杭州市2020年中考数学押题卷及答案

合集下载

杭州市2020年中考数学押题卷及答案

杭州市2020年中考数学押题卷及答案

杭州市2020年中考数学押题卷及答案注意事项:1.本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第I卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.6的相反数是()A. -B. 6C. -6D.- -6 62.下面四个几何体中,左视图是四边形的几何体共有()正方体A. 1个B. 2个C. 3个D. 4个3.计算(-ab2)3的结果是()A. - a3b5B. - a3b6C. - ab6D. - 3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.已知/ & =35。

,那么/ &的余角等于(A. 35° B .55° C6.不等式组, 2 的解集为()l-2x<3A. x>— B . x< - 1 C .145°x>. । x2小颖同学制作了四张材质和外观完全一样的书签,每个书签的正面写着一本数学著作的书名,分 别是《九章算术》、《几何原本》、《周髀算经》、《海岛算经》.将这四张书签背面朝上洗匀后随机 抽取一张,则抽到的书签上恰好写有我国古代数学著作书名的概率是(B・Il5K -1 0<0二次函数y=ax 2+bx +c (aw0)的图象如图所示,对称轴是直线x=1,下列结论:①abv0; ②b 2>4ac ;③a +b +cv 0; ④3a +cv 0.其中正确的是( )7 .如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向 2的概率为(8 . 如图,学校环保社成员想测量斜坡为60。

,然后在坡顶 1 16CD 旁一棵树AB 的高度,他们先在点 C 处测得树顶B 的仰角D 测得树顶B 的仰角为30° ,已知斜坡 CD 的长度为20m, DE 的长为10m, 则树AB 的高度是()m.A. 20 7 B 30409. 10 不等式组〈1—1 1的解集在数轴上表示正确的是(11. BC . 30用D A. BC D边形ADC呼,DE的最小值是(第n卷二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x? — 4x =.14.下列各式是按新定义的已知运算得到的,观察下列等式:2A 5=2X3+5=11, 2A ( - 1) = 2X3+ (T) = 5,6A 3=6X3+3 = 21, 4A (- 3) =4X3+ (-3) = 9……根据这个定义,计算(-2018) △2018的结果为15.若关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值为.16.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:平果总质量j n (kg) 100 200 300 400 500 1000 损坏苹果质量mi (kg) 10.50 19.42 30.63 39.24 49.54 101.10苹果损坏的频率四(结果保n 留小数点后三位) 0.105 0.097 0.102 0.098 0.099 0.101A.①④B.②④12.如图,在RtAABC^, / B= 90° ,C.①②③D.①②③④AB= 6, BC^8,点D在BC上,以AC为对角线的所有平行四A. 4B. 6 D. 10估计这批苹果损坏的概率为(结果保留小数点后一位),损坏的苹果约有kg.17.如图,AB是。

〖精选4套试卷〗杭州市2020年中考数学第二次押题试卷

〖精选4套试卷〗杭州市2020年中考数学第二次押题试卷

2019-2020学年数学中考模拟试卷一、选择题1.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案⑩需几根火柴棒( )A .71B .72C .74D .782.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边上有一动点P 从点A 出发沿A→B→C→D→A 匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )A .B .C .D .3.平方根和立方根都是本身的数是( ) A .0B .1C .±1D .0和±14.如图圆O 直径AB 上一点P ,AB =2,∠BAC =20°,D 是弧BC 中点,则PD+PC 的最小值为( )A .3B .1C .5D .25.下列四个命题中:①若,则;②反比例函数,当时,y 随x 的增大而增大;③垂直于弦的直径平分这条弦; ④平行四边形的对角线互相平分,真命题的个数是( ) A.1个 B.2个C.3个D.4个6.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( ) A.542.110⨯B.54.2110⨯C.64.2110⨯D.74.2110⨯7.下列运算正确的是( ) A .x 8÷x 2=x 4B .(x 2)3=x 5C .(﹣3xy)2=6x 2y 2D .2x 2y•3xy=6x 3y 28.如图,直线y =mx+n 与两坐标轴分别交于点B ,C ,且与反比例函致y =2x(x >0)图象交于点A ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是6,则△DOC 的面积是( )A .5﹣25B .5+25C .415﹣6D .﹣3+159.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A .6B .8C .10D .1210.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 12 12 14 15 16 人数12231A .15,14B .15,13C .14,14D .13,1411.不等式12x-≥1的解集在数轴上表示正确的是( ) A .B .C .D .12.﹣π的绝对值是( ) A .﹣π B .3.14 C .π D .1π二、填空题13.如图,O 是等边△ABC 内一点,OA =6,OB =8,OC =10,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O'的距离为8;③四边形AOBO'的面积为3; ④∠AOB =150°;⑤s △AOC+S △AOB =3,其中正确的结论是_____.14.如图,在△ABC 中,AC =BC =4,∠ACB =90°,若点D 是AB 的中点,分别以点A 、B 为圆心,12AB 长为半径画弧,交AC 于点E ,交BC 于点F ,则图中阴影部分的周长是_____.15.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =2,则⊙O 的半径为_____.16.分解因式a 3﹣a 的结果是_____. 17.将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1、12、12、13、13、13、…、1n 、1n …,记123111,,,22a a a ===…,11S a =,212S a a =+,3123S a a a =++,…,12...n n S a a a =+++,则S 2019=______.18.如图,在□ABCD 中,AB=3,AD=4,∠ABC=60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .三、解答题19.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.20.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1m,参考数据:3≈1.73,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=3,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=2,PC=1,求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=12AD.∠BAC=2∠ADC,请直接写出BD的长.22.如图,1为水平地面,测角仪高1米,将测角仪放置在点D处,且垂直于地面1,测得仰角∠ACG=45°,将测角仪平移至EF处,测得仰角∠AEG=60°,已知DF=3米,求树AB的高度.23.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B的切线交CA 的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=32,半⊙O的半径为2,求PA的长度.24.一般轮船在A、B两个港口之间航行,顺流需要4个小时,逆流需要5个小时,已知水流通度是每小时2千米,求轮船在静水中的速度.25.某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行一次测试(满分50分,成绩均记为整数分),并按测试成绩m(单位:分)分类:A类(45<m≤50),B类(40<m≤45),C类(35<m≤40),D类(m≤35)绘制出如图所示的不完整条形统计图,请根据图中信息解答下列问题:(1)a=,b=,c=;成绩等级人数所占百分比A类(45 10 20%B类22 44%C类 a bD类 c(3)若该校九年级男生有600名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A A B B C D D C A A C13.①②④⑤.14.8422π-+15.13 416.a(a+1)(a﹣1).17.403564(或36364)18.3三、解答题19.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。

2020年浙江省杭州市中考数学模拟考试试卷A卷附解析

2020年浙江省杭州市中考数学模拟考试试卷A卷附解析

2020年浙江省杭州市中考数学模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=5m ,点P 到CD 的距离是3m ,则P 到AB 的距离是( )A .56mB .67mC .65mD .103m2.假设命题“b a <”不成立,那么a 与b 的大小关系只能是( )A .b a ≠B .b a >C .b a =D .b a ≥3.如图所示,设P 为□ABCD 内的一点,△PAB ,△PBC ,△PDC ,△PDA 的面积分别记为S l ,S 2,S 3,S 4,则有( )A .S l =S 4B .S l +S 2=S 3+S 4C .S 1+S 3=S 2+S 4D .以上都不对4.在10,20,40,30,80,90,50,40,40,50这10个数据中,极差是 ( )A .40B .70C .80D .905.已知点P (1,2)与点Q (x ,y )在同一条平行于x 轴的直线上,且Q 点到y 轴的距离等于2,那么点Q 的坐标是( )A .(2,2)B .(-2,2)C .(-2,2)和(2,2)D .(-2,-2)和(2,-2)1.确定平面上一个点的位置,一般需要的数据个数为( )A .无法确定B .l 个C .2个D .3个 6.为了参加市中学生篮球运动会.校篮球队准备购买10双运动鞋,各种尺码的统计如表所示.则这10双运动鞋尺码的众数和中位数分别为( ) 尺码/厘米 25 25.5 26 26.5 27A. 25 C .26厘米.26厘米D .25.5厘米.25.5厘米 7.底面是n 边形的直棱柱棱的条数共有( ) A .2n +B .2nC .3nD .n 8.等腰直角三角形两直角边上的高所的角是( )A . 锐角B .直角C .钝角D . 锐角或钝角 9.小强、小亮、小文三位同学玩投硬币游戏,三人同时各投出一枚均匀硬币,若出现3个正面向上或3个反面向上,则小强赢;若出现2个正面向上,1 个反面向上,则小亮赢;若出现 1 个正面向上,2个反面向上,则小文赢. 下面说法正确的是( )A .小强赢的概率最小B .小文赢的概率最小C .亮赢的概率最小D .三人赢的概率都相等10.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A .2个B .3个C .4个D .5个 11.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .315°B .270°C .180°D .135° 12.下列计算中,错误..的是( ) A .33354a a a -= B .236m n m n +⋅=C .325()()()a b b a a b -⋅-=-D .78a a a ⋅= 13.甲、乙两把不相同的锁,各配有 2 把钥匙,那么从这4 把钥匙中任取 2 把钥匙,打开甲、乙两把锁的概率为( )A . 12 B .13 C .23 D .56二、填空题14.如果点P 是线段AB 的黄金分割点,且AP>PB ,则下列说法正确的是______(仅填序号). ①AP 2=PB ·AB ;②AB 2=AP ·PB ;③BP 2=AP ·AB ;④AP :AB =PB :AP15.如图,从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度h =最大 .16.已知抛物线y=x2-(a+2)x+9顶点在坐标轴上,则a的值为 .17.如图所示,已知:∠l=∠2=∠3,EF ⊥AB 于点F .求证:CD ⊥AB .证明:∵∠1=∠2( ). ∴ ∥ ( ). ∴∠ADG= ( ).∵∠l=∠3( ),∴∠ADG+∠1= + .∵EF ⊥AB( ),∴∠B+∠3=180°-90°=90° ( ).∴∠ADG+∠1=90°.∴CD ⊥AB( ).18.不等式 5x- 4<6x 的解集是 .546x x -<19.有14个顶点的直棱柱是直 棱柱,有 条侧棱,相邻两条侧棱互相 .20.甲、乙两人环绕长为 400 m 的环形跑道散步一如果两人从同一点背道而行,那么经过2 min 相遇;如果两人从同一点同向而行,那么经过 20 min 相遇,已知甲的速度比乙快,则甲、乙两人散步速度分别为 m/min , m/min.21.当m = 时,方程25310m x --=是一元一次方程.三、解答题22.把两块相同的含 30°角的三角尺如图放置,如果 AD =6,求三角尺各边的长.23.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,•梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点,已知∠BAC=65°,∠DAE=45°,点D 到地面的垂直距离2m ,求点B 到地面的垂直距离BC (精确到0.1m ).24.如图,在□ABCD中,BE⊥AC,DF⊥AC,E,F分别为垂足.求证:四边形BEDF是平行四边形.25.若不等式2123x ax b-<⎧⎨->⎩的解集为11x-<<,求(1)(1)a b+-的值.26.如图,在△ABC中,D、E分别是AB、AC上的点,且AD=AE,DE∥BC,试说明AB=AC.27.求各边长互不相等且都是整数、周长为24的三角形共有多少个?28.计算:(1)()()()24321223x y x y xy -÷⋅- (2)(15x 3y 5-10x 4y 4-20x 3y 2)÷(-5x 3y 2)29.如图所示,△ABC 是等腰直角三角形,点D 在BC 上,将△ABD 按逆时针旋转至△AFE 的位置,问:(1)此旋转的旋转中心是哪一个点?(2)此旋转的角度为多少度?(3)若点M 为AB 的中点,则旋转后点M 转到了什么位置?30.将下列各数按从小 到大的次序排列,并用“<”号连结起来.1211-,1413-,2423-,65-,4746-. 612142447511132346-<-<-<-<-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.C5.C C6.D7.C8.B9.A10.C11.B12.B13.C二、填空题14.①④15.4.9米16.―2,―8,417.已知;DG ;BC ;内错角相等,两直线平行;∠B ;两直线平行,同位角相等;已知;∠B ;∠3;已知;三角形的内角和为l80°;垂直的定义18.x>-419.7,7,平行20.110,9021.3三、解答题22.∵AB=AC,∠ABD=90°,∴∠BDA=∠BAD=45°,∴sin 45sin 45O o AB BD AD ==⋅==tan 306o BE BD =⋅==,∴012cos30BD DE ===. 23.在Rt △ADE 中,,∠DAE=45°,∴sin ∠DAE=DE AD,∴AD=•6.•又∵AD=AB ,在Rt △ABC 中,sin ∠BAC=BC AB,∴BC=AB ·sin ∠BAC=6·sin65°≈5.4. 24.证明△DFO ≌△BED ,说明0F=OE ,另0D=OB ,则四边形BEDF 是平行四边形 25.-626.说明∠B=∠C27.⎪⎩⎪⎨⎧===,7,8,9c b a ⎪⎩⎪⎨⎧===,6,8,10c b a ⎪⎩⎪⎨⎧===,6,7,11c b a ⎪⎩⎪⎨⎧===,5,9,10c b a ⎪⎩⎪⎨⎧===,5,8,11c b a ⎪⎩⎪⎨⎧===,4,9,11c b a ⎪⎩⎪⎨⎧===.3,10,11c b a由此知符合条件的三角形一共有7个.28.(1)9xy 2 ,-3y 3+2xy 2+429.(1)点A ;(2)45°;(3)AF 的中点30.612142447511132346-<-<-<-<-。

浙江省杭州2020年中考模拟试卷数学试题(含答案)

浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。

2020年中考数学押题试卷(附答案)-2020中考圧题

2020年中考数学押题试卷(附答案)-2020中考圧题

2020年中考数学押题试卷(附答案)一、单选题(共11题;共22分)1.下列运算正确的是()A. a3•a3=2a3B. a0÷a3=a﹣3C. (ab2)3=ab6D. (a3)2=a52.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为()A. 362×102B. 3.62×104C. 3.62×105D. 0.362×1053.将一枚硬币抛掷两次,则这枚硬币两次反面都朝上的概率为()A. B. C. D.4.有理数a,b,c在数轴上的位置如图所示,下面结论正确的是( ).A. c>aB. c>0C. |a|<|b|D. a-c<05.如图,直线y=﹣x与反比例函数y= 的图象交于A,B两点,过点B作BD∥x轴,交y轴于点D,直线AD交反比例函数y= 的图象于另一点C,则的值为()A. 1:3B. 1:2C. 2:7D. 3:106.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,平移后C点的坐标是()A. (5,-2)B. (1,-2)C. (2,-1)D. (2,-2)7.如图,无法保证△ADE与△ABC相似的条件是()A. ∠1=∠CB. ∠A=∠CC. ∠2=∠BD.8.已知点E在半径为5的⊙O上运动,AB是⊙O的弦且AB=8,则使△ABE的面积为8 的点E共有()个A. 1B. 2C. 3D. 49.二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A. B. C. D.10.计算:=()A. B. C. D. 011.如图,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,则DE的长度是()A. 3B. 5C.D.二、填空题(共4题;共4分)12.多项式9x2+1加上单项式________后,能成为一个含x的三项式的完全平方式.13.如图,设∠1=x°,∠2=y°,且∠1的度数比∠2的度数的2倍多10°,则可列方程组为________ .14.设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”当双曲线的眸径为6时,的值为________. 15.如图,A,B是反比例函数y= 图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D 为OB的中点,△AOD的面积为6,则k的值为________.三、解答题(共6题;共69分)16.解下列方程:(1)解:,x(x-3)=0,x=0,x-3=0,∴x=0,x=3(1).17.“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为________,中位数在第________组;②频数分布直方图补充完整________;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.18.将长为、宽为的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为.(1)根据上图,将表格补充完整:(2)设张白纸黏合后的总长度为,则与之间的关系式是________;(3)你认为白纸黏合起来总长度可能为吗?为什么?19.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.20.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E.(1)求证:DE是⊙O的切线;(2)若AC=10,BC=16,求DE的长.21.如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.答案一、单选题1. B2. B3. D4. C5.A6. B7. B8.C9. D 10. C 11. D二、填空题12.±6x或x413.14.15.16三、解答题16. (1)解:.∵a=5,b=-4,c=-1,∴b2-4ac=(-4)2-4×5×(-1)=36>0,∴x= ,∴.17.(1)12;3;(2)解:×100%=44%,答:本次测试的优秀率是44%;(3)解:设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.18. (1)(2)y=35x+5(3)当y=2018时,2018=35x+5,解得x=57.5,不满足要求,∴不存在19.(1)解:设反比例函数解析式为y= ,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y= ;把A(3,m)代入y= ,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1(2)解:由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方(3)解:存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y= x,可设直线C1C2的解析式为y= x+b',把C1(﹣3,﹣2)代入,可得﹣2= ×(﹣3)+b',解得b'= ,∴直线C1C2的解析式为y= x+ ,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y= x+ ,把A(3,2)代入,可得2= ×3+ ,解得=﹣,∴直线AC3的解析式为y= x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).20.(1)证明:连接OD、AD,∵AC为⊙O的直径,∴∠ADC=90°,∵AB=AC,∴点D是BC的中点,∵O是AC的中点,∴OD是△ABC的中位线,∴OD∥AB,∴∠ODE=∠BED,∵DE⊥AB,∴∠ODE=90°,∴DE是⊙O的切线;∴CD= BC=8,(2)解:∵AB=AC,且∠ADC=90°,∠B=∠C,∴AD= =6,∵∠BED=∠CDA,∴△BED∽△CDA,∴= ,即= ,∴AC=4.8.21. (1)解:∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式为.∵,∴顶点D的坐标为(2)解:△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形(3)解:作出点C关于x轴的对称点C′,则C'(0,2).连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM 的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。

2020年浙江省杭州市中考数学押题卷一(中考命题评估组推荐)解析版

2020年浙江省杭州市中考数学押题卷一(中考命题评估组推荐)解析版

绝密★启用前2020年浙江省杭州市中考数学押题卷一(中考命题评估组推荐)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B 铅笔填涂一、选择题(本大题共10个小题,每小题3分,共30分)1.下列计算正确的是( ) A .﹣|﹣3|=﹣3B .30=0C .3﹣1=﹣3D .9=±32.下列运算正确的是( ) A .22232a a a -=B .22(2)2a a -=-C .222()a b a b -=-D .2(1)21a a --=-+3.在△ABC 中,已知∠B =2∠C ,∠A =30°,则这个三角形是( ) A .锐角三角形B .直角三角形C .钝角三角形D .无法判断4.对于数据:6,3,4,7,6,0,9.下列判断中正确的是( ) A .这组数据的平均数是6,中位数是6 B .这组数据的平均数是6,中位数是7 C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是75.东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小捷从中任选一道试题作答,他选中创新能力试题的概率是( )A .B .C .D .6.如图,是雷达探测器测得的结果,图中显示在点A ,B ,C ,D ,E ,F 处有目标出现,目标的表示方法为(r ,α),其中,r 表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.例如,点A ,D 的位置表示为A (5,30°),D (4,240°).用这种方法表示点B ,C ,E ,F 的位置,其中正确的是()A.B(2,90°)B.C(2,120°)C.E(3,120°)D.F(4,210°)7.用配方法解方程x2+2x﹣1=0时,配方结果正确的是()A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=38.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M、P、H三点的圆弧与AH交于R,则图中阴影部分面积()A.54π﹣52B.52π﹣5 C.2π﹣5 D.3π﹣29.如图,是⊙O的内接正三角形,弦经过边的中点,且,若⊙O的半径为,则的长为( )A .B .C .D .10.如图,现有一张三角形纸片ABC ∆,8BC =,28ABC S ∆=,点D ,E 分别是AB ,AC 中点,点M 是DE 上一定点,点N 是BC 上一动点。

2020年浙江省杭州市中考数学必刷模拟试卷附解析

2020年浙江省杭州市中考数学必刷模拟试卷附解析

2020年浙江省杭州市中考数学必刷模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.平行四边形一边长为12cm ,那么它的两条对角线的长度可能是( ) A .8cm 和14cmB .10cm 和14cmC .18cm 和20cmD .10cm 和34cm2.如图,△ABC 为正三角形,∠ABC ,∠ACB 的平分线相交于点0,OE ∥AB 交BC 于点E ,OF ∥AC 交BC 于点F ,图中等腰三角形共有 ( ) A .6个B .5个C .4个D .3个3.如图,下列条件不能判定直线a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=D .24180∠+∠=4.等腰三角形的顶角为 80°,则一腰上的高与底边的夹角为( ) A .1O °B. 40°C. 50°D. 80°5.考试开始了,你所在的教室里,有一位同学数学考试成绩会得90分,这是( ) A .必然事件 B .不确定事件 C .不可能事件 D .无法判断 6.已知:a +b =m ,ab =-4, 化简(a -2)(b -2)的结果是( )A .6B .2 m -8C .2 mD .-2 m7.如图所示,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠l+∠2之间有一种数量关系始终保持不变,你认为该规律是( ) A .∠A=∠l+∠2B .2∠A=∠l+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)8.下列长度的三条线段,能组成三角形的是( )A .6,3,3B .4,8,8C .3,4,8D .8,l5,79.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( ) A .1个B .2个C .3个D .4个10. 甲、乙、丙三筐青菜的质量分别是 102 kg 、97 kg 、99 kg ,若以 100 kg 为基准,并记为0,则甲、乙、丙三筐青菜的质量分别表示为( ) A .2,3,1B .2,-3,1C .2,3,-1D .2,- 3,-1二、填空题11.某体育训练小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为奥运添光彩”志愿者活动,则选中女生的概率为 . 12. 已知反比例函数ky x=图象经过(-1,3),则当x=2时,y= . 13. 在直角坐标系内.点 P(-2,26)到原点的距离为 .14.为了解全国初中生的睡眠状况,比较适合的调查方式是 (填“普查”或“抽样调查”).15.A 是坐标平面上的一点,若点A 与x 轴的距离是2,与y 轴的距离是l ,则点A 的坐标为 .16.点A 在y 轴右侧,距y 轴4个单位长度,距x 轴3个单位长度,则A 点的坐标是 ,A 点离原点的距离是 . 17.定义算法:a b ad bc c d=-,则满足4232x ≤的x 的取值范围是 .18.如图所示,∠l 与∠2是直线 、直线 被直线 所截而得的 角.19. 某人买了 6 角的邮素的邮票共 20 枚,用去了 13 元 2 角,则 6 角的邮票买了 枚,8角的邮票买了 枚.20.分式122-+x xx 中,当____=x 时,分式的值为零.21.填空:(1) (3a b +)( )=229a b -; (2) (1223m n -)=221449m n -;(3)如果22()x y p x y --⋅=-,那么 p 等于 . 解答题22.下列数对:①02x y =⎧⎨=⎩;②20x y =⎧⎨=⎩;③11x y =⎧⎨=-⎩;④52x y =⎧⎨=⎩;⑤43x y =⎧⎨=⎩.其中属于方程0x y +=的解是 ,属于方程2x y +=的解是 ,属于方程11243x y +=的解是 .(填序号)23.如图,在△ABC 中,已知AD=ED ,AB=EB ,∠A=75°,那么∠1+∠C 的度数是 .24.用四舍五入法取72.633的近似数,精确到个位是 ,精确到十分位是 ;用 四舍五入法把0.7096保留3个有效数字,它的近似值约是 .三、解答题25.把抛物线2y ax =向右平移 2 个单位后,经线过点(3,2). (1)求平移所得的抛物线解析式; (2)求抛物线向左平移 3 个单位时的解析式.26.某市市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至l28元,求这种药品平均每次降价的百分率是多少?27. 某公司为了扩大经营,决定购进 6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示. 经过预算, 本次购买机器所耗资金不能超过34万元.甲 乙 价格(万元/台) 7 5 每台 日产量(个) 10060(1)按该公司要求,可以有哪几种购买方案?(2)如果该公司要求购进的 6 台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种购买方案?28.在种植西红柿的实验田中,随机抽取10株,有关统计数据如下表:株序号12345678910成熟西红柿的个数2528625794(1)这组数据的平均数为_________个,众数为_________个,中位数为_________个;(2)若实验田中西红柿的总株数为200,则可以估计成熟西红柿的个数为_________.29.解下列方程(1) 4x-2=3-x(2)215x x-=-+30.计算35(251)--(精确到 0.01).【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.B5.B6.D7.B8.B9.B10.D二、填空题11.5212. 32-13..抽样调查15.(1,2)或(-1,2)或(1,-2)或(-1,-2)16.(4,3)或(4,-3),517.5x ≤18.AD ,BC ,BD ,内错19.14,620.21.(1)3a b -;(2)1223m n +;(3)x y -+22.③,①②,⑤23.75°24.73,72. 6,0. 710三、解答题 25.(1)抛物线向右平移 2 个单位得2(2)y a x =-, 把点 (3,2)代入得2(32)2a -=,a=2. ∴抛物线的臃析式为22(2)y x =-(2)22(1)y x =+26.20%27.(1)3种:方案一:选购甲机器2台,乙机器4台;方案二:选购甲机器1 台,乙机器5 台;方案三:选乙机器6台 (2)选购甲机器 1台,乙机器 5 台28.(1)5,2,5. (2)1000.29.(1)x=1 (2)53x =-30.3.24。

2020杭州中考数学试卷

2020杭州中考数学试卷

浙江省杭州市2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分。

)1.下列说法错误的是()A.有理数和无理数统称为实数;B.无限不循环小数是无理数;C.是分数;D.是无理数2.下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是()A.B.C.D.3.如图所示的几何体的左视图是()A.B.C.D.4.若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.5.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度数为()A.B.C.D.6.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.8007.如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2,则这个圆锥底面圆的半径是()A.B.C.D.8.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.B.C.D.9.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x 轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6B.9C.10D.1210.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“”方向排序,如,,,…,根据这个规律,第个点的横坐标为()A.44B.45C.46D.47二、填空题(本大题共6小题,每小题4分,共24分)11.若代数式和的值相等,则x=.12.计算×的值是.13.某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是cm.14.在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.16.已知Rt△ABC中,∠C=90°,BC=1,AC=4,如图所示把边长分别为x1,x2,x3,…,x n的n 个正方形依次放入△ABC中,则第n个正方形的边长x n=(用含n的式子表示,n≥1).三、解答题(本大题共7小题,共66分)17.(1)计算:;(2)先化简,再求值:,其中,.18.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)求图①中m的值;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?19.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?20.如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.21.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动,动点Q从点B 同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:,(2)当PQ=3时,求t的值,(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值,若变化,请说明理由.22.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C 分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.①求证:BD⊥CF;②当AB=2,AD=3时,求线段DH的长.23.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】B10.【答案】B11.【答案】712.【答案】613.【答案】414.【答案】(﹣2,0)或(2,4)或(﹣2,4)15.【答案】k<216.【答案】17.【答案】(1)解:(2)解:原式,当,时,原式.18.【答案】解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占.有.∴这2500只鸡中,质量为2.0kg的约有200只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州市2020年中考数学押题卷及答案注意事项:1. 本试卷共5页,满分120分,考试时间120分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上在试卷上的答案无效。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.6 的相反数是( ) A.61 B. 6 C. -6 D. -61 2. 下面四个几何体中,左视图是四边形的几何体共有( )A .1 个B .2 个C .3 个D .4 个3.计算(﹣ab 2)3的结果是( )A .﹣a 3b 5B .﹣a 3b 6C .﹣ab 6D .﹣3ab 24.下列调查中,适合采用全面调查(普查)方式的是( )A .对长江水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .对某班40名同学体重情况的调查D .对某类烟花爆竹燃放安全情况的调查 5.已知∠α=35°,那么∠α的余角等于( )A .35°B .55°C .65°D .145° 6.不等式组的解集为( )A .x >B .x <﹣1C .﹣1<x <D .x >﹣7.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A. B. C. D.8.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20 B.30 C.30 D.409.小颖同学制作了四张材质和外观完全一样的书签,每个书签的正面写着一本数学著作的书名,分别是《九章算术》、《几何原本》、《周髀算经》、《海岛算经》.将这四张书签背面朝上洗匀后随机抽取一张,则抽到的书签上恰好写有我国古代数学著作书名的概率是()A.B.C.D.10.不等式组的解集在数轴上表示正确的是()A.B.C.D.11. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④12.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A.4 B.6 C.8 D.10第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.分解因式:x2﹣4x=.14. 下列各式是按新定义的已知“△”运算得到的,观察下列等式:2△5=2×3+5=11,2△(﹣1)=2×3+(﹣1)=5,6△3=6×3+3=21,4△(﹣3)=4×3+(﹣3)=9……根据这个定义,计算(﹣2018)△2018的结果为15.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.16.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:(结果保估计这批苹果损坏的概率为(结果保留小数点后一位),损坏的苹果约有kg.17.如图,AB是⊙O的直径,PA,PC分别与⊙O相切于点A,点C,若∠P=60°,PA=,则AB的长为.18.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c ﹣2=0有两个相等的实数根.其中正确的结论有(填序号).三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.(本题10分)已知x,y满足方程组,求代数式(x﹣y)2﹣(x+2y)(x﹣2y)的值.20.(本题10分)如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB 折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.22.(本题12分)根据《太原市电动自行车管理条例》的规定,2019年5月1日起,未上牌的电动自行车将禁止上路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款电动自行车.其中甲种车总进价为22500元,乙种车总进价为45000元,已知乙种车每辆的进价是甲种车进价的1.5倍,且购进的甲种车比乙种车少5辆.(1)甲种电动自行车每辆的进价是多少元?(2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共50辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车m辆(20≤m≤30),两种车全部售出的总利润为y元(不计其他成本).①求y与m之间的函数关系式;②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大?最大利润是多少?在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,∠DCB=60 °②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转 2α得到线段DF,连结BF,请直接写出DE.BF、BP三者的数量关系(不需证明)24.(本题12分)已知二次函数y=ax2﹣2ax+3的最大值为4,且该抛物线与y轴的交点为C,顶点为D.(1)求该二次函数的解析式及点C,D的坐标;(2)点P(t,0)是x轴上的动点,①求|PC﹣PD|的最大值及对应的点P的坐标;②设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+3的图象只有一个公共点,求t的取值范围.参考答案第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.C2.B3.B4.C5.B6.A7.D8.B9.A 10.C 11.C 12.B第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.x(x﹣4) 14. ﹣4036 15. 4 16. 0.1 1000 17.2 18.②③④三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.解:解方程组得:,所以(x﹣y)2﹣(x+2y)(x﹣2y)=x2﹣2xy+y2﹣x2+4y2=﹣2xy+5y2=﹣2×3×(﹣1)+5×(﹣1)2=11.20.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形,(2)∵四边形AFHG是正方形,∴∠BHC=90°,又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2,∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去),∴AD=12,∴AB===6.21.解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A景点所对应的圆心角的度数是:30%×360°=108°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,108°;(2)∵E景点接待游客数所占的百分比为:×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率==.22.解:(1)设甲种电动自行车每辆的进价是x元,则乙种电动车的进价为1.5x元,由题意得:,解得:x=1500,经检验,x=1500是原方程的解,答:甲电动车的进价为每辆1500元.(2)①设新购进甲种车m辆,则乙电动车为(50﹣m)辆,y=(2000﹣1500)m+(2800﹣1500×1.5)(50﹣m)=﹣50m+27500②∵y=﹣50m+27500,y随x的增大而减小,20≤m≤30,=﹣50×20+27500=26500元,∴当x=20时,y最大答:y与x的函数关系式为y=﹣50x+27500,当x=20时,利润最大,最大利润为26500元.23. 解:(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.故答案为60②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α﹣∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF,∴CP=BF,CP=BF.(2)结论:BF﹣BP=2DE•tanα.理由:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠A=α,∴DC=DB=AD,DE∥AC,∴∠A=∠ACD=α,∠EDB=∠A=α,BC=2CE,∴∠BDC=∠A+∠ACD=2α,∵∠PDF=2α,∴∠FDB=∠CDP=2α+∠PDB,∵线段DP绕点D逆时针旋转2α得到线段DF,∴DP=DF,在△DCP和△DBF中,∴△DCP≌△DBF,∴CP=BF,而 CP=BC+BP,∴BF﹣BP=BC,在Rt△CDE中,∠DEC=90°,∴tan∠DCE=,∴CE=DEtanα,∴BC=2CE=2DEtanα,即BF﹣BP=2DEtanα.解:(Ⅰ)在二次函数y=ax2﹣2ax+3中,∵x=﹣=1,∴y=ax2﹣2ax+3的对称轴为x=1,∵y=ax2﹣2ax+3的最大值为4,∴抛物线的顶点D(1,4),将D(1,4)代入y=ax2﹣2ax+3中,得a=﹣1,∴该二次函数的解析式为y=﹣x2+2x+3,∴C点坐标为(0,3),D点坐标为(1,4);(Ⅱ)①∵|PC﹣PD|≤CD,∴当P,C,D三点在一条直线上时,|PC﹣PD|取得最大值,如图1,连接DC并延长交x轴于点P,将点D(1,4),C(0,3)代入y=kx+b,得,解得k=1,b=3,∴y CD=x+3,当y=0时,x=﹣3,∴P(0,﹣3),CD==,∴|PC﹣PD|的最大值为,P(﹣3,0);②y=a|x|2﹣2a|x|+3可化为y=,将P(t,0),Q(0,2t)代入y=kx+b,得,解得:k=﹣2,b=2t,∴y PQ=﹣2x+2t,情况一:如图2﹣1,当线段PQ过点(﹣3,0),即点P与点(﹣3,0)重合时,线段PQ与函数y=的图象只有一个公共点,此时t=﹣3,综合图2﹣1,图2﹣2,所以当t≤﹣3时,线段PQ与函数y=的图象只有一个公共点;情况二:如图2﹣3,当线段PQ 过(0,3),即点Q 与点C 重合时,线段PQ 与函数y =的图象只有一个公共点,此时t =,如图2﹣4,当线段PQ 过点(3,0),即点P 与点A (3,0)重合时,t =3,此时线段PQ 与函数y =的图象有两个公共点,综合图2﹣3,图2﹣4,所以当≤t <3时,线段PQ 与函数y =的图象只有一个公共点;情况三:如图2﹣5,将y =﹣2x +2t 带入y =﹣x 2+2x +3(x ≥0),整理,得x2﹣4x+2t﹣3=0,△=16﹣4(2t﹣3)=28﹣8t,令28﹣8t=0,解得t=,∴当t=时,线段PQ与与函数y=的图象只有一个公共点;。

相关文档
最新文档