2018-2019年自贡市数学小升初数学模拟训练试题(2套)附答案
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷4-5(共2套)附详细试题答案

小升初数学综合模拟试卷4一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?答案一、填空题1.(537.5)原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25=412×(0.81+0.19)+1.25×19+11×(1.25+8)=412+1.25×(19+11)+88=537.52.(5283)从*×9,尾数为7入手依次推进即可.3.(6年)爸爸比小惠大:6×5-6=24(岁),爸爸年龄是小惠的3倍,也就是比她多2倍,则一倍量为:24÷2=12(岁),12-6=6(年).4.(14厘米).2+2+5+5=14(厘米).5.(225,150)因450÷75=6,所以最大公约数为75,最小公倍数450的两整数有75×6,75×1和75×3,75×2两组,经比较后一种差较小,即225和150为所求.6.(45,15)假设60只全是鸡,脚总数为60×2=120.此时兔脚数为0,鸡脚比兔脚多120只,而实际只多30,因此差数比实际多了120-30=90(只).这因为把其中的兔换成了鸡.每把一只兔换成鸡.鸡的脚数将增加2只,兔的脚数减少4只,那么鸡脚与兔脚的差数增加了2+4=6(只),所以换成鸡的兔子有90÷6=15(只),鸡有60-15=45(只).7.(77,92)由师傅产量是徒弟产量的2倍,所以师傅产量数总是偶数.利用整数加法的奇偶性可知标明“77”的筐中的产品是徒弟制造的.利用“和倍问题”方法.徒弟加工零件是(78+94+86+77+92+80)÷(2+1)=169(只)∴169-77=92(只)8.(8分)紧邻两辆车间的距离不变,当一辆公共汽车超过步行人时,紧接着下一辆公汽与步行人间的距离,就是汽车间隔距离.当一辆汽车超过行人时,下一辆汽车要用10分才能追上步行人.即追及距离=(汽车速度-步行速度)×10.对汽车超过骑车人的情形作同样分析,再由倍速关系可得汽车间隔时间等于汽车间隔距离除以5倍的步行速度.即10×4×步行速度÷(5×步行速度)=8(分)9.(44)10.(16)满足条件的偶数和奇数的可能很多,要求的是使两个偶数之和最小的那仍为偶数,所求的这两个偶数之和一定是8的倍数.经试验,和不能是8,二、解答题:EC,则△CDE、△ACE,△ADB的面积比就是2∶3∶5.如图.2.(5)连结AC′,AC,A′C考虑△C′D′D的面积,由已知DA=D′A,所以S△C′D′D=2S△C′AD.同理S △C′D′D=2S△ACD,S△A′B′B=2S△ABC,而S四边形ABCD=S△ACD+S△ABC,所以S△C′D′D+SS△A′B′B=2S四边形ABCD.同样可得S△A′D′A+S△B′C′C=2S四边形ABCD,所以S四边形A′B′C′D′=5S 四边形ABCD.3.(14,10,35)用甲齿、乙齿、丙齿代表三个齿轮的齿数.甲乙丙三个齿轮转数比为5∶7∶2,根据齿数与转数成反比例的关系.甲齿∶乙齿=7∶5=14∶10,乙齿∶丙齿=2∶7=10∶35,所以甲齿∶乙齿∶丙齿=14∶10∶35由于14,10,35三个数互质,且齿数需是自然数,所以甲、乙、丙三个齿轮齿数最少应分别是14,10,35.4.(1)三面红色的小方块只能在立方体的角上,故共有8块.两面红色的小方块只能在立方体的棱上(除去八个角),故共有12块.一面红色的小方块只能在立方体的面内(除去靠边的那些小方格),故共有6块.(2)各面都没有颜色的小方块不可能在立方体的各面上.设大立方体被分成n3个小方块,除去位于表面上的(因而必有含红色的面)方块外,共有(n-2)3个各面均是白色的小方块.因为53=125>120,43=64<120,所以n-2=5,从而,n=7,因此,各面至少要切6刀.(3)由于一面为红色的小方块只能在表面上,且要除去边上的那些方块,设立方体被分成n3个小方块,则每一个表面含有n2个小方块,其中仅涂一面红色的小方块有(n-2)2块,6面共6×(n-2)2个仅涂一面红色的小方块.因为6×32=54>53,6×22=24<53,所以n-2=3,即n=5,故各面至少要切4刀.小升初数学综合模拟试卷5一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D 四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?答案一、填空题:1.(5)500÷10÷10=52.(1+7=8,9-3=6,4×5=20)首先考虑0只能出现在乘积式中.即分析2×5,4×5,5×6,8×5几种情况.最后得以上结论.3.(56)96÷8=12=3×4,所以两个数为8×3=24,4×8=32,和为32+24=56.5.(210)梯形的总数为:BC上线段总数×BD上线段总数,即(4+3+2+1)×(6+5+4+3+2+1)=2106.(中午12点40分)3千米/小时=0.05千米/分,0.05×50=2.5千米,即每小时她走2.5千米.12÷2.5=4.8,即4小时后她走4×2.5=10千米.(12-10)÷0.05=40(分),最后不许休息,即共用4小时40分.7.(58)画图分析可得22-6=16为甲做题数,所以可得乙10道,丙16×2=32道,一共16+10+32=58(道).8.(36)长方形的宽是“一”与“二”两个正方形的边长之和.长方形的长是“一”、“二”、“三”三个正方形的边长之和.长-宽=30-22=8是“三”正方形的边长.宽又是两个“三”正方形与中间小正方形的边长之和,因此中间小正方形边长=22-8×2=6,中间小正方形面积=6×6=36.9.(10∶9)10.(13)考虑最坏的情形,把某一种颜色的袜子全部先取出,然后,在剩下两色袜子中各取出一只,这时再任意取一只都必将有两双袜子不同色,即10+2+1=13(只).二、解答题:1.(20)由变动规律知,A、B、C、D、E经5次变动重新出现,而1997经过4次即重新出现,故要使ABCDE1997重新出现最少需20次(即4和5的最小公倍数.)3.(15千米)4.(56个)本题可列表解.除终点,我们将车站编号列表:共需座位:14+12+10+8+6+4+2=56(个)。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷9-10(共2套)附详细试题答案

小升初数学综合模拟试卷9一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为______.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
”说完把99棵树苗分给了大家,正好按要求把树苗分完,则99名学生中男生为______名.二、解答题:1.如图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分.△AOB的面积是2平方千米,△COD的面积是3平方千米,公园陆地面积为6.92平方千米,那么人工湖的面积是______平方千米.2.汽车往返于甲、乙两地之间,上行速度为每小时30千米,下行速度为每小时60千米,求往返的平均速度.3.已知一个数是1个2,2个3,3个5,2个7的连乘积,试求这个数的最大的两位数因数.4.某轮船公司较长时间以来,每天中午有一只轮船从哈佛开往纽约,并且在每天的同一时间也有一只轮船从纽约开往哈佛,轮船在途中所花的时间,来去都是七昼夜,问今天中午从哈佛开出的轮船,在整个航运途中,将会遇到几只同一公司的轮船从对面开来?答案一、填空题:1.(3988009)由乘法分配律,四个算式分别简化成:1995×1999,1996×1998,1997×1997,1996×1998,由“和相等的两个数,相差越小积越大”,所以1997×1997最大,为3988009.2.(200千克)苹果含水96%.所以苹果肉重1000×(1-96%)=40千克,一个月后,测得含水量为95%,即肉重占1-95%=5%,所以苹果重为40÷(1-95%)3.(1)26,26或14,182.(2)46、46.4.(0个)因为5+4+3+2+1=15,是3的倍数.所以任意调换54321各位数字所得的五位数均能被3整除,为合数,因此共有0个质数.5.142857或285714易知“数”只能是1或2或3,经过分析试证可知排除3,并得到两个答案.6.(8.5)2.5-6=8.5(cm2)7.(15条)以A为左端点的线段共5条,以A1为端点的线段共4条;以A2为左端点的线段共3条;以A3为左端点的线段共2条;以A4为左端点的线段共1条,总计5+4+3+2+1=15(条).8.(142°30′)10点15′时,时针从0点开始转过的角度是30°×10.25=307.5°,从而时针与钟表盘12所在的位置之间的夹角为360°-307.5°=52°30′,此时时针与分针之间的夹角为90°+52°30′=142°30′.9.(都不亮)奇数和为1+3+5+…+99=2500,编号为2P者有2×1,2×3,2×5,…,2×49,他们拉开关次数为1+3+5+…+49=625;编号为22p者有22×1,22×3,22×5,…,22×25,拉开关次数为1+3+5+……+25=169;同理可得编号23·p者拉36次;24·p者9次,25·p与26·p分别有25·1,25·3,26拉开关次数1+3+1=5次.总计2500+625+169+36+9+5=3344=4×836.所以最后三灯全关闭.10.(33)把问题简化:3人种3棵(指1男生2个女生),则99名分成33组,每组1男2女,所以共有男生:99÷(2+1)=33(名).二、解答题:1.(0.58)由△BOC与△DOC等高h1,△BOA与△DOA等高h2,利用面积公式:2.(40千米/小时)设两地距离为a,则总距离为2a.3.(98)由已知数=2×3×3×5×5×5×7×7.所以它的两位数的因数有很多个.因此我们可从两位数中最大数找起.99=9×11=3×3×11,而11不是原数因数,所以99不符合;98=2×49=2×7×7,因为2、7都是原数的因数,所以98符合要求.4.(15只)利用图解法代表今天中午从哈佛开往纽约的轮船的带箭头的线段.与另一簇代表从纽约开往哈佛的轮船行驶路线的15条平行线相交.其中一只是在出发时遇到,一只到达时遇到,剩下的13只则在海上相遇.小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷10-12(共3套)附详细试题答案

小升初数学综合模拟试卷10一、填空题:1.29×12+29×13+29×25+29×10=______.2.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.______.______页.4.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之______(保留一位小数).5.某校五年级(共3个班)的学生排队,每排3人、5人或7人,最后一排都只有2人.这个学校五年级有______名学生.6.掷两粒骰子,出现点数和为7、为8的可能性大的是______.7.老妇提篮卖蛋.第一次卖了全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个.这时,全部鸡蛋都卖完了.老妇篮中原有鸡蛋______个.8.一组自行车运动员在一条不宽的道路上作赛前训练,他们以每小时35千米的速度向前行驶.突然运动员甲离开小组,以每小时45千米的速度向前行驶10千米,然后转回来,以同样的速度行驶,重新和小组汇合,运动员甲从离开小组到重新和小组汇合这段时间是______.9.一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成______对兔子.10.有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有______种不同的方式.二、解答题:1.甲、乙二人步行的速度相等,骑自行车的速度也相等,他们都要由A处到B处.甲计划骑自行车和步行所经过的路程相等;乙计划骑自行车和步行的时间相等.谁先到达目的地?共有多少个?3.某商店同时出售两件商品,售价都是600元,一件是正品,可赚20%;另一件是处理品,要赔20%,以这两件商品而言,是赚,还是赔?4.有一路电车起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟.有一个人从乙站出发沿电车路线骑车前往甲站.他出发时,恰有一辆电车到达乙站.在路上遇到了10辆迎面开来的电车.当到达甲站时,恰又有一辆电车从甲站开出,问他从乙站到甲站用了多少分钟?答案一、填空题:1.(1740)29×(12+13+25+10)=29×60=17402.(2+4÷10)×103.(200页)4.(73.8%)(cm3),剩下体积占正方体的:(216-56.52)÷216≈0.738≈73.5.(107)3×5×7+2=105+2=1076.(7的可能性大)出现和等于7的情况有6种:1与6,2与5.3与4,4与3,5与2,6与1;出现和为8的情况5种:2和6,3与5,4与4,5与3,6与2.7.(15)从图上看出,在这段时间内,运动员甲和运动员队分别以每小时45千米9.(233)从第二个月起,每个月兔子的对数都等于相邻的前两个月的兔子对数的和.即1,1,2,3,5,8,13,21,34,55,89,144,233,…所以,从一对新生兔开始,一年后就变成了233对兔子.10.(89种)用递推法.他要到第10级只能从第9级或第8级直接登上。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷27-29(共3套)附详细试题答案

小升初数学综合模拟试卷27一、填空题:3.将1个棱长是5厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可以分割成______个小正方体.4.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有8个约数,那么A+B=______.5.正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的长方形与原正方形面积相等,原正方形的面积是______平方厘米.6如图,图中有18个小方格,要把3枚硬币放在方格里,使每行、每列只出现一枚硬币,共有______种放法.个数是______.8.1997名同学排成一排,从排头到排尾1至4报数;再从排尾向排头1至5报数,那么两次报数都报3的共有______人.9.把一个大长方体木块表面涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小正方体恰好是16块,那么至少要把这个大长方形分割成______个小长方体.10.有一个长方形,长有420个小方格,宽有240个小方格.如果把每个小方格的顶点称为格点,连结这个长方形的对角线共经过______个格点(包括对角线两端).二、解答题:1.某沿海地区甲、乙两码头,已知一艘船从甲到乙每天航行300千米,从乙到甲每天航行360千米,如果这艘船在甲、乙两码头间往返航行4次共22天,那么甲、乙两码头间的距离是多少千米?2.有8盏灯,从1到8编号,开始时3、6、7编号的灯是亮的。
如果一个小朋友按从1到8,再从1到8,…的顺序拉开关,一共拉动500次,问此时哪几个编号的灯是亮的?3.一容器内装有10升纯酒精,倒出1升后,用水加满,再倒出1升,再用水加满,然后再倒出1升,用水加满,这时容器内的酒精溶液浓度是多少?4.能否用2个田字形和7个T字形(如图),恰好覆盖住一个6×6的正方形网格?答案一、填空题:1.85=12.5×(1.86+2.54)+30=12.5×4.4+30=55+30=852.7设原来有圆珠笔x支,3.50要想分割的小正方体个数最少,就要使分割的小正方体的棱长尽可能大.如果小正方体的棱长是4厘米,只能分割出1个,剩下部分的体积是53-43=61立方厘米,只能分割成棱长为1厘米的小正方体,共61÷13=61个,按这种方法分割分成62个小正方体.若在已知正方体的一角分割一个棱长是3厘米的小正方体,剩下7个角可以分割出7个棱长为2厘米的小正方体,这时剩下部分的体积是53-33-7×23=42(立方厘米)这部分可以分割棱长是1厘米的小正方体42个,所以总共分割出小正方体个数是:1+7+42=50(个)比较上面两种方案,最少可以分割成50个小正方体.4.68436=32×4,A、B至少含有两个3和一个4.因为A有12个约数,12=2×6=3×4,所以A可能是35×4、32×43或33×42,B有8个约数,8=2×4,所以B=33×4,于是A只能是32×43,故A+B=32×43+33×4=6845. 144设原正方形的边长为x厘米,如图,由于正方形ABCD与长方形AEGH面积相等,而长方形AEFD是正方形ABCD和长方形AEGH的公共部分,所以长方形EBCF的面积等于长方形DFGH的面积,于是4x=6×(x-4)6x-4x=24x=12故原正方形的面积是:12×12=144(平方厘米).6.720第一枚硬币有18种放法;第二枚硬币只能有10种放法,因为这枚硬币放置时与第一枚不同行不同列;同理,第三枚硬币与前二枚硬币不同行也不同列,所以有4种放法.因此共有18×10×4=720(种)这串数的规律是,从第2个数起,每一个数的分子是它前一个数的分子与分母之和,分母是它前一个数的分子的2倍再加分母.若设8.100因为 1997÷4=499…1,所以排尾同学报1,而1997÷5=399…2,所以排头同学报2.从右起第3名同学两次报数都是3,以后每相差[4,5]=20名同学两次报数都是3,那么将1997-3=1994人分成每20人一组,共可分成1994÷20=99 (14)99组,所以两次都报3的人数是99+1=100人.9.24由于只有两个面涂上红色的小长方体只能位于每条棱的中间部分,将长方体按下图进行分割:依次分割的小长方体的个数是36、32、30、24,则图(4)分割的块数最少是24块,且恰好有16个两面涂红色的小长方体.10.61把长方形按比例缩小,由于420∶240=7∶4所以把长方形缩小成长7个小方格,宽4个小方格的小长方形,然后画一条对角线,如图,图中对角线经过2个格点,即对角线对长来讲,每经过7个小方格,就经过一个格点,或对宽来讲,每经过4个小方格,就经过一个格点,所以长方形的对角线经过的格点问题类似植树问题,共经过格点数:420÷7+1=61(个)(或240÷4+1=61(个))二、解答题:1.甲、乙两码头间的距离是900千米.由于往返的路程相等,船从甲到乙每天航行300千米,从乙到甲每行航知往返共22天,可得出从甲到乙行12天,从乙到甲用10天,而300×12+360×10相当于船在甲、乙两码头间往返4次所行的总路程,所以甲、乙两码头的距离.(300×12+360×10)÷4÷2=900(千米)2.编号是1、2、4、6、7的灯是亮的.对于亮着的灯,只要拉动偶数次开关仍是亮的,拉动奇数次开关是灭的;对于开始关闭的灯,只要拉动奇数次开关灯就亮,拉动偶数次开关仍是灭的.因为500÷8=62 (4)说明这8盏灯各拉动62次后,编号为1、2、3、4的灯又拉动一次,由于62是偶数,所以原来亮的灯仍是亮的,灭的灯仍是灭的,即编号是3、6、7的灯各拉动62次后仍是亮的,其余灯是灭的,接着编号是1、2、3、4的灯各拉动一次,编号1、2、4的灯亮了,编号3的灯灭了,所以这8盏灯最后是1、2、4、6、7这五盏灯是亮的.3.容器内的酒精溶液浓度是72.9%第一次倒出纯酒精是1升,加上1升水后,变成酒精溶液,第二次倒出的溶液含纯酒精是:第三次倒出的溶液含纯酒精是:三次倒出后,容器里还有纯酒精是:这时容器内溶液的浓度是:4.不能将6×6的正方形网格进行黑白相间染色,黑白格各有18个.每个T字形盖住1个或3个白格,现有7个T字形,若盖住白格数为1的T字形有奇数个,那么盖住白格数为3的T字形是偶数个,奇数个1的和是奇数,偶数个3的和是偶数,所以7个T字形盖住的白格总数,由于奇+偶=奇,因此是奇数个;同理,若盖住白格数为1的T字形有偶数个,那么盖住白格数为3的T字形是奇数个,同样7个T字形盖住的白格总数是奇数个;而2个田字形盖住的白格总数是4,4是偶数,因此2个田字形和7个T字形覆盖的白格总数是奇数个,但6×6的正方形网格的白格数是18个,18是偶数,由于奇数≠偶数,所以用2个田字形和7个T字形不能覆盖6×6的正方形网格.小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷20-21(共2套)附详细试题答案

小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.。
2018-2019年自贡小学毕业小升初模拟数学试题(共2套)附详细答案

小升初数学试卷57一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。
4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D、它们的乘积22、3.1与3. 相比()A、3.1 大B、3. 大C、一样大23、男生与女生的人数比是6:5,男生比女生多()A、B、C、24、给分数的分母乘以3,要使原分数大小不变,分子应加上()A、3B、7C、14D、2125、车轮的直径一定,所行驶的路程和车轮的转数()A、成正比例B、反比例C、不成比例四、仔细计算.(5+12+12+4=33分)26、直接写出得数=________ 7÷0.01=________﹣=________ 27、脱式计算(能简算的要简算)÷9+ ×12.69﹣4.12﹣5.880.6×3.3+ ×7.7﹣0.6(+ )×24× .28、解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ ++ + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷3-4(共2套)附详细试题答案

小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
2018-2019自贡市小学毕业数学总复习小升初模拟训练试卷24-25(共2套)附详细试题答案

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。
三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。