焦点为1F ,连接1AF 、1BF ,由对称性可得1AF BF =、1BF AF =,可得||||2BF AF a -=,所以||AF a =,||3BF a =,190F BF ∠=︒,所以22211F F BF BF =+,可得22249c a a =+,2225c a =,又222c a b =+,所以2232b a =,所以b a =y x =故答案为:2y x =±.【点睛】本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.11.【分析】由已知设据勾股定理有;由椭圆定义知的周长为4a 由勾股定理可得选项【详解】由已知设所以根据勾股定理有解得;由椭圆定义知所以的周长为4a 所以有;在直角中由勾股定理∴离心率故答案为:【点睛】本题考 解析:22【分析】由已知,设2BF x =,||AB x d =+,22AF x d =+,据勾股定理有3x d =;由椭圆定义知2ABF 的周长为4a ,由勾股定理,2224a c =,可得选项. 【详解】由已知,设2BF x =,||AB x d =+,22AF x d =+,所以根据勾股定理有()()222+2++x d x x d =,解得3x d =;由椭圆定义知1212++2AF AF BF BF a ==,所以2ABF 的周长为4a ,所以有3a d =,21BF a BF ==;在直角2BF F △中,由勾股定理,2224a c =,∴离心率22e =. 故答案为:22. 【点睛】本题考查椭圆离心率,椭圆的定义,重在对问题的分析,抓住细节,同时考查计算能力,属于中档题.12.4【分析】设点为过点作垂直于轴垂足为利用点在抛物线上建立方程即可求得的长【详解】解:由题意得设点为过点作垂直于轴垂足为即即整理得①又是抛物线上一点②由①②可得或(舍去)故答案为:【点睛】本题给出抛物解析:4 【分析】设点M 为(,)a b ,过点M 作MA 垂直于x 轴,垂足为A ,利用60xFM ∠=︒,点M 在抛物线24y x =上,建立方程,即可求得FM 的长. 【详解】解:由题意得(1,0)F设点M 为(,)a b 过点M 作MA 垂直于x 轴,垂足为A 60xFM ∠=︒,||2||MF FA ∴=,即||2(1)FM a =- ||3MF =,即||3MF =,2(1)3a ∴-=,整理得223(1)b a =-⋯①又M 是抛物线24y x =上一点24b a ∴=⋯②由①②可得3a =或13a =(舍去) ||2(31)4MF ∴=-=故答案为:4.【点睛】本题给出抛物线上的点M 满足60xFM ∠=︒,求焦半径||FM 的长,着重考查了抛物线的定义与简单几何性质等知识,属于中档题.13.【分析】首先利用椭圆的定义求出abc 的值进一步求出椭圆的方程【详解】解:在平面直角坐标系xOy 中已知椭圆C 的焦点为F1(﹣20)F2(20)过F2的直线与椭圆C 交于AB 两点若AF2=3F2BAB =B解析:221106x y +=【分析】首先利用椭圆的定义求出a 、b 、c 的值,进一步求出椭圆的方程.【详解】解:在平面直角坐标系xOy 中,已知椭圆C 的焦点为F 1(﹣2,0),F 2(2,0), 过F 2的直线与椭圆C 交于A ,B 两点.若AF 2=3F 2B ,AB =BF 1,设F 2B =x ,则AF 2=3x ,AB =BF 1=4x ,根据椭圆的定义,整理得AF 1=2x , 由于△AF 1B 为等腰三角形,所以121cos 4AF F ∠=, 利用余弦定理222121212122cos 16F F F F F A A A AF A F F ==+-⋅⋅∠,整理得22116492234x x x x =+-⋅⋅⋅, 解得2168105x ==,故x =所以2a =5x=, 解得:a,由于c =2,所以b, 所以椭圆的方程为221106x y +=.故答案为:221106x y +=.【点睛】本题考查的知识要点:椭圆的定义和椭圆的方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.二、解答题14.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程.15.(1)22143x y +=;(2)23.【分析】(1)根据2ABF 的周长为8,解得2a =,再由离心率为12求解. ()2设直线3:2AN y x t =-+,与椭圆方程联立,由弦长公式求得AN ,点O 到直线AN 的距离,然后根据直线AM 过坐标原点,由2AMNAONSS=求解.【详解】()1由椭圆的定义知48,2a a ==,12c a =, 1c ∴=,从而2223b a c =-=,所以椭圆C 的方程为22143x y +=.()2如图所示:设直线3:2AN y x t =-+, 代入椭圆方程223412x y +=, 化简得:223330x tx t -+-=, 设()()1122,,,A x y N x y , 由()23120t ∆=->,得212t <,且AN =而点O 到直线AN的距离d =, 且直线AM 过坐标原点,21AMNAONSS∴==+,()2212t t +-=≤=当且仅当2212t t=- , 即26t =时取等号,AMN ∴面积的最大值为【点睛】思路点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.设直线与椭圆的交点坐标为A (x 1,y1),B (x 2,y2),弦长公式为;AB ==k 为直线斜率).16.(1)22143x y +=;(2)3470x y +-=.【分析】(1)根据椭圆的定义判定轨迹方程并求出;(2)点差法求出直线的斜率,点斜式即可写出直线方程.【详解】(1)由椭圆的定义可知点P 的轨迹是以()11,0F -,()21,0F 为焦点,长轴长为4的椭圆. Γ∴的方程为22143x y +=. (2)(点差法)设()11,A x y ,()22,B x y ,A 、B 是Γ上的点,由2211222234123412x y x y ⎧+=⎨+=⎩作差得,()()()()12121212340x x x x y y y y -++-+=, 又线段AB 的中点为()1,1M ,12122x x y y ∴+=+=,从而直线AB 斜率212134AB y y k x x -==--. 直线l 的方程为31(1)4y x -=--, 即3470x y +-=. 【点睛】关键点点睛:直线与圆锥曲线相交时,若涉及弦的中点问题,弦所在直线的斜率问题, 可以利用“点差法”,可简化运算,求出直线斜率或中点,属于中档题.17.(1)221164x y +=;(2)4k =±. 【分析】 (1)由离心率e =2a b =,再求出直线1:B x a A y b -=,从而得5d ==,解方程组可求出,a b 的值,进而可得椭圆C 的方程; (2)设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,再将直线()10y kx k =+≠与椭圆方程联立成方程组,消元后利用根与系数的关系可得2234214M x x k x k +-==+,21114M My kx k =+=+,再由E ,F 都在以B 为圆心的圆上,可得20M M x ky k ++=,从而可求出k 的值 【详解】 解:(1)因为2c a =,222a c b -=,所以2a b =. 因为原点到直线1:B x a A y b -=的距离d ==,解得4a =,2b =.故所求椭圆C 的方程为221164x y +=.(2)由题意2211164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()22148120k x kx ++-=.可知0∆>.设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,则2234214M x x kx k +-==+,21114M M y kx k =+=+,因为E ,F 都在以B 为圆心的圆上,且()0,2B -, 所以21M My k x +⋅=-, 所以20M M x ky k ++=.即224201414k kk k k -++=++.又因为0k ≠,所以218k =.所以k = 【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将EF 的中点(),M M M x y 坐标用含k 的式子表示,再由E ,F 都在以B 为圆心的圆上,得20M M x ky k ++=,将点M 的坐标代入可求出k 的值,考查计算能力,属于中档题18.(1)247;(2. 【分析】(1)由已知结论求出直线AB 的方程,联立方程,得韦达定理,利用弦长公式即可求得AB 的长;(2)将12||AB d d +表示为关于t 的函数,再利用换元法与分离常数法两种方法分别求出最值. 【详解】 (1)解当3t =时,直线AB 方程为1x y +=,联立,得27880x x --=. 设()11,A x y ,()22,B x y ,则1287x x +=,1287x x =-.则1224||7AB x =-==. (2)解 直线AB :13tx y +=,即13t x y =-+,直线OP :4t y x =.设()11,A x y ,()22,B x y,则12||AB y y =-,12d d +===记12||AB m d d =+,则12||AB m d d ==+,接下来介绍求最值的不同方法. 法1:常规换元法 令212s t =+,12s ≥,则222222(3)(4)12121114949112244848s s s s m s s s s s -++-⎛⎫===-++=--+≤ ⎪⎝⎭m ≤,当24s 即t =±12||AB d d +. 法2:分离常数法422242422514412414424144t t t m t t t t ++==+++++,显然0t =时不取得最大值, 则222149111444824m t t=+≤+=++,m ≤ 当t =±12||AB d d +.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.(1)22143x y +=;(2)证明见解析, 1x =.【分析】(1)设椭圆C 的半焦距为()0c c >,由圆的定义可求得圆的半径,再由直线与圆的相切的条件可求得c , 2a ,2b ,可求得椭圆方程.(2)设其方程为4x my =+,设()11,H x y ,()22,G x y ,直线与椭圆的方程联立整理得()223424360my my +++=,得出根与系数的关系,表示直线MH 的方程和直线GN 的方程。

人教版高中数学选修一第三单元《圆锥曲线的方程》测试题(答案解析)

人教版高中数学选修一第三单元《圆锥曲线的方程》测试题(答案解析)

一、填空题1.若,A B 是曲线22x y =+上不同的两点,O 为坐标原点,则OA OB ⋅的取值范围是__________.2.已知椭圆22221x y a b+=(0a b >>)的左焦点为()1,0F c -,右顶点为A ,上顶点为B ,现过A 点作直线1F B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为3bc-,则该椭圆的离心率为______.3.在平面直角坐标系中,已知抛物线24y x =的准线与双曲线22221x y a b-=(0a >,0b >)的渐近线分别交于P ,Q 两点,若POQ △的内切圆半径为13,则双曲线的离心率为________.4.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.5.如图所示,已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为F ,双曲线C的右支上一点A ,它关于原点O 的对称点 为B ,满足90AFB ∠=︒,且3BF AF =,则双曲线C 的渐近线方程是______.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.7.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()3,0F ,且离心率为35,ABC 的三个顶点都在椭圆C 上,设ABC 三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别为123k k k 、、,且123k k k 、、均不为0.O 为坐标原点,若直线OD OE OM 、、的斜率之和为1.则123111k k k ++=________. 8.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.9.M 是抛物线24y x =上一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角60xFM ∠=︒,则||FM =______.10.已知椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过1F 且与x 轴垂直的直线交椭圆于A 、B 两点,直线2AF 与椭圆的另一个交点为C ,若222AF F C =,则椭圆的离心率为__________.11.已知椭圆的对称轴为坐标轴,两个焦点坐标分别为()()0,2,0,2-,且过点35,22⎛⎫- ⎪⎝⎭,则椭圆的标准方程为____________. 12.设O 为坐标原点,P 是以F 为焦点的抛物线22(0)y px p =>上任意一点,M 是线段PF 上的点,且||3||PM MF =,则直线OM 的斜率的最大值是________. 13.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____.二、解答题14.已知椭圆()222210x y a b a b+=>>中,短轴的一个端点与两个焦点的连线互相垂直,且焦距为(1)求椭圆的标准方程.(2)如图,已知椭圆的左顶点为A ,点M 在圆2289x y +=上,直线AM 与椭圆相交于另一点B ,且AOB 的面积是AOM 的面积的2倍,求直线AB 的方程.15.已知椭圆()222210x y C a b a b ∴+=>>的离心率2e =,左焦点为1F ,右焦点为2F ,且椭圆上一动点M 到2F 的最远距离为 21,过2F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出点P 坐标;若不存在,请说明理由.16.已知m R ∈,且0m >,设p :()00,x ∃∈+∞,()()2012x m m =--;q :方程2213x y m m +=-表示双曲线. (1)若p q ∧为真,求m 的取值范围;(2)判断04m <<是q 的什么条件,并说明理由.17.已知()11,0F -,()21,0F,动点P 满足124PF PF +=,动点P 的轨迹为曲线Γ. (1)求点P 的轨迹方程;(2)直线l 与曲线Γ交于A 、B 两点,且线段AB 的中点为()1,1M ,求直线l 的方程.18.已知抛物线()220y px p =>以椭圆22143x y +=的右焦点为焦点F .(1)求抛物线方程.(2)过F 作直线L 与抛物线交于C ,D 两点,已知线段CD 的中点M 横坐标3,求弦CD 的长度.19.已知椭圆C :22221(0)x y a b a b +=>>的离心率为22,过右焦点2F 且斜率为1的直线l 与圆()()222221x y -+-=相切. (1)求椭圆C 的方程;(2)1F 为椭圆的左焦点,P 为椭圆上的一点,若12120PF F ∠=︒,求12PF F △的面积.20.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点(0,2.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.21.已知命题p :方程22112x y m m +=-+表示双曲线;命题q :方程22212x ym m+=表示焦点在x 轴上的椭圆.若,p q 有且只有一个为真命题,求实数m 的取值范围.22.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点2P ⎭在C 上. (1)求椭圆C 的方程;(2)设1F ,2F 分别是椭圆C 的左,右焦点,过2F 的直线l 与椭圆C 交于不同的两点A ,B ,求1F AB 面积的最大值.23.已知椭圆()2222:10x y C a b a b +=>>C 过点3,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)已知O 为原点,过椭圆C 的右焦点的直线l 与椭圆C 交于A 、B 两点,求OAB 的面积的最大值.24.已知命题p :()()22210t a t a a t --+-<∈R ,命题q :方程()22113x y t t t+=∈+-R 表示焦点在x 轴上的椭圆. (1)若10,2t ⎛⎫∈ ⎪⎝⎭时,命题p 为真命题,求实数a 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.25.已知椭圆222:1(1)x E y a a +=>的离心率为2.(1)求椭圆E 的方程;(2)若直线:0l x y m -+=与椭圆交于E F 、两点,且线段EF 的中点在圆22+1x y =,求m 的值.26.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】先整理化简得设得到分轴和不垂直于轴两种情况讨论当不垂直于轴设:两方程联立消得到关于的一元二次方程再利用韦达定理代入化简整理即可得出结果【详解】∵∴可化为设则则∴若轴此时∴若不垂直于轴设:∴∴解析:[2,)+∞【分析】先整理化简得()221022x y x -=≥,设()11,A x y ,()22,B x y ,得到1212OA OB x x y y ⋅=+,分AB x ⊥轴和AB 不垂直于x 轴,两种情况讨论,当AB 不垂直于x 轴,设AB l :y kx m =+,两方程联立消y ,得到关于x 的一元二次方程,再利用韦达定理,代入1212OA OB x x y y ⋅=+,化简整理即可得出结果. 【详解】∵x =∴可化为(22122x y x -=≥,设()11,A x y ,()22,B x y , 则120x x ⋅>,则()11,OA x y =,()22,OB x y =, ∴1212OA OB x x y y ⋅=+,若AB x ⊥轴,此时12x x =,12y y =-,∴22112OA OB x y ⋅=-=,若AB 不垂直于x 轴,设AB l :y kx m =+,∴222y kx m x y =+⎧⎨-=⎩, ∴()2221220kxkmx m ----=,∴12221km x x k +=-,22122222011m m x x k k --+⋅==>--, 则21k >,∴()()12121212OA OB x x y y x x kx m kx m ⋅=+=+++2222222222224(1)21111m km k k km m k b k k --+=+++==+----, 又∵21k >,∴210k ->, ∴2OA OB ⋅>, ∴[2,)OA OB ⋅∈+∞, 故答案为:[2,)+∞. 【点睛】分AB x ⊥轴和AB 不垂直于x 轴,两种情况讨论,当AB 不垂直于x 轴,设AB l :y kx m =+,两方程联立消y ,得到关于x 的一元二次方程,再利用韦达定理是解决本题的关键.2.【分析】由已知先求出直线与直线的方程联立得到T 的坐标再利用建立abc 的方程即可得到答案【详解】由题意得直线的方程为:又所以直线的方程为:由得所以又所以即化简得所以故答案为:【点睛】关键点睛本题解题关 解析:12【分析】由已知先求出直线1F B 与直线OT 的方程,联立得到T 的坐标,再利用1AT BF ⊥,11AT BF k k ⋅=-,建立a ,b ,c 的方程即可得到答案.【详解】由题意,得(,0)A a ,(0,)B b ,1BF b k c =,直线1F B 的方程为:by x b c=+ 又3OT b k c =-,所以直线OT 的方程为:3by x c=-由3b y x b c b y x c ⎧=+⎪⎪⎨⎪=-⎪⎩,得434c x b y ⎧=-⎪⎪⎨⎪=⎪⎩,所以3(,)44c b T -,303444AT b b k c c a a-==-+-- 又1AT BF ⊥,所以1314AT BF b bk k c a c⋅=-⋅=-+,即2222433()c ac b a c +==- 化简,得(32)(2)0a c a c +-=, 所以2a c =,12c e a == 故答案为:12【点睛】关键点睛,本题解题关键是先联立直线1F B 与直线OT 的方程得到T 的坐标,再利用1AT BF ⊥得到11AT BF k k ⋅=-从而使问题获解.3.【分析】先求出的面积再利用等积法可求的关系从而可求离心率【详解】不妨设在轴的上方在轴的下方抛物线的准线方程为:双曲线的渐近线方程为:故故而故所以故故答案为:【点睛】关键点点睛:圆锥曲线的离心率的计算 解析:233【分析】先求出POQ △的面积,再利用等积法可求,,a b c 的关系,从而可求离心率. 【详解】不妨设P 在x 轴的上方,Q 在x 轴的下方.抛物线24y x =的准线方程为:1x =-,双曲线的渐近线方程为:b y x a=±. 故1,b P a ⎛⎫- ⎪⎝⎭,1,b Q a ⎛⎫-- ⎪⎝⎭,故1212POQb b S a a =⨯⨯=△. 而21b c OP OQ a a ⎛⎫==+= ⎪⎝⎭,故122123b c b a a a ⎛⎫⨯+⨯= ⎪⎝⎭,所以2c b =,故22233c e a c b===-.故答案为:233. 【点睛】关键点点睛:圆锥曲线的离心率的计算,关键是利用已知条件构建关键,,a b c 的等量关系式,遇到三角形的内切圆半径的计算问题时,一般利用等积法来沟通半径与三角形的边的关系.4.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a . 由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =, 则43c e a ==. 故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.5.【分析】利用双曲线的性质推出通过解三角形求出的关系再根据即可得到的关系从而得到渐近线方程【详解】解:双曲线的右焦点为双曲线的右支上一点它关于原点的对称点为满足且设左焦点为连接由对称性可得可得所以所以解析:2y x =±【分析】利用双曲线的性质,推出AF ,BF ,通过解三角形求出c 、a 的关系,再根据222c a b =+,即可得到b 、a 的关系,从而得到渐近线方程.【详解】解:双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,双曲线C 的右支上一点A ,它关于原点O 的对称点为B ,满足90AFB ∠=︒,且||3||BF AF =,设左焦点为1F ,连接1AF 、1BF ,由对称性可得1AF BF =、1BF AF =,可得||||2BF AF a -=,所以||AF a =,||3BF a =,190F BF ∠=︒,所以22211F F BF BF =+,可得22249c a a =+,2225c a =,又222c a b =+,所以2232ba =,所以6b a =,故渐近线为6y x =± 故答案为:6y x =±.【点睛】本题考查双曲线的简单性质的应用,三角形的解法,考查转化思想以及计算能力,属于中档题.6.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查 21 【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a ⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m aQF a m aQF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩,此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a +-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.7.【分析】求出椭圆标准方程设用点差法求出同理有利用直线的斜率之和为1可得结论【详解】由得∴椭圆标准方程为设在椭圆上椭圆方程为则两式相减得∴即同理已知∴故答案为:【点睛】本题考查求椭圆标准方程考查圆锥曲 解析:2516-【分析】求出椭圆标准方程,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t , 用点差法求出116125ODk k =-⋅,同理有23,k k ,利用直线OD OE OM 、、的斜率之和为1可得结论. 【详解】3c =,由35c a =得5a =,∴4b =,椭圆标准方程为2212516x y +=,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t ,,A B 在椭圆上,椭圆方程为221625400x y +=.则22111625400x y +=,22221625400x y +=,两式相减得,121212121625y y x xx x y y -+=-⋅-+, ∴1212111212116162525y y x x sk x x y y t -+==-⋅=-⋅-+,即111125251616OD t k k s =-⋅=-,同理212516OE k k =-,312516OM k k =-, 已知1OD OE OM k k k ++=,∴1231112516k k k ++=-.故答案为:2516-. 【点睛】本题考查求椭圆标准方程,考查圆锥曲线中的点差法,利用点差法可圆锥曲线弦所在直线斜率与弦中点坐标建立关系.8.6【解析】因为双曲线的右焦点为所以解析:6 【解析】因为双曲线22145x y -=的右焦点为(3,0) ,所以3,62p p ==9.4【分析】设点为过点作垂直于轴垂足为利用点在抛物线上建立方程即可求得的长【详解】解:由题意得设点为过点作垂直于轴垂足为即即整理得①又是抛物线上一点②由①②可得或(舍去)故答案为:【点睛】本题给出抛物解析:4 【分析】设点M 为(,)a b ,过点M 作MA 垂直于x 轴,垂足为A ,利用60xFM ∠=︒,点M 在抛物线24y x =上,建立方程,即可求得FM 的长. 【详解】解:由题意得(1,0)F设点M 为(,)a b 过点M 作MA 垂直于x 轴,垂足为A 60xFM ∠=︒,||2||MF FA ∴=,即||2(1)FM a =- ||3MF =,即||3MF =,2(1)3a ∴-=,整理得223(1)b a =-⋯①又M 是抛物线24y x =上一点24b a ∴=⋯②由①②可得3a =或13a =(舍去) ||2(31)4MF ∴=-=故答案为:4.【点睛】本题给出抛物线上的点M 满足60xFM ∠=︒,求焦半径||FM 的长,着重考查了抛物线的定义与简单几何性质等知识,属于中档题.10.【分析】过点作轴垂直为由三角形相似得到点的坐标代入椭圆方程变形求椭圆的离心率【详解】设过点作轴垂直为代入椭圆方程得解得:故答案为:【点睛】本题考查椭圆的性质重点考查数形结合分析问题的能力本题的关键是 解析:5 【分析】过点C 作CD x ⊥轴,垂直为D ,由三角形相似得到点C 的坐标,代入椭圆方程,变形求椭圆的离心率. 【详解】()1,0F c -,()2,0F c 设2,b A c a ⎛⎫- ⎪⎝⎭,过点C 作CD x ⊥轴,垂直为D ,122Rt AF F Rt CDF ,22112212DF F C CD AF F F AF ∴===, 22,2b C c a ⎛⎫∴- ⎪⎝⎭,代入椭圆方程得222222222441144c b c a c a a a a -+=⇒+=, 解得:55c e a ==.5【点睛】本题考查椭圆的性质,重点考查数形结合分析问题的能力,本题的关键是利用三角形相似求得点C 的坐标,属于中档题型.11.【分析】由题意可设椭圆方程为且利用椭圆定义及两点间的距离公式求得结合隐含条件求得则可求出椭圆方程【详解】解:由题意可设椭圆方程为且由椭圆的定义椭圆上一点到两焦点距离之和等于得则则椭圆方程为:故答案为解析:221106y x +=【分析】由题意可设椭圆方程为22221,(0)x y a b b a+=>>,且2c =,利用椭圆定义及两点间的距离公式求得a ,结合隐含条件求得b ,则可求出椭圆方程. 【详解】解:由题意可设椭圆方程为22221,(0)x y a b b a+=>>,且2c =,由椭圆的定义,椭圆上一点P 到两焦点距离之和等于2a .2a ∴==得a =b ==则椭圆方程为:221106y x +=.故答案为:221106y x +=.【点睛】本题考查椭圆的简单性质,考查了利用椭圆定义求椭圆的标准方程,属于基础题.12.【分析】转化条件得点则利用基本不等式即可得解【详解】由题意可知点设由可得则点当且仅当时等号成立故答案为:【点睛】本题考查了抛物线的性质平面向量的应用以及基本不等式的应用属于中档题【分析】转化条件得点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,则001322OM k y p y p=+,利用基本不等式即可得解. 【详解】 由题意可知点,02p F ⎛⎫⎪⎝⎭,0p >, 设()2000,02y P y y p ⎛⎫> ⎪⎝⎭,由||3||PM MF =可得4PF MF =, 则200,884y y p MF p ⎛⎫=-- ⎪⎝⎭,∴点2003,884y y p M p ⎛⎫+ ⎪⎝⎭,∴2143332288OMykypypy pp==≤=++,当且仅当0322ypy p=时等号成立.【点睛】本题考查了抛物线的性质、平面向量的应用以及基本不等式的应用,属于中档题.13.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物线的解析:②⑤【分析】设抛物线方程为22y px=.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论.【详解】设抛物线方程为22y px=.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p=,抛物线方程为220y x=,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp=⨯,解得52p=,可得抛物线方程为25y x=.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p⨯=--,解得5p=,可得抛物线方程为210y x=,因此正确.能使抛物线方程为210y x=的条件是②⑤.故答案为:②⑤.【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、解答题14.(1)22142x y+=;(2)220x y++=或220x y.【分析】(1)由已知即可得b c ==2a =,写出椭圆方程即可.(2)由面积关系知M 为AB 的中点,法一:()2,0A -设()00,M x y 有()0022,2B x y +,由M 在圆上,B 在椭圆上,代入求00,x y ,进而得到直线方程;法二:设直线AB 的方程为()2y k x =+,联立抛物线方程求得B 的横坐标,即可得到M 的坐标,由M 在圆上求k 值,即可得直线方程. 【详解】(1)由短轴的一个端点与两个焦点的连线互相垂直且焦距为易得:b c ==2a =,即椭圆的方程为22142x y +=.(2)因为2AOB AOM S S =△△,所以2AB AM =,即M 为AB 的中点,方法一:根据椭圆的方程22142x y +=,有()2,0A -,设()00,M x y ,则()0022,2B x y +,∴22089x y +=①,()()2200222142x y ++=②,得200918160x x --=,解得023x =-,083x =(舍去),把023x =-代入①,得023y =±,有12AB k =±. 因此,直线AB 的方程为()122y x =±+,即220x y ++=或220x y . 方法二: 设直线AB 的方程为()2y k x =+,由()221422x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222128840k xk x k +++-=,∴()()22212420x k x k ⎡⎤+++-=⎣⎦,解得222412B k x k -=+,∴()2224212B M x k x k+--==+,()22212M M ky k x k =+=+, 代入2289x y +=,得2222242812129k k k k ⎛⎫-⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭,化简得422820k k +-=,即()()2272410kk +-=,解得12k =±,所以,直线AB 的方程为()122y x =±+,即220x y ++=或220x y .【点睛】 关键点点睛:(1)根据已知确定,,a b c 关系并求值,写出椭圆方程即可.(2)由直线与圆、椭圆的关系,以及三角形面积的数量关系确定M 为AB 的中点,通过设点或直线方程,结合点在曲线上求参数,即可得到直线方程.15.(1)2212x y +=;(2)存在,()2,0P .【分析】(1)由已知条件列出关于,,a b c 的方程组,解得,,a b c 即得椭圆方程;(2)假设存在,设(),0P m ,()11,A x y ,()22,B x y ,设直线方程为(1)y k x =-,代入椭圆方程应用韦达定理得1212,x x x x +,然后计算由0AP BP k k +=是关于k 的恒等式可求得m 即得.【详解】(1)2221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,11a cb ⎧=⎪∴=⎨⎪=⎩,2212x y ∴+=.(2)假设存在(),0P m 满足题意,设()11,A x y ,()22,B x y ,():1AB l y k x =-,()22122y k x x y ⎧=-⎨+=⎩,()2222124220k x k x k ∴+-+-=, 2122412k x x k ∴+=+,21222212k x x k -=+,11AP y k x m =-,22BP y k x m =-, ()()()()1221120AP BP y x m y x m k k x m x m -+-+==--,()1221120y x y x m y y ∴+-+=,211212(1)(1)(2)0kx x kx x km x x -+--+-=,()()1212220kx x k mk x x km ∴-+++=,代入1212,x x x x +整理得24,2km k m ==,()2,0P ∴. 【点睛】方法点睛:本题考查求椭圆标准方程,求直线与椭圆相交中的定点问题.求椭圆方程的关键是列出关于,,a b c 的方程组,解之即得,直线与椭圆相交问题采用“设而不求”的思想方法,即设交点为1122(,),(,)x y x y ,设直线方程(1)y k x =-,同时假设定点在在.设坐标为(,0)m ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,并代入定点满足的条件0AP BP k k +=,由此求出参数m ,得定点坐标.16.(1)()()0,12,3m ∈⋃;(2)04m <<是q 的必要不充分条件;答案见解析. 【分析】(1)分别求出命题,p q 为真时参数m 的范围,求出它们的交集可得; (2)根据集合的包含关系可得. 【详解】解:(1)若p 为真,则()()0120m m m >⎧⎨-->⎩,即01m <<或2m >.若q 为真,则(3)0m m -<,即03m <<. ∴当p q ∧为真时,()()0,12,3m ∈⋃. (2)易知()()0,30,4,故04m <<是q 的必要不充分条件. 【点睛】结论点睛:本题考查由复合命题的真假求参数范围,考查充分必要条件的判断,需要掌握复合命题的真值表,充分必要条件与集合包含之间的关系.命题p 对应集合A ,命题q 对应的集合B ,则 (1)p 是q 的充分条件⇔A B ⊆; (2)p 是q 的必要条件⇔A B ⊇;(3)p 是q 的充分必要条件⇔A B =;(4)p 是q 的既不充分又不必要条件⇔集合,A B 之间没有包含关系.17.(1)22143x y +=;(2)3470x y +-=.【分析】(1)根据椭圆的定义判定轨迹方程并求出;(2)点差法求出直线的斜率,点斜式即可写出直线方程. 【详解】(1)由椭圆的定义可知点P 的轨迹是以()11,0F -,()21,0F 为焦点,长轴长为4的椭圆. Γ∴的方程为22143x y +=. (2)(点差法)设()11,A x y ,()22,B x y ,A 、B 是Γ上的点,由2211222234123412x y x y ⎧+=⎨+=⎩作差得,()()()()12121212340x x x x y y y y -++-+=, 又线段AB 的中点为()1,1M ,12122x x y y ∴+=+=,从而直线AB 斜率212134AB y y k x x -==--. 直线l 的方程为31(1)4y x -=--, 即3470x y +-=. 【点睛】关键点点睛:直线与圆锥曲线相交时,若涉及弦的中点问题,弦所在直线的斜率问题, 可以利用“点差法”,可简化运算,求出直线斜率或中点,属于中档题. 18.(1)24y x =;(2)8. 【分析】(1)根据椭圆的方程得出1c =,则得出椭圆的右焦点为()1,0,进而得出抛物线的焦点为()1,0F ,根据抛物线的性质得出2p =,从而得出抛物线的标准方程;(2)设C 、D 两点横坐标分别为1x ,2x ,结合条件和中点坐标公式得出126x x +=,最后根据抛物线的焦点弦公式得出12CD CF DF x x p =+=++,即可得出答案. 【详解】解:(1)由椭圆22143x y +=,可知224,3a b ==,则21c =,即1c =,则椭圆22143x y +=的右焦点为()1,0,所以抛物线()220y px p =>的焦点为()1,0F ,可知:12p=,∴2p =, 所以抛物线的标准方程为24y x =;(2)因为抛物线为24y x =,所以2p =,设C 、D 两点横坐标分别为1x ,2x ,因为线段CD 中点M 的横坐标为3,则1232x x +=,即126x x +=, 故12628CD CF DF x x p =+=++=+=. 【点睛】关键点点睛:本题考查椭圆的简单几何性质,考查抛物线的标准方程、定义以及抛物线的焦点弦公式,熟记抛物线的焦点弦公式是解题的关键.19.(1)2212x y +=;(2【分析】(1)运用椭圆的离心率和a ,b ,c 的关系,设出直线l 的方程,由直线和圆相切的条件,解方程可得c ,即可得到椭圆方程;(2)在12PF F 中,运用余弦定理和椭圆的定义,解方程可得1||PF ,运用三角形的面积公式,计算可得所求值.【详解】解:(1)c a =,可得a =,所以2222b a c c =-=, 所以椭圆C 的方程可化为222212x y c c+=.过椭圆的右焦点且斜率为1的直线方程为y x c =-, 此直线与圆()()222221x y -+-=相切,2=,解得1c =, 所求椭圆C 的方程为2212x y +=.(2)在12PF F △中,设1||PF m =,2||PF n =,m n +=,12||2F F , 由余弦定理得,22422cos120n m m =+-⨯︒,2242n m m =++,因为n m =代入上式解得m =所以12PF F △面积1211sin12022227S m F F =︒=⨯=故12PF F △ 【点睛】方法点睛:对于椭圆和双曲线的问题,看到焦半径要马上联想到椭圆双曲线的定义,利用其定义解题,必要时需借助正弦余弦定理求解.20.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值. 【详解】(1)由题意,a =c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A B x x k ⋅=-+, ∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122F F=则21112ABF S ===≤△.=,即0k =时,2ABF S.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围.21.()2-∞-【分析】先根据方程为双曲线以及椭圆条件得,p q 为真命题时实数m 的取值范围,再根据,p q 有且只有一个为真命题,进而根据集合关系即可得答案. 【详解】 由题设可知:命题p :方程22112x ym m +=-+表示双曲线,则有()()120m m -+<, 即解得2m <-或1m ,命题q :方程22212x ym m+=表示焦点在x 轴上的椭圆,则22220m mm m ⎧>⇒>⎨>⎩,由,p q 且只有一个真命题,则p 真q 假或p 假q 真,①当p 真q 假时,即2m <-或1m 且2m ≤,则2m <-;②当p 假q 真时,即212m m -≤≤⎧⎨>⎩, 无解,综上所述:实数m 的取值范围为(),2-∞-.【点睛】关键点睛:本题考查复合命题的真假求参数的取值范围,考查双曲线与椭圆的标准方程,分p 真q 假或p 假q 真两种情况讨论是解决本题的关键. 22.(1)22143x y +=;(2)最大值为3. 【分析】(1)根据离心率为12以及过定点2P ⎭,列方程即可得解; (2)设()11,A x y ,()22,B x y ,根据题意知,直线l 的斜率不为零,可设直线l 的方程为1x my =+和22143x y +=联立可得()2234690m y my ++-=,结合韦达定理带入面积公式,即可得解.【详解】 (1)依题意有22222123314c a a b c ab ⎧=⎪⎪=+⎨⎪⎪+=⎩,解得2,1.a b c =⎧⎪=⎨⎪=⎩,故椭圆C 的方程为22143x y +=. (2)设()11,A x y ,()22,B x y ,根据题意知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221431x y x my ⎧+=⎪⎨⎪=+⎩,得()2234690m y my ++-= ()()22636340m m ∆=++>,m ∈R , 由韦达定理得122634m y y m -+=+,122934y y m -=+,∴112212112F AB S F F y y y y =-=-==△, 令t =,则1t ≥,∴121241313F AB t S t t t ==++△. 令()13f t t t=+,则当1t ≥时,()f t 单调递增, ∴()()413f t f ≥=,13F AB S ≤△, 即当1t =,0m =时,1F AB S的最大值为3.【点睛】本题考查了直线和椭圆的位置关系,考查了椭圆中面积的最值问题,考查了韦达定理的应用,有一定的计算量,属于中档题.本题的关键有:(1)韦达定理的应用,韦达定理是联系各个变量之间关系的桥梁,是解决直线和圆锥曲线问题的最重要的方法;(2)计算能力和计算技巧,计算能力和计算技巧是解决解析几何问题的基础. 23.(1)22132x y +=;(2)3. 【分析】(1)根据离心率c e a ==,将点坐标代入曲线方程,结合222a b c =+,即可求得a ,b ,c 的值,即可求得答案;(2)由题意得右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,与椭圆联立,根据韦达定理,可得12y y +,12y y 的表达式,即可求得12y y -的表达式,根据m 的范围,即可求得12y y -的最大值,代入面积公式,即可求得OAB 的面积的最大值.【详解】(1)由题意得2222292144c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a=b =1c =. 故椭圆方程为:22132x y +=. (2)易知椭圆的右焦点为()1,0F ,设直线l 的方程为:()10x my m =+≠,联立直线l 方程代入椭圆方程221321x y x my ⎧+=⎪⎨⎪=+⎩,整理可得:()2223440m y my ++-=, 设()11,A x y ,()22,B x y ,则222(4)4(23)(4)48(+1)0m m m ∆=-+-=>122423m y y m -+=+,122423y y m -=+, 所以12y y -===, 因为20m ≥,所以2110,233m ⎛⎤∈ ⎥+⎝⎦, 易知当0m =,即211233m =+时,原式12y y -取得最大值= 此时AOB S的最大值为1211122y F y O ⨯⨯=⨯=-.即三角形OAB 面积的最大值为3. 【点睛】解题的技巧为:设直线l 的方程为:()10x my m =+≠,可联立消去x ,得到关于y 的一元二次方程,进而可直接求得12y y -的表达式,即可得12y y -的最大值,即可求得面积的最大值,考查分析理解,计算求值的能力属中档题.24.(1)1,12⎡⎤⎢⎥⎣⎦;(2)[]2,3【分析】(1)首先求命题p 为真命题时,求t 的取值范围,再根据题意转化为()10,1,2a a ⎛⎫⊆- ⎪⎝⎭,求实数a 的取值范围;(2)求命题q 为真命题时t 的取值范围,再转化为真命题时求a 的取值范围.【详解】(1)()()()2221010t a t a a t a t a --+-<⇔---<⎡⎤⎣⎦, 解得:1a t a -<< ,即不等式的解集是()1,a a -,由题意可知()10,1,2a a ⎛⎫⊆- ⎪⎝⎭, 所以1012a a -≤⎧⎪⎨≥⎪⎩,解得:112a ≤≤, 所以实数a 的取值范围是1,12⎡⎤⎢⎥⎣⎦; (2)方程()22113x y t t t+=∈+-R 表示焦点在x 轴的椭圆, 103013t t t t +>⎧⎪∴->⎨⎪+>-⎩,解得:13t <<,即()1,3t ∈,若p 是q 的充分不必要条件,则()1,a a - ()1,3,113a a -≥⎧∴⎨≤⎩,解得23a ≤≤, ∴实数a 的取值范围是[]2,3【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.25.(1)2212x y +=;(2)5±. 【分析】(1)根据条件解关于,a c 的方程组即可得结果;(2)设()11,E x y ,()22,F x y ,联立直线方程与椭圆方程,根据韦达定理,可求得中点坐标,代入圆方程解得m 的值.【详解】(1)由题意,得2221c a a c ⎧=⎪⎨⎪=+⎩,解得1a c ⎧=⎪⎨=⎪⎩ 故椭圆的标准方程为2212x y +=. (2)设()11,E x y ,()22,F x y ,线段EF 的中点为()00,M x y .联立2212y x m x y =+⎧⎪⎨+=⎪⎩,消去y 得,2234220x mx m ++-= 120223x x m x +==-,003m y x m =+=,即2,33m m M ⎛⎫- ⎪⎝⎭,()()22443220m m m ∆=-⨯⨯->⇒<.又因为点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得m =,满足题意. 【点睛】 关键点睛:本题考查弦中点问题以及椭圆标准方程,解题的关键是熟悉中点坐标公式,本题中直线方程代入椭圆方程整理后应用韦达定理求出12x x +,求出中点坐标,再将其代入圆中求解,考查了学生的基本分析转化求解能力,属中档题.26.(1)2212516x y +=;(2)3225890x y +-=. 【分析】(1)由题可得22a b 9-=3=,求出,a b 即得椭圆方程; (2)利用点差法可求直线斜率,即可得出直线方程.【详解】(1)设椭圆M 的方程为22221(0)x y a b a b+=>>,则22a b 9-=, 双曲线N30y ±=,3=,所以4b =,于是5a =, 所以椭圆M 的方程为2212516x y +=. (2)显然直线l 的斜率是存在的,设直线l 的斜率为k ,设A ,B 的坐标分别为11(,)x y ,22(,)x y , 则221122221251612516x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,相减得2222121202516x y y x --+=, 整理得121212121625y y x x x x y y -+=-⨯-+,所以162232252125k ⨯=-⨯=-⨯, 所以直线l 的方程为321(2)25y x -=--,即3225890x y +-=. 【点睛】方法点睛:点差法解决中点弦问题:设直线与圆锥曲线的交点(弦的端点)坐标为11(,)A x y ,22(,)B x y ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量.。

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试卷(包含答案解析)(3)

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试卷(包含答案解析)(3)

一、填空题1.已知椭圆()222210x y a b a b+=>>的焦距等于其过焦点且与长轴垂直的弦长,则该椭圆的离心率为______.2.过椭圆()2222:10x y C a b a b+=>>的右焦点作x 轴的垂线,交椭圆C 于,A B 两点,直线l 过C 的左焦点和上顶点,若以AB 为直径的圆与l 存在公共点,则椭圆C 的离心率的取值范围是__________.3.已知双曲线M :()222210,0x y a b a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆()22x c y a -+=的两条切线互相垂直,则双曲线M 的离心率的取值范围是________.4.已知点P 为抛物线C :24y x =上的动点,抛物线C 的焦点为F ,且点()3,1A ,则PA PF +的最小值为_______.5.已知点A ,B 分别是椭圆2213620x y +=长轴的左、右端点,点P 在椭圆上,直线AP 的斜率为33,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,椭圆上的点到点M 的距离d 的最小值为______.6.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.7.在直角坐标平面内的△ABC 中,(2,0)A -、(2,0)C ,若sin sin 2sin A C B +=,则△ABC 面积的最大值为____________.8.早在一千多年之前,我国已经把溢流孔技术用于造桥,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同,建立如图所示的平面直角坐标系xoy ,根据图上尺寸, 溢流孔ABC 所在抛物线的方程为_________, 溢流孔与桥拱交点A 的横坐标...为 ___________ .9.已知1F ,2F 分别为椭圆()222210x y a b a b+=>>的左、右焦点,且离心率23e =,点P是椭圆上位于第二象限内的一点,若12PF F △是腰长为4的等腰三角形,则12PF F △的面积为_______.10.设M ,N 是抛物线2y x =上的两个不同点,O 是坐标原点,若直线OM 与ON 的斜率之积为12-,则下列结论①42OM ON +;②O 到直线MN 的距离不大于2;③直线MN 过抛物线2y x =的焦点;④MN 为直径的圆的面积大于4π,不正确的有__11.已知P 是椭圆2214x y +=上的一点,F 为右焦点,点A 的坐标为,则AFP周长的最大值为_______.12.已知直线y kx m =+与双曲线22221(0,0)x y a b a b-=>>的两条渐近线交于A B 、两点,与1yx k交于点N ,若N 为AB 的中点,则双曲线的离心率等于____. 13.已知P 是椭圆2214x y +=上的一点,1F ,2F 是椭圆的两个焦点,当123F PF π∠=时,则12PF F △的面积为________.二、解答题14.已知抛物线2:2C y px =过点()1,2A . (1)求抛物线C 的方程;(2)求过点()3,2P -的直线与抛物线C 交于M 、N 两个不同的点(均与点A 不重合).设直线AM 、AN 的斜率分别为1k 、2k ,求证:12k k ⋅为定值.15.已知抛物线C 的顶点在坐标原点,焦点F 在x 轴上,且抛物线C 上横坐标为4的点P 到焦点F 的距离为92. (1)求抛物线C 的标准方程.(2)已知点()2,0P ,点Q 在抛物线C 上.①若点Q 在第一象限内,且2PQ =,求点Q 的坐标. ②求PQ 的最小值.16.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程.17.已知()()()22:3400,q :112x y p m a m a a m m--<>+=--.(1)若q 表示双曲线,求实数m 的取值范围;(2)若q 表示焦点在y 轴上的椭圆,且q ⌝是p ⌝中的充分不必要条件,求实数a 的取值范围.18.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,其左,右焦点分别是12,F F ,椭圆上的4个点,,,A B M N 满足:直线AB 过左焦点1F ,直线AM 过坐标原点O ,直线AN 的斜率为32-,且2ABF 的周长为8 (1)求椭圆C 的方程. (2)求AMN 面积的最大值19.已知命题:p 方程22113x ym m+=+-表示焦点在y 轴上的椭圆,命题:q 关于x 的不等式22230x mx m +++>恒成立;(1)若命题q 是真命题,求实数m 的取值范围;(2)若“p q ∧”为假命题,“p q ∨”为真命题.求实数m 的取值范围.20.对于椭圆22221(0)x y a b a b+=>>,有如下性质:若点()00,P x y 是椭圆外一点,PA ,PB 是椭圆的两条切线,则切点A ,B 所在直线的方程是00221x x y ya b+=,可利用此结论解答下列问题.已知椭圆C :22143x y +=和点(4,)()P t t R ∈,过点P 作椭圆C 的两条切线,切点是A ,B ,记点A ,B 到直线PO (O 是坐标原点)的距离是1d ,2d .(1)当3t =时,求线段AB 的长; (2)求12||AB d d +的最大值.21.已知椭圆E :()222210x y a b a b +=>>的离心率为63,且过点31,22⎛⎫ ⎪⎝⎭.(1)求椭圆E 的标准方程;(2)若不过点()0,1A 的动直线l 与椭圆C 交于P ,Q 两点,且0AP AQ ⋅=,求证:直线l 过定点,并求该定点的坐标.22.如图,椭圆22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过1F 的直线l 与椭圆相交于A 、B 两点.(1)若01260AF F ∠=,且 120AF AF ⋅=求椭圆的离心率. (2)若2,1a b ==,求22F A F B ⋅的最大值和最小值.23.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,且椭圆C 过点33,2M ⎛⎫- ⎪ ⎪⎭,离心率12e =,点P 在椭圆C 上,延长1PF 与椭圆C 交于点Q ,点R 是2PF 的中点.(1)求椭圆C 的方程.(2)若点O 是坐标原点,记1QF O 与1PF R 的面积之和为S ,试求S 的最大值. 24.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点P ⎭在C 上. (1)求椭圆C 的方程;(2)设1F ,2F 分别是椭圆C 的左,右焦点,过2F 的直线l 与椭圆C 交于不同的两点A ,B ,求1F AB 面积的最大值.26.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为()1,0F -,过点F 的直线l 交椭圆C于,A B 两点,当直线l 垂直于x 轴时,OAB (O 为原点). (1)求椭圆C 的方程;(2)若直线l ,求直线OA 的斜率的取值范围.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】作出图形设过椭圆右焦点且垂直于长轴的弦为计算出再利用椭圆的定义可得出关于的等式进而可求得椭圆的离心率的值【详解】如下图所示设椭圆的左右焦点分别为设过椭圆右焦点且垂直于长轴的弦为则由勾股定理可解析:12【分析】作出图形,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,计算出1AF ,再利用椭圆的定义可得出关于a 、c 的等式,进而可求得椭圆的离心率的值. 【详解】如下图所示,设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F 、2F ,设过椭圆右焦点2F 且垂直于长轴的弦为AB ,则2AB c =,212AF AB c ==,由勾股定理可得1AF ==,由椭圆的定义可得122AF AF a +=52c c a +=,所以,该椭圆的离心率为()()251512515151c e a ====++-. 51-. 【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.2.【分析】求出直线的方程利用点到直线的距离与半通径的关系列出不等式求解即可【详解】解:直线的方程为:椭圆的右焦点过椭圆的右焦点作轴的垂线交于两点直线过的左焦点和上顶点若以为直径的圆与存在公共点可得:可解析:50,5⎛ ⎝⎦【分析】求出直线l 的方程,利用点到直线的距离与半通径的关系,列出不等式,求解即可. 【详解】解:直线l 的方程为:1x yc b+=-,椭圆的右焦点(,0)c , 过椭圆2222:1(0)x y C a b a b+=>>的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,22211b a c b +可得:2b c ,即2224a c c -,即:215e,(0,1)e ∈, 解得:50e<.故答案为:⎛ ⎝⎦.【点睛】椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3.【分析】要使得经过点所作的圆的两条切线互相垂直必有而焦点到双曲线渐近线的距离为故利用双曲线的离心率的计算公式解答【详解】解:∵所以离心率圆是以为圆心半径的圆要使得经过点所作的圆的两条切线互相垂直必有解析:(【分析】要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,故2TF a b =≥,利用双曲线的离心率的计算公式解答.【详解】解:∵0b >,0a >,所以离心率1c e a ==>,圆()22x c y a -+=是以(),0F c 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直,必有TF =,而焦点(),0F c 到双曲线渐近线的距离为b ,所以TF b =≥,即b a c e a ==,所以双曲线M 的离心率的取值范围是(.故答案为:(. 【点睛】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意双曲线性质的灵活运用.4.4【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求取得最小进而可推断出当三点共线时最小答案可得【详解】抛物线的准线为设点在准线上的射影为如图则根据抛物线的定义可知要求取得最小值即解析:4 【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知||||PF PD =进而把问题转化为求||||PA PD +取得最小,进而可推断出当D ,P ,A 三点共线时||||PA PD +最小,答案可得. 【详解】抛物线2:4C y x =的准线为1x =-. 设点P 在准线上的射影为D ,如图,则根据抛物线的定义可知||||PF PD =,要求||||PA PF +取得最小值,即求||||PA PD +取得最小. 当D ,P ,A 三点共线时,||||PA PD +最小,为3(1)4--=. 故答案为:4. 【点睛】关键点点睛:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.5.【分析】求出直线的方程设则由点到直线的距离公式可得解得再由椭圆的有界性即可得出最值【详解】解:由题可知则直线的方程是设点的坐标是则到直线的距离是于是又解得所以点设椭圆上的点到点的距离为有由于所以当时 15【分析】求出直线AP 的方程,设(),0M m ,则由点到直线的距离公式可得662m m +=-,解得2m =,再由椭圆的有界性即可得出最值. 【详解】解:由题可知()()6,0,6,0A B -,则直线AP 的方程是360x y -+=.设点M 的坐标是()0m ,,则M 到直线AP 的距离是62m +, 于是662m m +=-,又66-≤≤m ,解得2m =,所以点()2,0M . 设椭圆上的点(),x y 到点M 的距离为d ,有()222225244209d x y x x x =-+=-++-2491592x ⎛⎫=-+ ⎪⎝⎭,由于66x -≤≤.所以当92x =时,d 取最小值15. 故答案为:15.6.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题7.【分析】由正弦定理可得结合椭圆的定义可得点的轨迹方程即可得解【详解】因为所以所以点的轨迹是以为左右焦点长轴长的椭圆(不在x 轴上)该椭圆焦距所以所以点的轨迹方程为当时所以面积的最大值故答案为:【点睛】解析:【分析】由正弦定理可得2BC AB AC +=,结合椭圆的定义可得点B 的轨迹方程,即可得解. 【详解】因为sin sin 2sin A C B +=,4AC =,所以28BC AB AC AC +==>, 所以点B 的轨迹是以A 、C 为左右焦点,长轴长28a =的椭圆(不在x 轴上), 该椭圆焦距24c =,所以22212b a c =-=,所以点B 的轨迹方程为()22101612x y y +=≠,当0x =时,y =±,所以ABC 面积的最大值max 142S =⨯⨯=故答案为: 【点睛】关键点点睛:解决本题的关键是利用正弦定理转化条件为2BC AB AC +=,再结合椭圆的定义即可得解.8.【分析】根据题意设桥拱所在抛物线的方程为溢流孔ABC 所在方程为运用待定系数法求得可得右边第二个溢流孔所在方程联立抛物线方程可得所求【详解】设桥拱所在抛物线方程由图可知曲线经过代入方程解得:所以桥拱所 解析:()236145x y -=-14013【分析】根据题意,设桥拱所在抛物线的方程为22x py =-,溢流孔ABC 所在方程为()21:142(0)C x p y p ''-=->,运用待定系数法,求得p ,p ',可得右边第二个溢流孔所在方程,联立抛物线方程,可得所求. 【详解】设桥拱所在抛物线方程22x py =-,由图可知,曲线经过()20,5-,代入方程()22025p =-⨯-,解得:40p =,所以桥拱所在抛物线方程280x y =-; 四个溢流孔轮廓线相同,所以从右往左看, 设第一个抛物线()21:142C x p y '-=-,由图抛物线1C 经过点()20,5A -,则()()2201425p '-=-⨯-,解得185p '=, 所以()2136:145C x y -=-, 点A 即桥拱所在抛物线280x y =-与()2136:145C x y -=-的交点坐标, 设(),,714A x y x <<由()228036145714x y x y x ⎧=-⎪⎪-=-⎨⎪<<⎪⎩,解得:14013x = 所以点A 的横坐标为14013. 故答案为:()236145x y -=-;14013【点睛】关键点点睛:此题考查根据实际意义求抛物线方程和交点坐标,关键在于合理建立模型正确求解,根据待定系数法,及平移抛物线后方程的形式即可.9.【分析】由题意可计算出由是腰长为4的等腰三角形且点在第二象限可得的值过作于点可得的值可得的面积【详解】解:由题意知则又∴由椭圆的定义得又是腰长为4的等腰三角形且点在第二象限∴过作于点则∴的面积为故答【分析】由题意可计算出2c =,3c =,由12PF F △是腰长为4的等腰三角形,且点P 在第二象限,可得2PF 、1PF 的值,过2F 作21F D PF ⊥于点D ,可得PD ,2DF 的值,可得12PF F △的面积.【详解】解:由题意知24c =,则2c =, 又23c e a ==,∴3a =,由椭圆的定义得1226PF PF a +==, 又12PF F △是腰长为4的等腰三角形,且点P 在第二象限,∴24PF =,12=PF , 过2F 作21F D PF ⊥于点D ,则1PD =,2DF =∴12PF F △的面积为122⨯=【点睛】本题主要考查椭圆的定义及简单的几何性质、三角形面积的计算,考查学生的逻辑推理能力、数学计算能力,属于中档题.10.①③④【分析】当直线的斜率不存在时根据斜率公式即可求得的方程当斜率存在时设直线的方程代入抛物线方程利用韦达定理及直线的斜率公式即可求得直线恒过定点然后判断出以为直径的圆的面积再根据抛物线几何性质求得解析:①③④ 【分析】当直线MN 的斜率不存在时,根据斜率公式,即可求得MN 的方程,当斜率存在时,设直线MN 的方程,代入抛物线方程,利用韦达定理及直线的斜率公式即可求得直线MN 恒过定点,然后判断出OM ON +=<||MN =,以MN 为直径的圆的面积2π,再根据抛物线几何性质求得焦点坐标求得答案. 【详解】当直线MN 的斜率不存在时,设200(,)M y y ,200(,)N y y -,因为斜率之积为12-,所以20112y -=-,即202y =, 所以MN 的直线方程为2x =;当直线的斜率存在时,设直线方程为y kx m =+,联立2y kx my x =+⎧⎨=⎩, 可得20ky y m -+=.设1(M x ,1)y ,2(N x ,2)y ,则12m y y k =,2122m x x k=,所以12121·2OM ON y y k k k x x m ===-,即2m k =-. 所以直线方程为2(2)y kx k k x =-=-.则直线MN 过定点(2,0).则O 到直线MN 的距离不大于2.故②正确. 当MN 的直线方程为2x =时,(2,M N,此时OM ON +=<①错误;当MN 的直线方程为2x =时,(2,M N,此时||MN =MN 为直径的圆的面积2π,故④错误;抛物线2y x =的焦点是1(,0)4,故③错误;故答案为:①③④. 【点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系,直线的斜率公式的应用以及直线恒过定点问题,还考查了转化化归的思想和运算求解的能力,属于中档题.11.10【分析】如图所示设椭圆的左焦点为利用利用即可得到结果【详解】解:如图所示设椭圆的左焦点为由题意可知则因为的坐标为所以由椭圆的定义可得因为所以周长为当且仅当三点共线时取等号所以周长的最大值为10故解析:10 【分析】如图所示,设椭圆的左焦点为'F ,利用'AF AF =,'24PF PF a +==,利用''PA PF AF -≤,即可得到结果【详解】解:如图所示,设椭圆的左焦点为'F , 由题意可知2,1,3a b c ===,则(3,0)F ,因为A 的坐标为(0,6),所以'3AF AF ==, 由椭圆的定义可得'24PF PF a +==, 因为''PA PF AF -≤,所以AFP 周长为'434310AF PA PF AF PA PF ++=++-≤++=, 当且仅当',,A P F 三点共线时取等号, 所以AFP 周长的最大值为10, 故答案为:10【点睛】此题考查了椭圆的定义及其性质,三角形的三边大小关系,考查数形结合的思想,考查计算能力,属于中档题12.【分析】由题意联立方程组可得由中点的性质可得化简后利用即可得解【详解】由题意双曲线的两条渐近线为则同理联立为的中点即整理得故答案为:【点睛】本题考查了双曲线的性质和离心率的求解考查了直线交点的问题和【分析】由题意联立方程组可得A am x ka b -=+、B amx b ka=-、21N km x k =-,由中点的性质可得2A B N x x x +=,化简后利用e =即可得解. 【详解】由题意双曲线22221(0,0)x y a b a b -=>>的两条渐近线为b y x a=±,则A y kx mam x b ka b y x a =+⎧-⎪⇒=⎨+=-⎪⎩,同理B am x b ka =-, 联立211N y kx mkm x k y x k =+⎧⎪⇒=⎨-=⎪⎩,N 为AB 的中点,∴2A B N x x x +=,即221am am mkb ka b ka k -+=+--, 整理得221b a =,∴e ==. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了直线交点的问题和运算能力,属于中档题.13.【分析】由题意画出图形利用椭圆定义及余弦定理求得的值代入三角形面积公式得答案【详解】解:如图由椭圆得则由余弦定理可得:即的面积故答案为:【点睛】本题考查椭圆的简单性质考查椭圆定义的应用是中档题解析:3【分析】由题意画出图形,利用椭圆定义及余弦定理求得12PF PF 的值,代入三角形面积公式得答案. 【详解】 解:如图,由椭圆2214x y +=,得2a =,1b =,则24a =,223c a b =-=1224PF PF a ∴+==,由余弦定理可得:2221212122cos60F F PF PF PF PF =+-︒,()22121243c PF PF PF PF ∴=+-,即1243PF PF =. 12F PF ∴的面积1211433sin 6022323S PF PF =︒=⨯⨯=.故答案为:33. 【点睛】本题考查椭圆的简单性质,考查椭圆定义的应用,是中档题,二、解答题14.(1)24y x =;(2)证明见解析. 【分析】(1)本题可将()1,2A 代入抛物线方程中求出p 的值,即可得出结果; (2)本题首先可设()11,M x y 、()22,N x y 以及直线MN 的方程23xt y ,然后通过联立直线MN 的方程与抛物线方程即可得出124y y t +=、12812y y t =--,最后通过1212122211y y k k x x 并化简即可得出结果.【详解】(1)因为抛物线2:2C y px =过点()1,2A , 所以42p =,2p =,抛物线方程为24y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为23xt y ,联立()2234x t y y x⎧=++⎨=⎩,整理得248120y ty t ---=,21632480t t ∆=++>,124y y t +=,12812y y t =--,则1212122212122222111144y y y y k k y y x x 1212161622481284y y y y t t ,故12k k ⋅为定值2-. 【点睛】关键点点睛:本题考查抛物线方程的求法以及抛物线与直线相交的相关问题的求解,通过联立直线的方程与抛物线方程以及韦达定理得出12yy +、12y y 的值是解决本题的关键,考查计算能力,考查化归与转化思想,是中档题. 15.(1)22y x =;(2)①()2,2; 【分析】(1)由抛物线定义:抛物线上点到焦点距离等于点到其准线的距离有42pPF =+,即可求p ,写出抛物线方程.(2)令(,)Q x y ,利用两点距离公式得PQ =Q 的坐标,利用点在抛物线上,结合二次函数最值求PQ 的最小值. 【详解】(1)由题意,可设抛物线C :22y px =,焦点,02p F ⎛⎫⎪⎝⎭,则9422p PF =+=,解得1p =,∴抛物线C 的标准方程为22y x =, (2)令(,)Q x y , ①由已知条件得2PQ ==,将22y x =代入上式,并变形得,220x x -=,解得0x =(舍去)或2x =, 当2x =时,2y =±,只有2x =,2y =满足条件, ∴点Q 的坐标为()2,2. ②2PQ ==,其中22y x =,()()()22222224130PQ x x x x x x =-+=-+=-+≥,当1x =时,min PQ =【点睛】 关键点点睛:(1)由抛物线定义,由待定系数法求p ,写出抛物线方程.(2)由点在抛物线上,结合两点坐标的距离公式,求点坐标以及距离的最小值. 16.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程. 17.(1)()()–,12,∞+∞;(2)13,38⎡⎤⎢⎥⎣⎦.【分析】(1)根据曲线方程,列式()()120m m --<,求m 的取值范围;(2)分别求两个命题为真命题时,m 的取值范围,根据命题的等价性转化为p 是q 的充分不必要条件,转化为真子集关系,求实数a 的取值范围. 【详解】(1)由()()120m m --<,得1m <或2m >,即()()–,12,m ∈∞⋃+∞(2)命题p ∶由()()()3400m a m a a --<>,得34a m a <<.命题q ∶22112x y m m+=--表示焦点在y 轴上的椭圆, 则102021m m m m ->⎧⎪->⎨⎪->-⎩,解得312m <<,因为q ⌝是p ⌝的充分不必要条件,所以p 是q 的充分不必要条件,则31342a a ≥⎧⎪⎨≤⎪⎩,解得1338a ≤≤,故实数a 的取值范围为:13,38⎡⎤⎢⎥⎣⎦.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.18.(1)22143x y +=;(2)【分析】(1)根据2ABF 的周长为8,解得2a =,再由离心率为12求解. ()2设直线3:2AN y x t =-+,与椭圆方程联立,由弦长公式求得AN ,点O 到直线AN 的距离,然后根据直线AM 过坐标原点,由2AMNAONSS=求解.【详解】()1由椭圆的定义知48,2a a ==,12c a =, 1c ∴=,从而2223b a c =-=,所以椭圆C 的方程为22143x y +=.()2如图所示:设直线3:2AN y x t =-+, 代入椭圆方程223412x y +=, 化简得:223330x tx t -+-=, 设()()1122,,,A x y N x y , 由()23120t ∆=->,得212t <,且()2312914t AN -=+ 而点O 到直线AN 的距离914t d =+,且直线AM 过坐标原点,()23129214914AMNAONt t SS-∴==++,()()2222121222333t t t t +--=≤=当且仅当2212t t =- , 即26t =时取等号,AMN ∴面积的最大值为3【点睛】思路点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),弦长公式为;AB==k为直线斜率).19.(1)13m-<<;(2)[)1,3.【分析】(1)根据判别式小于0可解得结果;(2)根据复合命题的真假可得p,q为一个真命题,一个假命题,分两种情况讨论列式可解得结果.【详解】(1)若命题q是真命题,则关于x的不等式22230x mx m+++>恒成立;则判别式244(23)0m m∆=-+<,即2230m m--<,得13m-<<(2)∵方程22113x ym m+=+-表示焦点在y轴上的椭圆.∴013m m<+<-,解得:11m-<<,∴若命题p为真命题,则实数m的取值范围是11m-<<;由(1)知,若命题q为真命题,则实数m的取值范围是13m-<<若“p q∧”为假命题,“p q∨”为真命题,则p,q为一个真命题,一个假命题,若p真q假,则1131mm m-<<⎧⎨≥≤-⎩或,此时无解,若p假q真,则1311mm m-<<⎧⎨≥≤-⎩或,得13m≤<.综上,实数m的取值范围是[)1,3.【点睛】关键点点睛:分别根据命题,p q为真命题,求出m的取值范围是解题关键.20.(1)247;(2.【分析】(1)由已知结论求出直线AB的方程,联立方程,得韦达定理,利用弦长公式即可求得AB的长;(2)将12||ABd d+表示为关于t的函数,再利用换元法与分离常数法两种方法分别求出最值.【详解】(1)解当3t=时,直线AB方程为1x y+=,联立,得27880x x--=.设()11,A x y,()22,B x y,则1287x x+=,1287x x=-.则1224||7AB x=-==.(2)解直线AB:13tx y+=,即13tx y=-+,直线OP:4ty x=.设()11,A x y,()22,B x y,则12||AB y y=-,12d d+===记12||ABmd d=+,则12||ABmd d==+,接下来介绍求最值的不同方法.法1:常规换元法令212s t=+,12s≥,则222222(3)(4)12121114949112244848 s s s sms s s s s-++-⎛⎫===-++=--+≤⎪⎝⎭m≤,当24s即t=±12||ABd d+.法2:分离常数法422242422514412414424144t t tmt t t t++==+++++,显然0t=时不取得最大值,则222149111444824mtt=+≤+=++,12m≤当t=±12||ABd d+的最大值是12.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.21.(1)2213xy+=;(2)证明见解析;定点10,2⎛⎫-⎪⎝⎭.【分析】(1)运用离心率公式和基本量a,b,c的关系,以及点满足椭圆方程,解方程可得椭圆方程;(2)由已知可得直线l的斜率存在,设直线l的方程为()1y kx t t=+≠,与椭圆方程联立,整理得()()222136310kxktx t +++-=.由0AP AQ ⋅=,利用根与系数的关系求得t值,从而可证明直线l 过定点10,2⎛⎫- ⎪⎝⎭. 【详解】(1)解:椭圆E :()222210x y a b a b +=>>的离心率为3,且过点31,22⎛⎫ ⎪⎝⎭,可得3c e a ==,222a c b -=,且2291144a b +=,解得a =1b =,c =则椭圆方程为2213x y +=.(2)证明:由0AP AQ ⋅=,可知AP AQ ⊥,从而直线l 与x 轴不垂直, 故可设直线l 的方程为()1y kx t t =+≠,联立2213y kx t x y =+⎧⎪⎨+=⎪⎩,整理得()()222136310k x ktx t +++-=. 设()11,P x y ,()22,Q x y ,则122613kt x x k -+=+,()21223113t x x k-=+,()* 由()()222(6)413310kt k t∆=-+⨯->,得2231k t >-,由0AP AQ ⋅=,得()()1122,1,1AP AQ x y x y ⋅=-⋅-()()2212121(1)(1)0k x x k t x x t =++-++-=,将()*代入,得12t =-, 所以直线l 过定点10,2⎛⎫- ⎪⎝⎭. 【点睛】本题主要考查椭圆方程的求法,直线与椭圆的综合,及定点问题,解题时要认真审题,注意函数与方程思想的合理运用. (1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(11;(2)最大值72;最小值1-. 【分析】(1)因为在焦点三角形12AF F 中,120AF AF ⋅=,则12AF AF ⊥,又因为01260AF F ∠=,所以12,AF c AF ==,所以1212212F F c c e a a AF AF =====+, (2)若1a b ==,则1c =,12(1,0),(1,0)F F -,当AB 垂直于x 轴时,可求出,A B两点的坐标,从而可得22F A F B ⋅的值,当AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为(1)y k x =+,与椭圆方程联立成方程组,消去y 后,整理再利用韦达定理得2122412k x x k+=-+, 21222(1)12k x x k -⋅=+,从而可得22F A F B ⋅=22271791222(12)k k k -=-++,进而可求出其取值范围 【详解】 (1)120AF AF ⋅=,12AF AF ∴⊥因为1260AF F ∠=。

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试卷(有答案解析)(2)

新人教版高中数学选修一第三单元《圆锥曲线的方程》测试卷(有答案解析)(2)

一、填空题1.P 是非等轴双曲线222:116x y C a -=上的一点,12,F F 分别是双曲线C 左、右焦点,若1122,12PF F F PF ⊥=,则双曲线C 的渐近线方程是__________.2.已知椭圆2222:1(0)x y C a b a b+=>>经过函数31x y x =-图象的对称中心,若椭圆C 的离心率1,23e ⎛∈ ⎝⎭,则C 的长轴长的取值范围是_____________. 3.已知双曲线22:221(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过原点O 作斜率的直线交C 的右支于点A ,若1223F AF π∠=,则双曲线的离心率为__________. 4.已知ABC 的周长为20,且顶点()0,3B -,()0,3C ,则顶点A 的轨迹方程是___________.5.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,若在双曲线的右支上存在一点P ,使得122PF PF =,则双曲线C 的离心率e 的取值范围是____.6.已知A B 、为椭圆2214x y +=和双曲线2214x y -=的公共顶点, P Q 、分别为双曲线和椭圆上不同于两点A B 、的动点,且有()(),||1PA PB QA QBR λλλ+=+∈>,设直线AP 、BP 、AQ 、BQ 的斜率分别为1234,,,k k k k ,则1234 k k k k +++=______.7.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,O 为坐标原点.过点F 的直线240x y +-=与椭圆的交点为Q (点Q 在x 轴上方),且||||OF OQ =,则椭圆C 的离心率为_____.8.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.9.已知1F 、2F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点P 为C 上一点,O 为坐标原点,2POF ∆为正三角形,则C 的离心率为__________.10.椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点(P 在x 轴上方),1PF PQ =,若1PQ PF⊥,则椭圆的离心率e =______.11.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()3,0F ,且离心率为35,ABC 的三个顶点都在椭圆C 上,设ABC 三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别为123k k k 、、,且123k k k 、、均不为0.O 为坐标原点,若直线OD OE OM 、、的斜率之和为1.则123111k k k ++=________. 12.若抛物线22y px =的焦点与双曲线22145x y -=的右焦点重合,则实数p 的值为____.13.设D 为椭圆2215y x +=上任意一点,()0,2A -,()0,2B ,延长AD 至点P ,使得PD BD =,则点P 的轨迹方程为______. 二、解答题14.已知抛物线C 的顶点在坐标原点,焦点F 在x 轴上,且抛物线C 上横坐标为4的点P 到焦点F 的距离为92. (1)求抛物线C 的标准方程.(2)已知点()2,0P ,点Q 在抛物线C 上.①若点Q 在第一象限内,且2PQ =,求点Q 的坐标. ②求PQ 的最小值.15.已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,短轴端点到焦点的距离为2.(1)求椭圆C 的方程(2)设A ,B 为椭圆C 上任意两点,O 为坐标原点,且OA OB ⊥.求证:原点O 到直线AB 的距离为定值,并求出该定值.16.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 17.已知抛物线2:y 2)3(0C px p <<=,其焦点为F,点(,Q m 在抛物线C 上,且|QF |=4,过点(4,0)的直线l 与抛物线C 相交于A ,B 两点,连结OA ,OB . (1)求抛物线C 的方程; (2)证明:OA OB ⊥.18.已知椭圆()222210x y C a b a b ∴+=>>的离心率22e =,左焦点为1F ,右焦点为2F ,且椭圆上一动点M 到2F 的最远距离为 21+,过2F 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)直线l 的斜率存在且不为0时,试问x 轴上是否存在一点P 使得OPA OPB ∠=∠,若存在,求出点P 坐标;若不存在,请说明理由.19.已知椭圆()222210x y a b a b+=>>的离心率为12,点31,2⎛⎫ ⎪⎝⎭在椭圆上.(1)求椭圆的方程;(2)O 是坐标原点,过椭圆的右焦点F 直线1l 交椭圆于P ,Q 两点,求OPQ △的最大值.20.已知椭圆C :()222210x y a b a b+=>>的离心率为12,椭圆C 的中心O 关于直线250x y --= 的对称点落在直线2x a =上;(1)求椭圆C :的方程;(2)设()4,0P ,M 、N 是椭圆C 上关于x 轴对称的任意两点,连接PN 交椭圆C 于另一点E ,求直线PN 斜率的取值范围; (3)证明直线ME 与x 轴相交于定点.21.对于椭圆22221(0)x y a b a b+=>>,有如下性质:若点()00,P x y 是椭圆外一点,PA ,PB 是椭圆的两条切线,则切点A ,B 所在直线的方程是00221x x y ya b+=,可利用此结论解答下列问题.已知椭圆C :22143x y +=和点(4,)()P t t R ∈,过点P 作椭圆C 的两条切线,切点是A ,B ,记点A ,B 到直线PO (O 是坐标原点)的距离是1d ,2d .(1)当3t =时,求线段AB 的长;(2)求12||AB d d +的最大值.22.已知双曲线1C 的方程为22143x y -=,椭圆2C 与双曲线有相同的焦距,1F ,2F 是椭圆的上、下两个焦点,已知P 为椭圆上一点,且满足12PF PF ⊥,若12PF F △的面积为9. (1)求椭圆2C 的标准方程;(2)点A 为椭圆的上顶点,点B 是双曲线1C 右支上任意一点,点M 是线段AB 的中点,求点M 的轨迹方程.23.如图,椭圆22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过1F 的直线l 与椭圆相交于A 、B 两点.(1)若01260AF F ∠=,且 120AF AF ⋅=求椭圆的离心率. (2)若2,1a b ==,求22F A F B ⋅的最大值和最小值.24.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点1F 上,片门位于另一个焦点2F 上.由椭圆一个焦点1F 发出的光线,经过旋转椭圆面反射后集中到另一个焦点2F .已知112BF F F ⊥,153F B =,124F F =.(1)试建立适当的坐标系,求截口BAC 所在的椭圆的方程;(2)如图,若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,若1260F PF ∠=︒求12F PF △的面积.25.已知抛物线2:2(0)C y px p =>上横坐标为2的一点P 到焦点的距离为3. (1)求抛物线C 的方程;(2)设动直线l 交C 于A 、B 两点,O 为坐标原点, 直线OA ,OB 的斜率分别为12,k k ,且122k k ⋅=-,证明:直线l 经过定点,求出定点的坐标.26.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为,A B ,||4AB =.过右焦点F 且垂直于x 轴的直线交椭圆C 于,D E 两点,且||1DE =.(1)求椭圆C 的方程;(2)斜率大于0的直线l 经过点(4,0)P -,且交椭圆C 于不同的两点,M N (M 在点,P N 之间).记PNA 与PMB △的面积之比为λ,求实数λ的取值范围.【参考答案】***试卷处理标记,请不要删除一、填空题1.【分析】由双曲线定义可得根据已知可解得再由渐近线方程是可得答案【详解】因为所以又因为所以即解得或(舍去)所以双曲线C 的渐近线方程是故答案为:【点睛】本题考查了双曲线的定义焦点三角形的问题关键点是焦点解析:2y x =±【分析】由双曲线定义可得212PF PF a -=,根据112PF F F ⊥、已知可解得2a =,再由渐近线方程是by x a=±可得答案. 【详解】因为2122,12PF PF a PF -==,所以122122PF PF a a =-=-, 又因为112PF F F ⊥,2222212444464F F c a b a ==+=+,所以2221122PF F F PF +=,即()222212412a c -+=,解得2a =或4a =(舍去),所以双曲线C 的渐近线方程是422y x x =±=±. 故答案为:2y x =±. 【点睛】本题考查了双曲线的定义、焦点三角形的问题,关键点是焦点三角形中112PF F F ⊥,考查了分析问题、解决问题的能力.2.【分析】用分离常数法求得函数的对称中心代入椭圆方程得的关系变形后得然后由的范围得出的范围【详解】因为可化为所以曲线的对称中心为把代入方程得整理得因为所以从而故答案为:【点睛】关键点点睛:本题考查求椭解析:,93⎛ ⎝⎭【分析】用分离常数法求得函数的对称中心,代入椭圆方程得,a b 的关系,变形后得221911a e=+-,然后由e 的范围得出2a 的范围. 【详解】因为31x y x =-可化为111393y x =+⎛⎫- ⎪⎝⎭,所以曲线31x y x =-的对称中心为11,33⎛⎫⎪⎝⎭,把11,33⎛⎫ ⎪⎝⎭代入方程22221x y a b +=,得2211199a b +=,整理得22222221911a c a a c e-==+--.因为12e ⎛∈ ⎝⎭,所以2759,32a ⎛⎫∈ ⎪⎝⎭,从而2,93a ⎛⎫∈ ⎪ ⎪⎝⎭.故答案为:93⎛ ⎝⎭. 【点睛】关键点点睛:本题考查求椭圆长轴长的范围.解题关键是建立长半轴长a 与离心率e 的关系式,求出函数对称中心代入椭圆方程,利用222b a c =-进行转化是是解题的基本方法.3.【分析】由题意知结合已知条件可证明利用可计算在中利用余弦定理可计算出由即可求得离心率【详解】由题意知直线的斜率为所以所以又因为所以所以即可得在中由余弦定理可得解得:故双曲线的离心率为故答案为:【点睛解析:2【分析】由题意知123FOA π∠=,结合已知条件可证明112FOA F AF ,利用11112F O F AF A F F =可计算1F A =,在12F AF中,利用余弦定理可计算出22AF c =,由 121222F F c e a AF AF ==-即可求得离心率. 【详解】由题意知直线OA23AOF π∠=,所以123FOA π∠=,又因为1223F AF π∠=,121AFO F F A ∠=∠, 所以112FOA F AF ,所以11112F O F A F A F F =,即112F cc A F A =可得1F A =, 在12F AF 中,由余弦定理可得22212121222cos3F F AF AF AF AF π=+-⋅,解得:2AF =,故双曲线的离心率为121222F F c e a AF AF ====-. 【点睛】123FOA π∠=,结合1223F AF π∠=可得112FOA F AF,即可求出1F A =,在12F AF 中,再利用余弦定理,可求出2AF ,由双曲线的定义可计算122a AF AF =-,121222F F c e a AF AF ==-即可. 4.【分析】由周长确定故轨迹是椭圆注意焦点位置和抠除不符合条件的点即可【详解】的周长为20且顶点所以点到两个定点的距离和为定值故点的轨迹是焦点在y 轴上的椭圆则顶点A 的轨迹方程是故答案为:【点睛】易错点睛解析:()22104049x y x +=≠ 【分析】由周长确定146AB AC +=>,故轨迹是椭圆,注意焦点位置和抠除不符合条件的点即可. 【详解】ABC 的周长为20,且顶点()0,3B -,()0,3C ,6BC ∴=,146AB AC +=>,所以点A 到两个定点的距离和为定值,故点A 的轨迹是焦点在y 轴上的椭圆,2147a a =⇒=,3c =,22249940b a c =-=-=则顶点A 的轨迹方程是()22104049x y x +=≠.故答案为:()22104049x y x +=≠.【点睛】易错点睛:本题考查椭圆定义的应用,在求解过程中要注意椭圆的定义要检查两个线段的大小,看是否可以构成椭圆,还要注意要围城三角形需要排除不符合的点,考查学生的转化能力与运算能力,属于基础题.5.【分析】利用双曲线的定义可求得再由结合可求得双曲线的离心率的取值范围【详解】由双曲线的定义可得又则所以因此双曲线的离心率的取值范围是故答案为:【点睛】求双曲线离心率或离心率范围的两种方法:一种是直接 解析:(]1,3【分析】利用双曲线的定义可求得22PF a =,再由2PF c a ≥-结合1e >可求得双曲线C 的离心率e 的取值范围. 【详解】由双曲线的定义可得1222222PF PF PF PF PF a -=-==, 又22PF a c a =≥-,则3c a ≤,1e >,所以,13e <≤.因此,双曲线C 的离心率e 的取值范围是(]1,3. 故答案为:(]1,3. 【点睛】求双曲线离心率或离心率范围的两种方法:一种是直接建立e 的关系式求e 或e 的范围;另一种是建立a 、b 、c 的齐次关系式,将b 用a 、c 表示,转化为e 的关系式,进而求解.6.0【分析】可根据题的已知条件设利用斜率公式得到;同理可得结合三点共线即可得出的值【详解】由题意可知三点共线设点在双曲线上则所以①又由点在椭圆上则同理可得②三点共线由①②得故答案为:0【点睛】本题考查解析:0 【分析】可根据题的已知条件,设()11,P x y 、()22,Q x y ,利用斜率公式得到11212x k k y +=; 同理可得23422x k k y +=-,结合O P Q 、、三点共线即可得出1234k k k k +++的值. 【详解】由题意,()(),||1PA PB QA QB R λλλ+=+∈>可知O P Q 、、三点共线.()2,0A -、()2,0B设()11,P x y 、()22,Q x y ,点P 在双曲线2214x y -=上,则221144x y -=. 所以11111111222111112222442y y x y x y xk k x x x y y +=+===+--① 又由点Q 在椭圆2214x y +=上,则222242x y -=-. 同理可得23422x k k y +=-② O P Q 、、三点共线.1212x x y y ∴=. 由①、②得12340k k k k +++=. 故答案为:0 【点睛】本题考查运算求解能力、数形结合思想、化归与转化思想.主要思路为结合曲线与点的位置关系、向量关系式,根据斜率公式,列相关关系式化简求解.7.【分析】转化条件为设点列方程可得点结合椭圆定义可得再由离心率的公式即可得解【详解】因为点在直线上所以椭圆左焦点设点则解得或(舍去)所以点所以即所以椭圆的离心率故答案为:【点睛】关键点点睛:解决本题的【分析】转化条件为()2,0F ,设点(),24Q x x -+,列方程可得点68,55Q ⎛⎫⎪⎝⎭,结合椭圆定义可得a ,再由离心率的公式即可得解.【详解】因为点F 在直线240x y +-=上,所以()2,0F ,椭圆左焦点()12,0F -, 设点(),24Q x x -+,则2OQ OF ===,解得65x =或2x =(舍去), 所以点68,55Q ⎛⎫⎪⎝⎭,所以12a QF QF =+==,即a =,所以椭圆的离心率3c e a ===.【点睛】关键点点睛:解决本题的关键是求出点Q 的坐标,再结合椭圆的定义、离心率公式即可得解.8.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题9.【分析】根据题意作出图示求解出的长度然后根据椭圆的定义得到之间的关系即可求解出离心率【详解】如图因为为正三角形所以所以是直角三角形因为所以所以所以因为所以即所以故答案为:【点睛】本题考查根据几何关系 31【分析】根据题意作出图示,求解出12,PF PF 的长度,然后根据椭圆的定义得到,a c 之间的关系即可求解出离心率. 【详解】如图,因为2POF 为正三角形,所以12||||||OF OP OF ==,所以12F PF ∆是直角三角形. 因为2160PF F ∠=,21||2F F c =,所以2||PF c =,所以22212122122cos60PF PF F F PF F F =+-⋅⋅︒,所以13PF c =, 因为21||||2PF PF a +=,所以32c c a =, 即3131ca ,所以31e =.31.【点睛】本题考查根据几何关系以及椭圆的定义求解椭圆的离心率,难度一般.求解离心率的问题,如果涉及到特殊几何图形,一定要注意借助图形本身的性质去求解问题.10.【分析】根据椭圆定义设则进而表示出由得在两个三角形中由勾股定理可得ac 的关系进而求出椭圆的离心率【详解】如图所示设根据椭圆定义得由得由椭圆的定义可得因为在中且得即①在中得即②由①②可得可得③将③代入 63-【分析】 根据椭圆定义,设2PF m =,则12PF a m =-,进而表示出222QF a m =-,12QF m =,由1PQ PF ⊥,得在两个三角形中由勾股定理可得a ,c 的关系,进而求出椭圆的离心率. 【详解】如图所示,设()20PF m m =>,根据椭圆定义得12PF a m =-, 由1PF PQ =,得2222QFa m m a m =--=-,由椭圆的定义可得()12222QF a a m m =--=,因为1PQ PF ⊥,在1Rt PFQ ∆中,且1PF PQ =,得22112QF PF =,即()22422m a m =-①,在12Rt PF F ∆中,得2221212F F PF PF =+,即()22242c a m m =-+②,由①-②2⨯可得222482m c m -=-,可得23m =,③, 将③代入②可得222333423c a c c ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理可得:22330e e +-=,()0,1e ∈,解得63e =63-【点睛】本题考查椭圆的性质及直线与椭圆的综合,考查椭圆离心率的求法,属于中档题.11.【分析】求出椭圆标准方程设用点差法求出同理有利用直线的斜率之和为1可得结论【详解】由得∴椭圆标准方程为设在椭圆上椭圆方程为则两式相减得∴即同理已知∴故答案为:【点睛】本题考查求椭圆标准方程考查圆锥曲 解析:2516-【分析】求出椭圆标准方程,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t , 用点差法求出116125ODk k =-⋅,同理有23,k k ,利用直线OD OE OM 、、的斜率之和为1可得结论. 【详解】3c =,由35c a =得5a =,∴4b =,椭圆标准方程为2212516x y +=,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t ,,A B 在椭圆上,椭圆方程为221625400x y +=.则22111625400x y +=,22221625400x y +=,两式相减得,121212121625y y x x x x y y -+=-⋅-+, ∴1212111212116162525y y x x sk x x y y t -+==-⋅=-⋅-+,即111125251616OD t k k s =-⋅=-,同理212516OE k k =-,312516OM k k =-, 已知1OD OE OM k k k ++=,∴1231112516k k k ++=-. 故答案为:2516-. 【点睛】本题考查求椭圆标准方程,考查圆锥曲线中的点差法,利用点差法可圆锥曲线弦所在直线斜率与弦中点坐标建立关系.12.6【解析】因为双曲线的右焦点为所以解析:6 【解析】因为双曲线22145x y -=的右焦点为(3,0) ,所以3,62p p == 13.【分析】由已知可得为椭圆两焦点再由已知结合椭圆定义可得点的轨迹是以为圆心以为半径的圆写出圆的标准方程得答案【详解】如图由椭圆方程得所以则为椭圆两焦点所以由于则所以点的轨迹是以为圆心以为半径的圆其方程 解析:()22220x y ++=【分析】由已知可得,(0,2)A -,(0,2)B 为椭圆两焦点,再由已知结合椭圆定义可得点P 的轨迹是以A 为圆心,以25为半径的圆,写出圆的标准方程得答案. 【详解】 如图,由椭圆方程2215y x +=,得25a =,21b =,所以222c a b =-=,则(0,2)A -,(0,2)B 为椭圆两焦点, 所以||||25DA DB a +== 由于||||PD BD =,则||||||||||5PA PD DA BD DA =+=+=所以点P 的轨迹是以A 为圆心,以2522(2)20x y ++=. 故答案为:22(2)20x y ++=. 【点睛】本题考查轨迹方程的求法,运用了椭圆的标准方程、椭圆定义和焦点坐标,同时考查数学转化思想方法,是中档题.二、解答题14.(1)22y x =;(2)①()2,2; 【分析】(1)由抛物线定义:抛物线上点到焦点距离等于点到其准线的距离有42pPF =+,即可求p ,写出抛物线方程.(2)令(,)Q x y ,利用两点距离公式得PQ =Q 的坐标,利用点在抛物线上,结合二次函数最值求PQ 的最小值. 【详解】(1)由题意,可设抛物线C :22y px =,焦点,02p F ⎛⎫⎪⎝⎭,则9422p PF =+=,解得1p =,∴抛物线C 的标准方程为22y x =, (2)令(,)Q x y ,①由已知条件得2PQ ==,将22y x =代入上式,并变形得,220x x -=,解得0x =(舍去)或2x =, 当2x =时,2y =±,只有2x =,2y =满足条件, ∴点Q 的坐标为()2,2.②2PQ ==,其中22y x =,()()()22222224130PQ x x x x x x =-+=-+=-+≥,当1x =时,min PQ = 【点睛】 关键点点睛:(1)由抛物线定义,由待定系数法求p ,写出抛物线方程.(2)由点在抛物线上,结合两点坐标的距离公式,求点坐标以及距离的最小值.15.(1)2214x y +=;(2. 【分析】(1)根据题意,将离心率公式与短轴端点到焦点的距离公式联立,可求得,,a b c 的值,从而可得椭圆的标准方程;(2)分为两种情况,一种为直线不存在斜率,一种为直线存在斜率,则设直线方程为y kx m =+,并设()()1122,,A x y B x y 与椭圆方程联立可得根与系数的关系,然后再根据OA OB ⊥,利用韦达定理及平面向量数量积公式可得m 与k 的关系,进而可知原点O 到直线AB 的距离为定值. 【详解】(1)由题意知,c e a ==2a =,又222a b c =+, 所以2a =,c =1b =,所以椭圆C 的方程为2214x y +=.(2)当直线AB 的斜率不存在时,直线AB的方程为x =± 此时,原点O 到直线AB; 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,()11,A x y ,()22,B x y .代入椭圆方程2244x y +=,得()222148440kx kmx m +++-=, 则()()()()2222284144416140km kmk m ∆=-+-=+->,122814km x x k +=-+,21224414m x x k-=+, 则()()()2212121212y y kx m kx m k x x km x x m =++=+++222222224484141414m km m k k km m k k k --⎛⎫=⋅+-+= ⎪+++⎝⎭, 由OA OB ⊥得1OA OB k k =-,即12120x x y y +=,所以222544014m k k--=+,即()22415m k =+, 所以原点O 到直线AB的距离为5d ==, 综上,原点O 到直线AB. 【点睛】关键点点睛:当直线斜率存在时,设直线为y kx m =+,()11,A x y ,()22,B x y ,根据OA OB ⊥利用向量得到k ,m 的关系,再根据点到直线的距离,化简即可得到定值,这是定值问题的常见处理方式.16.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--, 由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程. 17.(1)24y x =;(2)证明见解析. 【分析】(1)由点在抛物线上,焦半径的长|QF |=4,列方程求p ,写出抛物线方程;(2)讨论直线l 斜率的存在性,若11(,)A x y ,22(,)B x y ,结合向量数量积的坐标表示有0OA OB ⋅=,则OA OB ⊥即得证.【详解】解:(1)由(,Q m 在抛物线C 上可得,212pm =, 由4QF =可得,42pm +=, ∵03p <<, ∴2p =,3m =. 抛物线的方程为24y x =.(2)当直线l 的斜率不存在时,方程为4x =,易求得()4,4A -,()4,4B(4,4)OA =-,(4,4)OB =,16160OA OB ⋅=-=,此时OA OB ⊥成立.当直线l 的斜率存在时,设直线方程为()4y k x =-,11(,)A x y ,22(,)B x y ,由24(4)y x y k x ⎧=⎨=-⎩,得24160ky y k --=,216640k ∆=+>,124y y k +=,1216y y =-,2121212121()1616016OA OB x x y y y y y y ⋅=+=+=-=此时OA OB ⊥成立, 综上可得,OA OB ⊥. 【点睛】关键点点睛:由抛物线过点,已知焦半径长并结合抛物线定义列方程组求参数,写出抛物线方程;利用向量垂直的坐标表示12120OA OB x x y y ⋅=+=即可证OA OB ⊥.18.(1)2212x y +=;(2)存在,()2,0P .【分析】(1)由已知条件列出关于,,a b c 的方程组,解得,,a b c 即得椭圆方程;(2)假设存在,设(),0P m ,()11,A x y ,()22,B x y ,设直线方程为(1)y k x =-,代入椭圆方程应用韦达定理得1212,x x x x +,然后计算由0AP BP k k +=是关于k 的恒等式可求得m即得.【详解】(1)22221c e a a c a b c ⎧==⎪⎪⎪+=⎨⎪=+⎪⎪⎩,11a cb ⎧=⎪∴=⎨⎪=⎩,2212x y ∴+=.(2)假设存在(),0P m 满足题意,设()11,A x y ,()22,B x y ,():1AB l y k x =-,()22122y k x x y ⎧=-⎨+=⎩,()2222124220k x k x k ∴+-+-=, 2122412k x x k ∴+=+,21222212k x x k -=+,11APy k x m =-,22BP y k x m =-, ()()()()1221120AP BP y x m y x m k k x m x m -+-+==--,()1221120y x y x m y y ∴+-+=,211212(1)(1)(2)0kx x kx x km x x -+--+-=,()()1212220kx x k mk x x km ∴-+++=,代入1212,x x x x +整理得24,2km k m ==,()2,0P ∴. 【点睛】方法点睛:本题考查求椭圆标准方程,求直线与椭圆相交中的定点问题.求椭圆方程的关键是列出关于,,a b c 的方程组,解之即得,直线与椭圆相交问题采用“设而不求”的思想方法,即设交点为1122(,),(,)x y x y ,设直线方程(1)y k x =-,同时假设定点在在.设坐标为(,0)m ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,并代入定点满足的条件0AP BP k k +=,由此求出参数m ,得定点坐标.19.(1)22143x y +=;(2)32.【分析】(1)将点代入椭圆方程,并根据离心率得到,a c 关系,代入求椭圆方程;(2)首先设直线1:1l x my =+与椭圆方程联立,得到根与系数的关系,并表示OPQ △的面积1212S OF y y =⨯-,代入根与系数的关系,表示面积,最后利用换元求面积最大值. 【详解】 解:(1)由12c e a ==得2a c =,所以223b c = 由点31,2⎛⎫⎪⎝⎭在椭圆上得22914143c c+=解得1c =,b == 所求椭圆方程为22143x y +=.(2)()0,1F ,设直线1:1l x my =+, 代入方程化简得()2234690m y my ++-=, 由韦达定理得122634m y y m -+=+,122934y y m -=+, OPQ △的面积为12||||2OF y y ⋅-,所以求ABC 的最大值即求21y y -的最大值.()()()()222121212223644434m y y y y y y m+-=+-=+.令211m t +=≥,上式可表示成21441441(31)96t t t t=+++, 196y t t=++在[)1,+∞单调递增,所以当1t =时取得最大值9,此时32OPQS=. 【点睛】思路点睛:本题考查椭圆中三角形面积的最值问题,因为面积是用纵坐标表示,所以设直线x my t =+,表示直线过x 轴一点(),0t ,其中包含斜率不存在的直线,但不包含过定点,斜率为0的直线,这样联立方程后用根与系数的关系表示面积时,比较简单. 20.(1)22143x y +=(2)1(2-,0)(0⋃,1)2(3)证明见解析.【分析】(1)由题意知12c e a ==,则2a c =,求出椭圆C 的中心O 关于直线250x y --=的对称点,可求a ,即可得出椭圆C 的方程;(2)设直线PN 的方程为(4)y k x =-代入椭圆方程,根据判别式,可求直线PN 的斜率范围;(3)求出直线ME 的方程为212221()y y y y x x x x +-=--,令0y =,得221221()y x x x x y y -=-+,即可得出结论.【详解】 (1)由题意知12c e a ==,则2a c =, 设椭圆C 的中心O 关于直线250x y --=的对称点(,)m n ,则·212?5022n mm n ⎧=-⎪⎪⎨⎪--=⎪⎩,4m ∴=,2n =-,椭圆C 的中心O 关于直线250x y --=的对称点落在直线2x a =上.24a ∴=,1c ∴=,b ∴=∴椭圆C 的方程为22143x y +=;(2)由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =-. 代入椭圆方程,可得2222(43)3264120k x k x k +-+-=.① 由2222(32)4(43)(6412)0kk k ∆=--+->,得2410k -<,1122k ∴-<< 又0k =不合题意,∴直线PN 的斜率的取值范围是:1(2-,0)(0⋃,1)2.(3)设点1(N x ,1)y ,2(E x ,2)y ,则1(M x ,1)y -. 直线ME 的方程为212221()y y y y x x x x +-=--.令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.∴直线ME 与x 轴相交于定点(1,0).【点睛】关键点点睛:本题考查椭圆的方程,设出直线与椭圆方程联立,消元后,利用二次方程的判别式求k 的取值范围,求出与x 轴交点的坐标表达式,化简即可证明交点为定点,考查直线与椭圆的位置关系,考查韦达定理,考查学生分析解决问题的能力,属于中档题. 21.(1)247;(2)12. 【分析】(1)由已知结论求出直线AB 的方程,联立方程,得韦达定理,利用弦长公式即可求得AB 的长;(2)将12||AB d d +表示为关于t 的函数,再利用换元法与分离常数法两种方法分别求出最值. 【详解】 (1)解当3t =时,直线AB 方程为1x y +=,联立,得27880x x --=. 设()11,A x y ,()22,B x y ,则1287x x +=,1287x x =-.则1224||7AB x =-==. (2)解 直线AB :13tx y +=,即13t x y =-+,直线OP :4t y x =. 设()11,A x y ,()22,B x y,则12||AB y y =-,12d d +===记12||AB m d d=+,则12||AB m d d ==+,接下来介绍求最值的不同方法. 法1:常规换元法令212s t =+,12s ≥,则222222(3)(4)12121114949112244848s s s s m s s s s s -++-⎛⎫===-++=--+≤ ⎪⎝⎭m ≤,当24s即t =±12||AB d d +的最大值是12. 法2:分离常数法422242422514412414424144t t t m t t t t ++==+++++,显然0t =时不取得最大值,则222149111444824m t t=+≤+=++,m ≤当t =±12||AB d d +.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)221169y x +=;(2)()222413y x --=(1≥x ).【分析】(1)根据条件先求解出双曲线的半焦距c ,然后结合三角形的面积、勾股定理、椭圆的定义求解出椭圆方程中2a 的值,从而椭圆方程可求;(2)设(),M x y ,()00,B x y ,根据条件用M 点的坐标表示出B 点的坐标,再根据B 在双曲线上求解出,x y 满足的等式即为轨迹方程. 【详解】(1)设双曲线的半焦距为c ,由题2437c =+=,设椭圆方程22221y xa b+=(0a b >>).∴1222212121924282PF PF PF PF c PF PF a⎧=⎪⎪⎪+==⎨⎪+=⎪⎪⎩,∴2221212142+4=64a PF PF PF PF ⎛⎫ ⎪⎝⎭=+∴216a =,∴2221679b a c =-=-=,∴2:C 221169y x +=;(2)由题点()0,4A .设双曲线右支上任意一点B 的坐标为()00,x y ,AB 中点M 的坐标为(),x y ,则00242x x y y ⎧=⎪⎪⎨+⎪=⎪⎩,∴00224x x y y =⎧⎨=-⎩,又点B 在双曲线上,∴2200143x y -=∴()222413y x --=(1≥x ).【点睛】结论点睛:椭圆或双曲线的焦点三角形的顶点为P ,焦点为12,F F ,且12F PF θ∠=,则有:(1)椭圆的焦点三角形的面积为:2tan2b θ(b 为短轴长度一半);(2)双曲线的焦点三角形的面积为:2tan2b θ(b 为虚轴长度一半).23.(11;(2)最大值72;最小值1-. 【分析】(1)因为在焦点三角形12AF F 中,120AF AF ⋅=,则12AF AF ⊥,又因为01260AF F ∠=,所以12,AF c AF ==,所以1212212F F c c e a a AF AF =====+, (2)若1a b ==,则1c =,12(1,0),(1,0)F F -,当AB 垂直于x 轴时,可求出,A B两点的坐标,从而可得22F A F B ⋅的值,当AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为(1)y k x =+,与椭圆方程联立成方程组,消去y 后,整理再利用韦达定理得2122412k x x k +=-+, 21222(1)12k x x k -⋅=+,从而可得22F A F B ⋅=22271791222(12)k k k -=-++,进而可求出其取值范围 【详解】 (1)120AF AF ⋅=,12AF AF ∴⊥因为1260AF F ∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.2.已知双曲线M :()222210,0x y a b a b-=>>的焦距为2c ,若M 的渐近线上存在点T ,使得经过点T 所作的圆()22x c y a -+=的两条切线互相垂直,则双曲线M 的离心率的取值范围是________.3.已知椭圆22221x y a b+=(0a b >>)的左焦点为()1,0F c -,右顶点为A ,上顶点为B ,现过A 点作直线1F B 的垂线,垂足为T ,若直线OT (O 为坐标原点)的斜率为3bc-,则该椭圆的离心率为______.4.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,若在双曲线的右支上存在一点P ,使得122PF PF =,则双曲线C 的离心率e 的取值范围是____.5.已知动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,则动圆圆心Q 的轨迹方程为__________.6.已知椭圆()2222:10x y C a b a b +=>>的离心率2e A B =、分别是椭圆的左、右顶点,点P 是椭圆上的一点,直线PA PB 、的倾斜角分别为αβ、,满足tan tan 1αβ+=,则直线PA 的斜率为__________.7.若椭圆22221(0)x y a b a b+=>>与双曲线()2211221110,0x y a b a b -=>>有相同的焦点12,F F ,点P 是两条曲线的一个交点,122F PF π∠=,椭圆的离心率为1e ,双曲线的离心率为2e ,122e e ,则2212e e +=__________.8.在平面直角坐标系xOy 中,已知双曲线2222:1(,0)x y C a b a b -=>的右焦点为F ,定点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭和动点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭满足:2POF QOF ∠=∠,且POF 是底边长为C 的标准方程为__________.9.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.10.已知F 为双曲线22221x y a b-=()0,0a b >>的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若3AB FA =,则此双曲线的离心率为________.11.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.12.已知椭圆()2222:10x y C a b a b+=>>的右焦点为()3,0F ,且离心率为35,ABC 的三个顶点都在椭圆C 上,设ABC 三条边AB BC AC 、、的中点分别为D E M 、、,且三条边所在直线的斜率分别为123k k k 、、,且123k k k 、、均不为0.O 为坐标原点,若直线OD OE OM 、、的斜率之和为1.则123111k k k ++=________. 13.已知椭圆2222:1(0)x y C a b a b+=>>的左,右焦点分别为1F ,2F ,过1F 的直线交椭圆C 于A ,B 两点,若290ABF ∠=︒,且2ABF 的三边长2BF 、||AB 、2AF 成等差数列,则C 的离心率为___________.二、解答题14.已知抛物线2:2C y px =过点()1,2A . (1)求抛物线C 的方程;(2)求过点()3,2P -的直线与抛物线C 交于M 、N 两个不同的点(均与点A 不重合).设直线AM 、AN 的斜率分别为1k 、2k ,求证:12k k ⋅为定值.15.已知A ,B 分别为椭圆2222:+=1(>>0)x y E a b a b的左右项点,G 为E 的上顶点,直线AG ,BG 的斜率之积为34-,且点3(1,)2P 在椭圆上. (1)求椭圆E 的方程;(2)过点(1,0)F 的直线l 交椭圆E 于C ,D 两点,交直线=4x 点Q .设直线,,PC PD PQ的斜率分别为123,,.k k k 问:是否存在常数λ,使得123+=k k k λ?若存在求λ的值;若不存在,说明理由.16.已知椭圆E 中心为坐标原点,一个焦点为()1,0且与直线y x =+有公共点. (1)求椭圆E 长轴最短时的标准方程;(2)在(1)的条件下,若椭圆E 上存在不同两点关于直线4y x m =+对称,求实数m 的取值范围.17.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.18.已知椭圆的左焦点为()3,0F -,右顶点为()2,0D ,设点A 的坐标是11,2⎛⎫⎪⎝⎭. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程. 19.已知椭圆的两焦点分别为()13,0F -、()23,0F ,短轴长为2.(1)椭圆C 的标准方程;(2)已知过点10,2⎛⎫ ⎪⎝⎭且斜率为1的直线交椭圆C 于,A B 两点,求线段AB 的长度.20.已知椭圆()222210y x a b a b +=>>的离心率22e =,且过点()0,2-.(1)求椭圆方程;(2)已知1F 、2F 为椭圆的上、下两个焦点,AB 是过焦点1F 的一条动弦,求2ABF 面积的最大值.21.如图,椭圆22221(0)x y a b a b+=>>的左、右焦点为12,F F ,过1F 的直线l 与椭圆相交于A 、B 两点.(1)若01260AF F ∠=,且 120AF AF ⋅=求椭圆的离心率. (2)若2,1a b ==,求22F A F B ⋅的最大值和最小值.22.已知命题p :方程22112x y m m +=-+表示双曲线;命题q :方程22212x ym m+=表示焦点在x 轴上的椭圆.若,p q 有且只有一个为真命题,求实数m 的取值范围.23.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,且椭圆C 过点33,M ⎛⎫- ⎪ ⎪⎭,离心率12e =,点P 在椭圆C 上,延长1PF 与椭圆C 交于点Q ,点R 是2PF 的中点.(1)求椭圆C 的方程.(2)若点O 是坐标原点,记1QF O 与1PF R 的面积之和为S ,试求S 的最大值. 24.已知焦点在x 轴的抛物线C 经过点()2,4-. (1)求抛物线C 的标准方程.(2)过焦点F 作直线l ,交抛物线C 于A ,B 两点,若线段AB 中点的纵坐标为1-,求直线l 的方程.25.已知椭圆()2222:10x y C a b a b +=>>3C 过点32,22⎛⎫ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)已知O 为原点,过椭圆C 的右焦点的直线l 与椭圆C 交于A 、B 两点,求OAB 的面积的最大值.26.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为()1,0F -,过点F 的直线l 交椭圆C于,A B 两点,当直线l 垂直于x 轴时,OAB 23(O 为原点). (1)求椭圆C 的方程;(2)若直线l 2,求直线OA 的斜率的取值范围.【参考答案】***试卷处理标记,请不要删除一、填空题1.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.2.【分析】要使得经过点所作的圆的两条切线互相垂直必有而焦点到双曲线渐近线的距离为故利用双曲线的离心率的计算公式解答【详解】解:∵所以离心率圆是以为圆心半径的圆要使得经过点所作的圆的两条切线互相垂直必有解析:(【分析】要使得经过点T 所作的圆的两条切线互相垂直,必有2TF a =,而焦点(),0F c 到双曲线渐近线的距离为b ,故2TF a b =≥,利用双曲线的离心率的计算公式解答.【详解】解:∵0b >,0a >,所以离心率1c e a ==>,圆()22x c y a -+=是以(),0F c 为圆心,半径r a =的圆,要使得经过点T 所作的圆的两条切线互相垂直,必有TF =,而焦点(),0F c 到双曲线渐近线的距离为b ,所以TF b =≥,即b ac e a ==,所以双曲线M的离心率的取值范围是(.故答案为:(. 【点睛】本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要认真审题,注意双曲线性质的灵活运用.3.【分析】由已知先求出直线与直线的方程联立得到T 的坐标再利用建立abc 的方程即可得到答案【详解】由题意得直线的方程为:又所以直线的方程为:由得所以又所以即化简得所以故答案为:【点睛】关键点睛本题解题关 解析:12【分析】由已知先求出直线1F B 与直线OT 的方程,联立得到T 的坐标,再利用1AT BF ⊥,11AT BF k k ⋅=-,建立a ,b ,c 的方程即可得到答案.【详解】由题意,得(,0)A a ,(0,)B b ,1BF b k c =,直线1F B 的方程为:by x b c=+ 又3OT b k c =-,所以直线OT 的方程为:3by x c=-由3b y x b c b y x c ⎧=+⎪⎪⎨⎪=-⎪⎩,得434c x b y ⎧=-⎪⎪⎨⎪=⎪⎩,所以3(,)44c b T -,303444AT b b k c c a a-==-+-- 又1AT BF ⊥,所以1314AT BF b bk k c a c⋅=-⋅=-+,即2222433()c ac b a c +==- 化简,得(32)(2)0a c a c +-=, 所以2a c =,12c e a == 故答案为:12【点睛】关键点睛,本题解题关键是先联立直线1F B 与直线OT 的方程得到T 的坐标,再利用1AT BF ⊥得到11AT BF k k ⋅=-从而使问题获解.4.【分析】利用双曲线的定义可求得再由结合可求得双曲线的离心率的取值范围【详解】由双曲线的定义可得又则所以因此双曲线的离心率的取值范围是故答案为:【点睛】求双曲线离心率或离心率范围的两种方法:一种是直接 解析:(]1,3【分析】利用双曲线的定义可求得22PF a =,再由2PF c a ≥-结合1e >可求得双曲线C 的离心率e 的取值范围. 【详解】由双曲线的定义可得1222222PF PF PF PF PF a -=-==, 又22PF a c a =≥-,则3c a ≤,1e >,所以,13e <≤.因此,双曲线C 的离心率e 的取值范围是(]1,3. 故答案为:(]1,3. 【点睛】求双曲线离心率或离心率范围的两种方法:一种是直接建立e 的关系式求e 或e 的范围;另一种是建立a 、b 、c 的齐次关系式,将b 用a 、c 表示,转化为e 的关系式,进而求解.5.【分析】根据题意和双曲线的定义得到动圆圆心Q 的轨迹是以为焦点的双曲线的上支求得的值即可求得轨迹方程【详解】设动圆Q 的半径为因为动圆Q 与圆外切与圆内切可得所以由双曲线的定义可得动圆圆心Q 的轨迹是以为焦解析:221(0)97y x y -=>【分析】根据题意和双曲线的定义,得到动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支,求得,,a b c 的值,即可求得轨迹方程.【详解】设动圆Q 的半径为R , 因为动圆Q 与圆()221:49C x y ++=外切,与圆()222:49C x y +-=内切,可得123,3QC R QC R =+=-,所以121268QC QC C C -=<=, 由双曲线的定义,可得动圆圆心Q 的轨迹是以12,C C 为焦点的双曲线的上支, 其中26,28a c ==,解得3,4a c ==, 又由2221697b c a =-=-=,所以动圆圆心Q 的轨迹方程为221(0)97y x y -=>.故答案为:221(0)97y x y -=>.【点睛】求曲线的轨迹方程的常用方法:直接法:直接利用条件建立,x y 之间的关系式或0(),F x y =,直接化简求解; 待定系数法:已知所求曲线的类型,先根据条件设出所求曲线的方程,再由条件确定其待定稀释;定义法:先根据条件得出动点的轨迹是某种曲线,再由曲线的定义直接写出动点的轨迹方法;代入转移法:动点(,)P x y 依赖于另一动点00(,)Q x y 的变化而变化,并且00(,)Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,将00,x y 代入已知曲线求解.6.或【分析】设出点坐标求得的表达式求得代入直线的斜率公式可得答案【详解】依题意设则即化简得由于是椭圆的左右顶点所以所以所以所以或所以当时当时所以直线的斜率为或故答案为:或【点睛】本小题主要考查椭圆的几【分析】设出P 点坐标,求得tan +tan αβ的表达式,求得00x y ,,代入直线的斜率公式可得答案. 【详解】依题意1,222c b a b a a ====.设()()000,0P x y x ≠,则2200221x y a b +=,即22002214x y a a +=,化简得222004y x a -=-. 由于,A B 是椭圆的左右顶点,所以()(),0,,0A a B a -,所以tan +tan αβ0000+y y x a x a =+-0000022200022142x y x y xx ay y ===-=--,所以002x y =-,所以002x a y ⎧=-⎪⎪⎨⎪=⎪⎩或002x a y ⎧=⎪⎪⎨⎪=⎪⎩,所以当00x y ⎧=⎪⎪⎨⎪=⎪⎩时,tanα002y x a ===+当004x y a ⎧=⎪⎪⎨⎪=-⎪⎩时,0012y x a --===+,所以直线PA的斜率为2或12,. 【点睛】本小题主要考查椭圆的几何性质,直线的斜率公式,关键在于求得点P 的坐标,属于中档题.7.【分析】设PF1=sPF2=t 由椭圆的定义可得s+t =2a 由双曲线的定义可得s ﹣t =2a1利用勾股定理和离心率公式得到化简计算即可得出结论【详解】不妨设P 在第一象限再设PF1=sPF2=t 由椭圆的定 解析:8【分析】设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a ,由双曲线的定义可得s ﹣t =2 a 1,利用勾股定理和离心率公式得到2212224e e =+,化简计算即可得出结论. 【详解】不妨设P 在第一象限,再设PF 1=s ,PF 2=t ,由椭圆的定义可得s +t =2a , 由双曲线的定义可得s ﹣t =2a 1, 解得s =a +a 1,t =a ﹣a 1, 由∠F 1PF 22π=,在三角形F 1PF 2中,利用勾股定理可得22222221114()()22c s t a a a a a a =+=++-=+.∴2212224e e =+, 化简221222221212121=e e e e e e ++=,又由e 1e 2=2,所以22221212=28e e e e +=. 故答案为:8. 【点睛】本题考查椭圆和双曲线的定义、方程和性质,主要考查离心率的求法,考查运算能力,属于中档题.在解题的过程中要合理的利用平面几何的思想,适当利用勾股定理,建立离心力的关系式,在化简的过程中根据题目的条件和结论合理构造和变形,这样解题会轻松一点.8.【分析】根据题意可以判断点在渐近线点在渐近线根据渐近线关于坐标轴对称可得由是底边长为的等腰三角形可得在中由正弦定理可得:结合即可求出和的值进而求得双曲线的标准方程【详解】由题意知:双曲线的渐近线方程解析:221412x y -=【分析】根据题意可以判断点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭在渐近线2:bl y x a =-,点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭在渐近线1:bl y x a =,根据渐近线关于坐标轴对称可得3QOF π∠=,b a=POF是底边长为6OFP OPF π∠=∠=,PF =,在POF 中,由正弦定理可得:4c =,结合222c a b =+,即可求出a 和b 的值,进而求得双曲线C 的标准方程. 【详解】由题意知:双曲线的渐近线方程为:by x a=±, 所以点111,(0)bx P x x a ⎛⎫-< ⎪⎝⎭在渐近线2:bl y x a =-, 点222,(0)bx Q x x a ⎛⎫> ⎪⎝⎭在渐近线1:b l y x a =,设1:b l y x a =的倾斜角为α,则2:bl y x a=-的倾斜角为2α, 所以1l 平分∠POF ,且2ααπ+=,解得3πα=,即直线1l 的斜率是:tan 33b a π==23POF π∠=,因为POF 是底边长为3 所以6OFP OPF π∠=∠=,43PF =,在POF 中,由正弦定理可得:2sinsin 63OFPF ππ=,即43132c =,解得:4c =, 由22234ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩解得223a b =⎧⎪⎨=⎪⎩,所以双曲线C 的标准方程为221412x y -=,故答案为:221412x y -=【点睛】关键点点睛:解决本题的关键是能判断P 和Q 两点在双曲线的渐近线上,求出3QOF π∠=,3b a =,23POF π∠=,判断出43PF =,在POF 中可以求出4OF c ==,即可得出a 和b 的值.9.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题10.【分析】首先根据题意得到直线的方程为与双曲线的渐近线联立得到再根据得到从而得到【详解】由得直线的方程为根据题意知直线与渐近线相交联立得消去得由得所以即整理得则故答案为:【点睛】本题主要考查双曲线的离解析:43【分析】首先根据题意得到直线AF 的方程为by x b c=+,与双曲线的渐近线联立得到=-B ac x c a ,再根据3AB FA =得到34c a =,从而得到43e =. 【详解】 由(),0F c -,()0,A b ,得直线AF 的方程为by x b c=+ 根据题意知,直线AF 与渐近线by x a=相交, 联立得b y x b cb y x a ⎧=+⎪⎪⎨⎪=⎪⎩消去y 得,=-B ac x c a . 由3AB FA =,得()(),3,-=B B x y b c b , 所以3=B x c ,即3=-acc c a,整理得34c a =, 则43c e a ==. 故答案为:43【点睛】本题主要考查双曲线的离心率,同时考查学生的计算能力,属于中档题.11.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m aQF a m aQF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩,此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a+-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.12.【分析】求出椭圆标准方程设用点差法求出同理有利用直线的斜率之和为1可得结论【详解】由得∴椭圆标准方程为设在椭圆上椭圆方程为则两式相减得∴即同理已知∴故答案为:【点睛】本题考查求椭圆标准方程考查圆锥曲 解析:2516-【分析】求出椭圆标准方程,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t , 用点差法求出116125ODk k =-⋅,同理有23,k k ,利用直线OD OE OM 、、的斜率之和为1可得结论. 【详解】3c =,由35c a =得5a =,∴4b =,椭圆标准方程为2212516x y +=,设112233(,),(,),(,)A x y B x y C x y ,112233(,),(,),(,)D s t E s t M s t ,,A B 在椭圆上,椭圆方程为221625400x y +=.则22111625400x y +=,22221625400x y +=,两式相减得,121212121625y y x x x x y y -+=-⋅-+, ∴1212111212116162525y y x x sk x x y y t -+==-⋅=-⋅-+,即111125251616OD t k k s =-⋅=-,同理212516OE k k =-,312516OM k k =-, 已知1OD OE OM k k k ++=,∴1231112516k k k ++=-. 故答案为:2516-. 【点睛】本题考查求椭圆标准方程,考查圆锥曲线中的点差法,利用点差法可圆锥曲线弦所在直线斜率与弦中点坐标建立关系.13.【分析】由已知设据勾股定理有;由椭圆定义知的周长为4a 由勾股定理可得选项【详解】由已知设所以根据勾股定理有解得;由椭圆定义知所以的周长为4a 所以有;在直角中由勾股定理∴离心率故答案为:【点睛】本题考【分析】由已知,设2BF x =,||AB x d =+,22AF x d =+,据勾股定理有3x d =;由椭圆定义知2ABF 的周长为4a ,由勾股定理,2224a c =,可得选项. 【详解】由已知,设2BF x =,||AB x d =+,22AF x d =+,所以根据勾股定理有()()222+2++x d x x d =,解得3x d =;由椭圆定义知1212++2AF AF BF BF a ==,所以2ABF 的周长为4a ,所以有3a d =,21BF a BF ==;在直角2BF F △中,由勾股定理,2224a c =,∴离心率e =.故答案为:2. 【点睛】本题考查椭圆离心率,椭圆的定义,重在对问题的分析,抓住细节,同时考查计算能力,属于中档题.二、解答题14.(1)24y x =;(2)证明见解析. 【分析】(1)本题可将()1,2A 代入抛物线方程中求出p 的值,即可得出结果;(2)本题首先可设()11,M x y 、()22,N x y 以及直线MN 的方程23xt y ,然后通过联立直线MN 的方程与抛物线方程即可得出124y y t +=、12812y y t =--,最后通过1212122211y y k k x x 并化简即可得出结果.【详解】(1)因为抛物线2:2C y px =过点()1,2A , 所以42p =,2p =,抛物线方程为24y x =.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为23x t y ,联立()2234x t y y x⎧=++⎨=⎩,整理得248120y ty t ---=,21632480t t ∆=++>,124y y t +=,12812y y t =--,则1212122212122222111144y y y y k k y y x x 1212161622481284y y y y t t ,故12k k ⋅为定值2-. 【点睛】关键点点睛:本题考查抛物线方程的求法以及抛物线与直线相交的相关问题的求解,通过联立直线的方程与抛物线方程以及韦达定理得出12y y +、12y y 的值是解决本题的关键,考查计算能力,考查化归与转化思想,是中档题.15.(1)22143x y +=;(2)存在实数2λ=.【分析】(1)由椭圆方程确定A ,B ,G 的坐标,再由已知条件有22191344AG BG a b k k +⎧⋅=-⎪⎪⎨=⎪⎪⎩即可求得2a ,2b ,写出椭圆E 的方程;(2)由题意有直线l 的方程为(1)y k x =-,联立椭圆方程、设11(,)C x y ,22(,)D x y ,()4,3Q k ,结合根与系数关系有12x x +,12x x ⋅,由斜率的两点公式可证1232k k k +=,即可确定λ的值; 【详解】解:(1)由题意,(),0A a -,(),0B a ,()0,G b ,22341914AG BG a b b b k k a a ⎧⋅=⋅=-⎪⎪-⎨+=⎪⎪⎩,解得24a =,23b =, 故椭圆E 的方程为:22143x y +=.(2)存在实数2λ=满足题意;由(1)知椭圆E 的方程:2234120x y +-=,直线l 的方程为(1)y k x =-,代入椭圆方程并整理,得2223484120()k x k x k +-+-=,设11(,)C x y ,22(,)D x y ,()4,3Q k 则有2122834kx x k +=+,212241234k x x k-⋅=+, ()()121212121233331122221111y y k x k x k k x x x x ------+=+=+----22122212122282233342241282()12131234k x x k k k k k x x x x k k-+-+=-⋅=-⋅-⋅-++-+-+22222386822412834k k k k k k--=-⋅--++21k =-, 3332222141k k k -=⋅=--,即1232k k k +=, 故存在实数2λ=满足题意. 【点睛】关键点点睛:由直线斜率关系,椭圆过定点,应用待定系数法求2a ,2b ,写出椭圆E 的方程;根据直线与椭圆关系,联立方程由根与系数关系有12x x +,12x x ⋅,再由斜率的两点公式确定123,,k k k 的数量关系.16.(1)22143x y +=;(2)⎛ ⎝⎭. 【分析】(1)首先利用对称性作点1(1,0)F -关于直线y x =+的对称点()'1,F x y ,由对称性可知11PF PF '=,利用公式'12122||||||||a PFPF PF PF =+=+,求长轴的最小值; (2)首先设椭圆上存在111(,)A x y ,22(,)B x y 关于直线4y x m =+对称,则直线AB 方程为14y x n =-+,直线方程与椭圆方程联立,利用根与系数的关系和对称关系,列式求m 的取值范围. 【详解】(1)由已知椭圆焦点1(1,0)F -,2(1,0)F , 设点P 是椭圆E与直线y x =+ 求得1(1,0)F -关于直线y x =的对称点()'1,F x y ,则12211y x y x -⎧=⎪⎪⎨⎪=-⎪+⎩,解得:1x y ==,即()11F ',124F F '==则椭圆长轴长''1212122||||||||||4a PF PF PF PF F F =+=+≥=,∴椭圆长轴最短时方程为:22143x y +=(2)设椭圆上111(,)A x y ,22(,)B x y 关于直线4y x m =+对称, 则,A B 在与直线4y x m =+垂直的直线上,设为14y x n =-+, 由2214143y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得:221324(3)04x nx n -+-= 令0∆>,则2413n <① 又12813nx x +=,,A B 中点412(,)1313n n ,代入4y x m =+有:413n m=,代入①解得:1313m -<<故m 的取值范围是:⎛ ⎝⎭. 【点睛】思路点睛:本题第一问考查与直线有关的对称问题,当点P 在直线上运动,求点P 到两个定点的距离的最值,需注意,两定点在直线的异侧,求和的最小值,两定点在直线的同侧,求差的最大值,如果不是这样,需用对称性,进行转化.17.(1)22143x y +=;(2)证明见解析;22127x y +=.【分析】(1)根据条件得出221914a b +=且12c a =,解出,a b 即可得出方程;(2)设出直线方程,联立直线与椭圆,由OA OB ⊥得0OA OB ⋅=,由此可得=. 【详解】(1)由椭圆经过点31,2P ⎛⎫⎪⎝⎭,离心率12e =得: 221914a b +=且12c a =. 解得2a =,1c =,b =所以椭圆C :22143x y +=.(2)当直线AB l 的斜率不存在时,设直线为x m =,则由OA OB ⊥可得(),A m m ±,代入椭圆得22143m m +=,解得2127m =,则与直线AB l相切且圆心为原点的圆的半径为m =, 即圆的方程为22127x y +=; 当斜率存在时,设直线AB l 的方程为:y kx b =+,()11,A x y ,()22,B x y ,联立方程22143y kx b x y =+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b +++-=.所以122834kbx x k +=-+,()21224334b x x k-=+. 因为OA OB ⊥,所以12120OA OB x x y y ⋅=+=, 又因为11y kx b =+,22y kx b =+,故()()12121212x x y y x x kx b kx b +=+++()()22121210k x x kb x x b =++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r ===所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.18.(1)2214x y +=;(2)22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)设椭圆的标准方程为()222210x y a b a b+=>>,根据题意可求得a 、c 的值,进而可求得b 的值,由此可得出椭圆的标准方程;(2)设点()00,P x y 、(),M x y ,利用重点坐标公式可得0021122x x y y =-⎧⎪⎨=-⎪⎩,代入220014x y +=化简可得点M 的轨迹方程. 【详解】(1)设椭圆的标准方程为()222210x y a b a b +=>>,c由题意可得20c a b ⎧==⎪⎪=⎨⎪>⎪⎩,解得21a b =⎧⎨=⎩,因此,椭圆的标准方程为2214x y +=;(2)设点()00,P x y 、(),M x y ,则220014x y +=,由中点坐标公式可得0012122x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得0021122x x y y =-⎧⎪⎨=-⎪⎩, 代入220014x y +=得()222112142x y -⎛⎫+-= ⎪⎝⎭,即22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭. 因此,线段PA 的中点M 的轨迹方程为22114124x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.19.(1)2214x y +=;(2【分析】(1)由焦点坐标可求c ,短轴长求b ,然后可求出a ,进而求出椭圆C 的标准方程. (2)先求出直线方程,与椭圆方程联立,利用韦达定理及弦长公式求出线段AB 的长度. 【详解】(1)由()1F,)2F ,短轴长为2,得:1c b ==,又222a b c =+,所以24a =∴椭圆方程为2214x y +=(2)易知直线AB 的方程为12y x =+,设1122(,),(,)A x y B x y ,联立 221412x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,化简整理得:25430x x +-=由韦达定理得:12124,355x x x x +=-=- 所以5AB ==【点睛】关键点睛:本题考查求椭圆的方程,考查韦达定理及弦长公式的应用,解题的关键是熟悉弦长公式,考查学生的运算能力,属于基础题.20.(1)2212y x +=;(2【分析】(1)根据离心率的值,可列出a c ,的关系式,再根据经过()0,-2点,可得出a 的值和c 的值,最后再结合222a b c =+,可算出b 的值,直接写出椭圆方程即可.(2)根据题意设出直线的方程和椭圆方程联立方程组,由根和系数的关系,再结合三角形面积公式,可把三角形面积表示成含有参数的关系式,最后根据不等式,可求得面积的最大值.【详解】 (1)由题意,a =c e a ==得1c =,所以1b =,所以椭圆方程是2212y x +=.(2)由于直线AB 经过上焦点()0,1,设直线AB 方程为1y kx =+,联立方程组22112y kx y x =+⎧⎪⎨+=⎪⎩将1y kx =+代入椭圆方程2212y x +=,得()222210k x kx ++-=,则222A B k x x k +=-+,212A Bx x k ⋅=-+,∴A Bx x -==21212ABF A B S F F x x =⋅-△,可知122FF =则2211122ABF S k ===≤+△.=,即0k =时,2ABF S.【点睛】椭圆与直线相交时,三角形面积问题的关键点为:设直线方程、联立方程组、韦达定理、列出三角形面积的关系式,最后根据函数或不等式,可求出三角形面积的范围. 21.(11;(2)最大值72;最小值1-. 【分析】(1)因为在焦点三角形12AF F 中,120AF AF ⋅=,则12AF AF ⊥,又因为01260AF F ∠=,所以12,AF c AF ==,所以1212212F F c c e a a AF AF =====+,(2)若1a b ==,则1c =,12(1,0),(1,0)F F -,当AB 垂直于x 轴时,可求出,A B两点的坐标,从而可得22F A F B ⋅的值,当AB 与x 轴不垂直,设直线AB 的斜率为k ,则直线AB 的方程为(1)y k x =+,与椭圆方程联立成方程组,消去y 后,整理再利用韦达定理得2122412k x x k+=-+, 21222(1)12k x x k -⋅=+,从而可得22F A F B ⋅=22271791222(12)k k k -=-++,进而可求出其取值范围 【详解】 (1)120AF AF ⋅=,12AF AF ∴⊥因为1260AF F ∠=。

相关文档
最新文档