变频器的应用

合集下载

变频器工程应用实例

变频器工程应用实例

变频器工程应用实例近年来,随着工业自动化程度的不断提高,变频器作为一种重要的电气控制设备,在工程应用中发挥着重要的作用。

本文将通过几个实际应用案例,介绍变频器在工程中的应用。

一、水泵变频器应用在水处理工程中,水泵的运行需要根据实际需求对水的流量进行调节。

传统的水泵控制方式是通过阀门来控制流量,但这种方式效率低下且能耗较高。

而采用变频器控制水泵,可以根据实际需求智能地调整水泵的转速,从而实现节能效果。

例如,在一个污水处理厂中,采用变频器控制水泵的转速,根据排放水流量的变化调整水泵的运行状态,不仅实现了节能降耗,还提高了运行效率。

二、风机变频器应用在工业生产过程中,风机的运行通常需要根据工艺要求和环境变化来进行调节。

采用传统的调速方式,如调节风机的进气阀门或风量控制阀门,不仅操作繁琐,而且能量损耗较大。

而采用变频器控制风机的转速,可以根据实际需求智能地调节风机的转速,从而实现节能降耗。

例如,在一家化工厂中,采用变频器控制风机的转速,根据工艺要求智能调节风机的运行状态,既保证了生产过程的稳定性,又降低了能耗。

三、输送机变频器应用在物流行业中,输送机广泛应用于物料的输送和分拣过程。

传统的输送机通常采用固定速度运行,无法根据物料的实际需求进行智能调节。

而采用变频器控制输送机的运行速度,可以根据物料的实际需求智能地调节输送机的运行状态,从而提高物料的处理效率和减少能耗。

例如,在一个物流分拣中心中,采用变频器控制输送机的运行速度,根据物料的种类和数量智能调节输送机的运行状态,提高了分拣效率,降低了能耗。

四、电梯变频器应用在楼宇和商业建筑中,电梯是人们出行的重要工具。

传统的电梯通常采用定速运行,无法根据实际需求进行智能调节。

而采用变频器控制电梯的运行速度,可以根据楼层需求智能地调节电梯的运行状态,从而提高电梯的运行效率和节能效果。

例如,在一栋高层写字楼中,采用变频器控制电梯的运行速度,根据楼层的人流量智能调节电梯的运行状态,不仅提高了乘坐体验,还降低了能耗。

变频器的应用实例

变频器的应用实例

变频器的应用实例变频器是一种能够调节电机转速的电力设备,广泛应用于各个领域。

下面将介绍几个变频器的应用实例。

1. 工业生产中的泵站控制在工业生产过程中,常常需要使用泵站来输送液体或气体。

传统的泵站控制方式通常是通过手动操作或者采用恒速电机来实现。

然而,这种方式存在能源浪费和操作不灵活的问题。

通过使用变频器,可以根据实际需要调节泵站的转速,从而实现节能效果和灵活控制。

2. 电梯系统中的驱动控制电梯作为现代建筑中不可或缺的设施,其安全性和稳定性要求非常高。

变频器在电梯系统中的应用主要体现在电梯的驱动控制上。

传统的电梯系统通常采用恒速驱动方式,这种方式存在能源浪费和运行不平稳的问题。

而采用变频器可以根据载重情况和乘客需求动态调节电梯的速度,从而提高运行效率和乘坐舒适度。

3. HVAC系统中的风机控制暖通空调系统(HVAC)中的风机控制是一个非常重要的环节。

传统的风机控制系统通常采用恒速运行方式,无法根据实际需要进行调整,造成能源浪费和运行效率低下。

而使用变频器可以根据室内温度和需求实时调节风机的转速,提高空气流通效率,实现节能效果。

4. 机械加工中的数控设备在机械加工领域,数控设备的应用越来越普遍。

数控设备的运行通常需要精确控制电机的转速和位置。

传统的数控设备通常采用直流电机或者恒速交流电机,无法满足精确控制的需求。

而采用变频器可以根据数控程序要求实时调节电机的转速和位置,提高加工精度和效率。

5. 新能源领域中的风力发电控制风力发电是一种清洁能源,具有广阔的发展前景。

在风力发电系统中,变频器主要应用于风机的控制。

通过采用变频器可以根据风速的变化调节风机的转速,实现最大化的能量转化效率。

此外,变频器还可以对风力发电机组进行监控和故障诊断,提高运维效率。

变频器在工业生产、电梯系统、HVAC系统、机械加工和新能源领域等方面都有广泛的应用。

通过使用变频器,可以实现节能效果、提高运行效率和加工精度,从而为各个行业带来更好的发展前景。

变频器原理及其应用

变频器原理及其应用

变频器原理及其应用
变频器(Variable Frequency Drive,简称VFD)是一种电力电
子装置,用于控制交流电动机的转速和扭矩。

其原理是通过改变输入电源的频率和电压来控制电机的转速。

变频器主要由整流器、滤波器、逆变器和控制电路组成。

输入电源先经过整流器将交流电转换为直流电,然后经过滤波器获取平滑的直流电。

接下来,直流电通过逆变器将其转换为可调的交流电,其中逆变器的输出频率和电压可根据控制信号进行调节。

最后,控制电路监测和调整逆变器的输出,确保电动机按照预设的转速和扭矩工作。

变频器的应用非常广泛,常见的应用包括:
1. 工业控制:变频器可用于控制工业设备的转速和运行状态,如风机、泵、压缩机等。

通过调整电动机的转速和负载,可以达到节能、降噪和延长设备寿命的目的。

2. 交通运输:变频器可用于电动车辆或轨道交通中的控制系统,通过控制电机的转速和扭矩以实现驱动力的调节和能量回收。

3. HVAC系统:变频器可用于调整暖通空调系统中的风机和
水泵的运行速度,以节约能源和提高控制精度。

4. 风能和太阳能发电:变频器可用于调节风力涡轮机或光伏发电装置中发电机的转速,以适应不同的风速或光照强度。

总之,变频器的原理和应用使得电动机的转速和扭矩可以根据实际需求进行灵活控制,从而提高能效、降低能耗,并实现自动化和智能化控制。

变频器应用场景

变频器应用场景

变频器应用场景
变频器是一种电力调节设备,主要用于调节交流电动机的转速和输出功率。

它的应用场景广泛,包括以下几个方面:
1. 工业生产:变频器可用于工业生产中的各种机械设备,如风机、泵、压缩机、输送带等。

通过调整电动机的转速,可以实现不同的功率输出,从而满足不同的生产需求。

2. 空调系统:变频器可以被应用于空调系统中,通过调整风机和压缩机的转速,实现空调制冷或制热功率的精细调节,从而提高空调系统的能效。

3. 电梯系统:变频器在电梯系统中也有着重要的应用。

通过调节电动机的转速和输出功率,可以实现电梯的平稳运行和节能降耗。

4. 新能源领域:变频器也被广泛应用于新能源领域,如风力发电和光伏发电等。

通过精确控制发电设备的输出功率和频率,可以提高发电效率和稳定性。

总之,变频器在现代工业生产和生活中有着广泛的应用,可以提高设备的能效和稳定性,实现节能降耗,是一种非常有价值的电力调节设备。

- 1 -。

变频器应用实例

变频器应用实例

引言概述:变频器是用于调节交流电机转速的设备,广泛应用于工业控制和自动化领域。

它通过改变电源的频率和电压来控制电机的转速,以适应不同的工作需求。

本文将通过介绍5个变频器应用实例,详细说明变频器在各个领域的应用。

正文内容:1.工业生产领域中的变频器应用1.1提高设备效率1.2节能减排1.3保护设备安全1.4提高产品质量1.5实现运行平稳2.污水处理领域中的变频器应用2.1节能降耗2.2操作灵活性2.3水质监测与控制2.4平滑运行2.5增强设备寿命3.石化行业中的变频器应用3.1控制压缩机和泵的运行3.2节省能源成本3.3降低设备维护费用3.4实现远程监控与数据分析3.5提高工艺流程控制精度4.矿山工程中的变频器应用4.1控制输送机和提升机的速度4.2降低电能消耗4.3增加生产效率4.4减少设备维护次数4.5提高安全性和稳定性5.HVAC系统中的变频器应用5.1精确控制室内温度5.2降低运行噪音5.3节能减排5.4增加系统的可靠性5.5实现智能化管理和远程控制总结:通过上述五个具体的实例,我们可以看到变频器在工业生产、污水处理、石化行业、矿山工程和HVAC系统等领域的应用价值。

它能够提高设备效率,节能减排,保护设备安全,提高产品质量,并实现运行平稳。

同时,变频器还可以灵活控制水质、压缩机和泵的运行,降低能源成本,提高工艺流程控制精度,增加生产效率,并提高系统的可靠性和安全性。

未来,随着技术的不断进步和应用范围的扩大,变频器在各个领域将发挥更加重要的作用,为我们的工作和生活带来更多的便利和效益。

变频器32个典型应用领域

变频器32个典型应用领域

变频器32个典型应用领域1、空调负载类写字楼、商场和一些超市、厂房都有中央空调,在夏季的用电顶峰,空调的用电量很大。

在炎热天气,、、空调的用电量均占峰电40%以上。

因而用变频装置,拖动空调系统的冷冻泵、冷水泵、风机是一项非常好的节电技术。

目前,全国出现不少专做空调节电的公司,其中主要技术是变频调速节电。

2、破碎机类负载冶金矿山、建材应用不少破碎机、球磨机,该类负载采用变频后效果显著3、大型窑炉煅烧炉类负载冶金、建材、烧碱等大型工业转窑(转炉)以前大局部采用直流、整流子电机、滑差电机、串级调速或中频机组调速。

由于这些调速方式或有滑环或效率低,近年来,不少单位采用变频控制,效果极好。

4、压缩机类负载压缩机也属于应用广泛类负载。

低压的压缩机在各工业部门都普遍应用,高压大容量压缩机在钢铁(如制氧机)、矿山、化肥、乙烯都有较多应用。

采用变频调速,均带来启动电流小、节电、优化设备使用寿命等优点。

5、轧机类负载在冶金行业,过去大型轧机多用交-交变频器,近年来采用交-直-交变频器,轧机交流化已是一种趋势,尤其在轻负载轧机,如民族铝制品厂的多机架铝轧机组采用通用变频器,满足低频带载启动,机架间同步运行,恒力控制,操作简单可靠。

6、卷扬机类负载卷扬机类负载采用变频调速,稳定、可靠。

铁厂的高炉卷扬设备是主要的炼铁原料输送设备。

它要求启、制动平稳,加减速均匀,可靠性高。

原多采用串级、直流或转子串电阻调速方式,效率低、可靠性差。

用交流变频器替代上述调速方式,可以取得理想的效果。

7、转炉类负载转炉类负载,用交流变频替代直流机组简单可靠,运行稳定。

8、辊道类负载辊道类负载,多在钢铁冶金行业,采用交流电机变频控制,可提高设备可靠性和稳定性。

9、泵类负载泵类负载,量大面广,包括水泵、油泵、化工泵、泥浆泵、砂泵等,有低压中小容量泵,也有高压大容量泵。

许多自来水公司的水泵、化工和化肥行业的化工泵、往复泵、有色金属等行业的泥浆泵等采用变频调速,均产生非常好的效果。

变频器工作原理及应用

变频器工作原理及应用
电气传动基础知识—电气传动系统概述
电气传动基础知识—电气传动的目的和意义
序号
意义
有代表意义的行业或设备
1
节能
风机、水泵、注塑机
2
提高产品质量
机床、印刷、包装等生产线
3
改善工作环境
电梯、中央空调
目的 根据设备和工艺的要求通过改变电动机速度或输出转矩改变终端设备的速度或输 出转矩
意义
注:并不是所有的设备使用电气传动装置后都可以节能
P电机功率=
T电机转矩×N电机速度×K常数
M
T电机转矩
T负载转矩
中间传动机构
终端机械
电气传动基础知识—电气传动系统基本工作原理
速度模式: 以保持转速恒定为目的,如常规调速系统(电梯、各类生产线)。控制设 备根据速度要求自动调整电机转矩适应外部的负载变化,恒速时电机转矩 肯定等于负载转矩 转矩模式 以控制电机转矩恒定为目的,如:开卷/收卷,恒速时电机转矩肯定等于 负载转矩,但电机的运转速度不确定。 如果电机转矩始终大于负载转矩,则速度持续上升直至设备限速或损坏 如果电机转矩始终小于负载转矩,则速度为0或最低(下限)速度 为保证系统安全,必须额外考虑限速或超速保护
变频器的用途比较广泛,无论是在生产还是咱们的日常生活中,都有所应用。 变频器在公司生产中得到广泛的应用: 例1、生产、生活中的恒压泵供水系统; 例2、高炉上料小车的控制; 例3、球团厂的回转窑旋转控制; 例4:炼钢连铸机的引锭杆的控制; 例5:炼钢厂转炉的倾动控制等等;
变频器可用于家电产品: 例1、公共场所使用的中央空调; 例2、家庭中还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。

变频器应用范围

变频器应用范围

变频器应用范围变频器是一种用于控制电动机转速的设备,通过改变电源电压和频率的方式,实现对电机进行调速控制。

变频器广泛应用于各行各业,涉及到许多不同的领域。

本文将介绍变频器的应用范围。

1. 工业生产领域在工业生产中,变频器被广泛应用于各种机械设备的调速控制,如风机、水泵、压缩机、输送带等。

通过变频器的控制,可以根据不同的工艺要求和负载变化,调整电机的转速,提高生产效率和能源利用率。

同时,变频器还可以实现启动过程中的平稳启动和刹车过程中的能量回馈,减少设备运行过程中的机械冲击和磨损,延长设备的使用寿命。

2. 建筑行业在建筑行业中,变频器主要用于楼宇电梯的调速控制。

通过变频器的应用,可以实现电梯平稳的启动和停止,提高电梯的乘坐舒适度和安全性。

同时,变频器还可以根据人流量进行运行模式的调整,减少电梯的能耗,提高运行效率。

3. 石油化工行业在石油化工行业中,变频器广泛应用于泵和风机等设备的调速控制。

通过变频器的使用,可以根据生产工艺和设备负载的变化,精确控制设备的转速和产量,提高生产效率。

同时,变频器还可以实现多台设备的联动控制,使整个系统的运行更加稳定和可靠。

4. 冶金行业在冶金行业中,变频器被用于轧机、卷取机和热处理设备等设备的调速控制。

通过变频器的应用,可以实现精确的轧制控制和产品质量控制,提高产品的加工精度和表面质量。

同时,变频器还可以实现设备之间的协调工作,提高生产线的运行效率和生产能力。

5. 环境保护行业在环境保护行业中,变频器主要应用于风机、泵和空气处理设备等设备的调速控制。

通过变频器的应用,可以根据不同的工况要求,调整设备的运行参数,提高设备的工作效率和能源利用率。

同时,变频器还可以实现设备的平稳启停,减少设备的机械冲击和噪音,降低设备的运行成本。

综上所述,变频器的应用范围非常广泛,涵盖了工业生产、建筑、石油化工、冶金和环境保护等众多领域。

通过变频器的调速控制,可以提高设备的运行效率、降低能源消耗和维护成本,为各行各业的发展做出积极贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器的应用
摘要:变频器体现着很多的优胜性,但它干扰电网的谐波和电磁辐射也越来越受到人们的重视,本篇主要介绍谐波、电磁辐射的标准和危害及其减弱或消除的方法。

关键词:谐波、电磁辐射、方法引言变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常运作。

1电网及其它系统受谐波和电磁辐射的危害(1)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

(2)电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

(3)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

(4)谐波或电磁辐射干扰会导致继电保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

(5)谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

通常来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。

但对系统容量小的系统,谐波产生的干扰就不能忽视。

2 有关谐波的国际及国家标准(1)国际标准IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv。

IEC61000-2-2标准规定了电网公共接入点处的各次谐波电压含有的THDv约为8%。

IEC61000-2-4标准分三级。

第一类对谐波敏感场合(如计算机、实验室等)THDv为5%;第二类针对电网公共接入点和一部分厂内接入点THDv为8%;第三类主要针对厂内接入点THDv为10%。

以上两个标准还规定了电器设备所允许产生谐波电流的幅值,前者主要针对16A以下,后者主要针对16A到64A。

IEEE519-1992标准是个建议标准,目标是将单次THDv限制在3%以下,总THDv 限制在5%以下。

(2)国内标准GB/T14549-93中规定,公用电网谐波电压(相电压)限值为380V(220V)电网电压总THDv为5%,各次谐波电压含有率奇次为4%,偶次为2%。

综上所述,一般单次电压畸变率在3~6%,总电压畸变率在5~8%的范围内是可以接受的。

3 减少变频器谐波对其它设备影响的方法(1)增加交流/直流电抗器采用交流/直流电抗器后,进线电流的谐波畸变率大约降低30%~50%,是不加电抗器谐波电流的一半左右,使用交流/直流电抗器降低THD。

(2)多相脉冲整流在条件具备,或者要求产生的谐波限制在比较小的情况下,可以采用多相整流的方法。

12相脉冲整流THDv大约为10%~15%,18相脉冲整流的THDv约为3%~8%,满足EN61000-3-12和IEEE519-1992严格标准的要求。

缺点是需要专用变压器和整流器,不利于设备改造,价格较高。

(3)无源滤波器采用无源滤波器后,满载时进线中的THDv可降至5%~10%,满足EN61000-3-12和IEEE519-1992的要求,技术成熟,价格适中。

适用于所有负载下的THDv<30%的情况。

缺点是轻载时功率因数会降低。

(4)输出电抗器也可以采用在变频器到电动机之间增加交流电抗器的方法(如图3),主要目
的是减少变频器的输出在能量传输过程中,线路产生的电磁辐射。

该电抗器必须安装在距离变频器最近的地方,尽量缩短与变频器的引线距离。

如果使用铠装电缆作为变频器与电动机的连线时,可不使用这方法,但要做到电缆的铠在变频器和电动机端可靠接地,而且接地的铠要原样不动接地,不能扭成绳或辨,不能用其它导线延长,变频器侧要接在变频器的地线端子上,再将变频器接地。

4 减少或削弱变频器谐波及电磁辐射对设备干扰的方法上面介绍的方法是减少变频器工作时对外设备的影响,但并不是消除了变频器的对外干扰,如果想进一步提高其它设备对变频器谐波和电磁辐射的免疫能力,尤其是在变频器(品牌不同,产生的干扰程度可能不一样)干扰较严重的场合中常用的方法通常有以下几种。

(1)使用隔离变压器使用隔离变压器主要是应对来自于电源的传导干扰(如图4)。

使用具有隔离层的隔离变压器,可以将绝大部分的传导干扰阻隔在隔离变压器之前。

同时还可以兼有电源电压变换的作用。

隔离变压器常用于控制系统中的仪表、PLC,以及其它低压小功率用电设备的抗传导干扰。

使用滤波模块或组件目前市场中有很多专门用于抗传导干扰的滤波器模块或组件,这些滤波器具有较强的抗干扰能力,同时还具有防止用电器本身的干扰传导给电源,有些还兼有尖峰电压吸收功能,对各类用电设备有很多好处。

常用双孔磁芯滤波器还有单孔磁芯的滤波器,其滤波能力较双孔的弱些,但成本较低。

选用具有开关电源的仪表等低压设备
一般开关电源的抗电源传导干扰的能力都比较强,因此在选用控制系统的电源设备,或者选用控制用电器的时候,尽量采用具有开关电源类型的。

作好信号线的抗干扰对于信号线上的干扰主要是来自空间的电磁辐射,有常态干扰和共模干扰两种。

常态干扰的抑制常态干扰是指叠加在测量信号线上的干扰信号,这种干扰大多是频率较高的交变信号,其来源一般是耦合干扰。

抑制常态干扰的方法有:在输入回路接RC滤波器或双T滤波器;尽量采用双积分式A/D 转换器,由于这种积分器工作的特点,具有一定的消除高频干扰的作用;将电压信号转换成电流信号再传输的方式,对于常态的干扰有非常强的抑制作用。

共模干扰的抑制共模干扰是指信号线上共有的干扰信号,一般是由于被测信号的接地端与控制系统的接地端存在一定的电位差所致,这种干扰在两条信号线上的周期、幅值基本相等,所以采用上面的方法无法消除或抑制。

对共模干扰的抑制方法如下:采用双差分输入的差动放大器,这种放大器具有很高的共模抑制比。

把输入线绞合,绞合的双绞线能降低共模干扰,由于改变了导线电磁感应e的方向,从而使其感应互相抵消。

双绞线降低共模干扰采用光电隔离的方法,可以消除共模干扰;使用屏蔽线时,屏蔽层只一端接地。

因为若两端接地,由于接地电位差在屏蔽层内会流过电流而产生干扰,因此只要一端接地即可防止干扰。

(5)应注意的事项无论是为了抑制常态干扰还是抑制共模干扰,都还应该做到以下几点:输入线路要尽量短。

配线时避免和动力线接近,信号线与动力线分开配线,把信号线放在有屏蔽的金属管内,或者动力线和信号线分开距离要在40cm以上。

为了避免信号失真,对于较长距离传输的信号要注意阻抗匹配。

在使用以单片机、DSP等为核心的控制系统中,编制软件的时候,可以适当增加对
检测信号和输出控制部分的软件滤波,以增强系统自身的抗干扰能力。

相关文档
最新文档