新人教版九年级数学上册《配方法》测试题
九年级数学上册 21.2.1 配方法同步测试 (新版)新人教版-(新版)新人教版初中九年级上册数学试

解一元二次方程配方法第1课时用直接开平方法解一元二次方程[见B本P2]1.一元二次方程x2-25=0的解是( D )A.x1=5,x2=0 B.x=-5C.x=5 D.x1=5,x2=-52.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( D )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-43.若a为一元二次方程(x-17)2=100的一个根,b为一元二次方程(y-4)2=17的一个根,且a,b都是正数,则a-b等于( B )A.5 B.6C.83 D.10-17【解析】 (x-17)2=100的根为x1=-10+17,x2=10+17,因为a为正数,所以a=10+17.(y-4)2=17的根为y1=4+17,y2=4-17,因为b为正数,所以b=4+17,所以a-b=10+17-(4+17)=6.4.解关于x的方程(x+m)2=n,正确的结论是( B )A.有两个解x=±nB.当n≥0时,有两个解x=±n-mC.当n≥0时,有两个解x=±n-mD.当n≤0时,无实数解5.若关于x的方程(3x-c)2-60=0的两根均为正数,其中c为整数,则c的最小值为( B )A .1B .8C .16D .61【解析】 原方程可化为(3x -c )2=60,3x -c =±60,3x =c ±60,x =c ±603.因为两根均为正数,所以c >60>7,所以整数c B. 6.一元二次方程x 2-4=0的解是__x =±2__.7.当x =__-7或-1__时,代数式(x -2)2与(2x +5)2的值相等.【解析】 由(x -2)2=(2x +5)2,得x -2=±(2x +5),即x -2=2x +5或x -2=-2x -5,所以x 1=-7,x 2=-1.8.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__±7__. 【解析】 把x =2代入方程x 2-x -a 2+5=0得22-2-a 2+5=0,即a 2=7,所以a =±7. 9.在实数X 围内定义运算“☆”,其规则为:a ☆b =a 2-b 2,则方程(4☆3)☆x =13的解为x =__±6__.【解析】 4☆3=42-32=16-9=7,7☆x =72-x 2, ∴72-x 2=13.∴x 2=36.∴x =±6.10.如果分式x 2-4x -2的值为零,那么x =__-2__.【解析】 由题意得x 2-4=0且x -2≠0,∴x =-2. 11.求下列各式中的x . (1)x 2=36; (2)x 2+1=1.01; (3)(4x -1)2=225; (4)2(x 2+1)=10. 解:(1)x 1=6,x 2=-6; (2)x 1,x 2=-0.1; (3)x 1=4,x 2=-72;(4)x 1=2,x 2=-2.12.已知关于x 的一元二次方程(x +1)2-m =0有两个实数根.则m 的取值X 围是( B )A .m ≥-34B .m ≥0C .m ≥-1D .m ≥2【解析】 (x +1)2-m =0,(x +1)2=m , ∵一元二次方程(x +1)2-m =0有两个实数根, ∴m ≥0.13.已知等腰三角形的两边长分别是(x -3)2=1的两个解,则这个三角形的周长是( C )A .2或4B .8C .10D .8或10【解析】 开方得x -3=±1,即x =4或2,则等腰三角形的三边长只能为4,4,2,C. 14.解下列方程:(1)[2012·永州](x -3)2-9=0; (2)(2x -3)(2x -3)=x 2-6x +9; (3)(2x +3)2-(1-2)2=0.解:(1)(x -3)2=9,x -3=±3,∴x 1=0,x 2=6; (2)原方程可化为(2x -3)2=(x -3)2, 两边开平方得2x -3=±(x -3), 即2x -3=x -3或2x -3=-(x -3), ∴x 1=0,x 2=2;(3)原方程可化为(2x +3)2=(1-2)2, ∴2x +3=±(1-2).∴2x +3=1-2或2x +3=-(1-2). ∴x 1=-1-22,x 2=-2+22. 15.以大约与水平线成45°角的方向,向斜上方抛出标枪,抛出距离s (单位:米)与标枪出手的速度v (单位:米/秒)之间根据物理公式大致有如下关系:s =v 29.8+2,如果抛出48米,试求标枪出手时的速度(精确到/秒).解:把s =48代入s =v 29.8+2,得48=v 29.8+2,v 2, ∴v 1≈,v 2≈-21.2(舍去). 答:标枪出手时的速度约为米/秒. 16.已知2m -1=3m,求关于x 的方程x 2-3m =0的解. 解:2m -1=3m,方程两边同时乘m (m -1), 得2m =3(m -1),解得m =3, 经检验m =3是原方程的解. 将m =3代入方程x 2-3m =0, 则x 2-9=0,解得x =±3,即关于x 的方程x 2-3m =0的解为x 1=3,x 2=-3.17.已知a +b =4n +2,ab =1,若19a 2+150ab +19b 2的值为2 012,求n .解:∵19a 2+150ab +19b 2=19(a +b )2-38ab +150ab =19(a +b )2+112ab ,且a +b =4n +2,ab =1,又19a 2+150ab +19b 2的值为2 012, ∴19×(4n +2)2+112×1=2 012, 即(4n +2)2=100,∴4n +2=±10, 当4n +2=10时,解得n =2;当4n +2=-10时,解得nn 为2或-3.第2课时 用配方法解一元二次方程 [见A 本P4]1.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( D ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=22.用配方法解方程13x 2-x -4=0时,配方后得( C )A.⎝ ⎛⎭⎪⎫x -322=394 B.⎝ ⎛⎭⎪⎫x -322=-394C.⎝ ⎛⎭⎪⎫x -322=574 D .以上答案都不对【解析】 先把方程化为x 2-3x -12=0,再移项得x 2-3x =12,配方得⎝ ⎛⎭⎪⎫x -322=574.3.若一元二次方程式x 2-2x -3 599=0的两根为a ,b ,且a >b ,则2a -b 之值为( D ) A .-57 B .63C .179D .181【解析】 x 2-2x -3 599=0,移项得x 2-2x =3 599,x 2-2x +1=3 599+1,即(x -1)2=3 600,x -1=60,x -1=-60,解得x =61或x =-59.∵一元二次方程式x 2-2x -3 599=0的两根为a ,b ,且a >b ,∴a =61,b =-59,∴2a -b =2×61-(-59)=181.4.关于x 的一元二次方程x 2-5x +p 2-2p +5=0的一个根为1,则实数p 的值是( C ) A .4 B .0或2 C .1 D .-1【解析】 把x =1代入原方程有1-5+p 2-2p +5=0,即p 2-2p +1=0,∴(p -1)2=0,∴p =1.5.把下列各式配成完全平方式: (1)x 2+6x +__9__=(x +__3__)2; (2)x 2±__x __+14=⎝⎛⎭⎪⎫x ± 12 2.6.若方程x 2+6x =7可化为(x +m )2=16,则m =__3__. 7.当m =__±12__时,x 2+mx +36是完全平方式.【解析】 ∵x 2+mx +36=x 2+mx +62是完全平方式,∴m =±2×1×6,∴m =±12.8.用配方法解一元二次方程: (1)x 2-2x =5;(2)2x 2+1=3x ; (3)2t 2-6t +3=0;(4)6x 2-x -12=0; (5)2y 2-4y =4;(6)x 2+3=23x ; (7)x 2-2x =2x +1.解:(1)配方,得(x -1)2=6, ∴x -1=±6,∴x 1=1+6,x 2=1-6; (2)移项得2x 2-3x =-1, 二次项系数化为1得x 2-32x =-12,配方得x 2-32x +⎝ ⎛⎭⎪⎫342=-12+⎝ ⎛⎭⎪⎫342,即⎝ ⎛⎭⎪⎫x -342=116,∴x -34=±14,解得x 1=1,x 2=12;(3)移项、系数化为1得t 2-3t =-32,配方得t 2-3t +94=-32+94,即⎝ ⎛⎭⎪⎫t -322=34, 开方得t -32=±32,∴t 1=3+32,t 2=3-32.(4)移项,得6x 2-x =12, 二次项系数化为1,得x 2-x6=2,配方,得x 2-x 6+⎝ ⎛⎭⎪⎫1122=2+⎝ ⎛⎭⎪⎫1122,即⎝ ⎛⎭⎪⎫x -1122=289144, ∴x -112=±1712,∴x 1=32,x 2=-43;(5)系数化为1,得y 2-2y =2,配方,得y 2-2y +1=2+1,即(y -1)2=3, ∴y -1=±3;∴y 1=1+3,y 2=1-3; (6)移项,得x 2-23x =-3,配方,得x 2-23x +(3)2=-3+(3)2, 即(x -3)2=0, ∴x 1=x 2=3; (7)移项得x 2-4x =1, 配方得x 2-4x +22=1+22, 即(x -2)2=5, ∴x -2=±5,∴x 1=2+5,x 2=2- 5.9.当x 满足条件⎩⎪⎨⎪⎧x +1<3x -312(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根. 解:由⎩⎪⎨⎪⎧x +1<3x -312(x -4)<13(x -4)求得⎩⎪⎨⎪⎧2<xx <4, 则2<x <4,解方程x 2-2x -4=0可得x 1=1+5,x 2=1- 5 2<5<3,而2<x <4, 所以x =1+ 5.10.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( B )A.(x-p)2=5 B.(x-p)2=9C.(x-p+2)2=9 D.(x-p+2)2=5【解析】由x2-6x+q=0,得x2-6x+9-9+q=0,即(x-3)2-9+q=0,∴(x-3)2=9-q.∴q=2,p=3.∴x2-6x+q=2即为x2-6x+2=2,x2-6x=0,x2-6x+9=9,(x-3)2=9,即(x-p)2B.11.用配方法解方程:(1)(2x-1)2=x(3x+2)-7.(2)5(x2+17)=6(x2+2x).解:(1)(2x-1)2=x(3x+2)-7,4x2-4x+1=3x2+2x-7,x2-6x=-8,(x-3)2=1,x-3=±1,x1=2,x2=4.(2)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x,x2+12x-85=0,x2+12x=85,x2+12x+36=85+36,(x+6)2=121,x+6=±11,x1=5,x2=-17.12.利用配方法比较代数式3x2+4与代数式2x2+4x值的大小.解:∵(3x2+4)-(2x2+4x)=3x2+4-2x2-4x=x2-4x+4=(x-2)2≥0,∴3x2+4≥2x2+4x.13.阅读材料:对于任何实数,我们规定符号⎪⎪⎪ac⎪⎪⎪b d 的意义是⎪⎪⎪ac⎪⎪⎪b d =ad -bc .例如:⎪⎪⎪13⎪⎪⎪24=1×4-2×3=-2,⎪⎪⎪-23⎪⎪⎪45=(-2)×5-4×3=-22.(1)按照这个规定请你计算⎪⎪⎪57⎪⎪⎪68的值;(2)按照这个规定请你计算当x 2-4x +4=0时,⎪⎪⎪x +1x -1⎪⎪⎪2x2x -3的值. 解:(1)⎪⎪⎪57⎪⎪⎪68=5×8-7×6=-2;(2)由x 2-4x +4=0得x =2,⎪⎪⎪x +1x -1⎪⎪⎪2x2x -3=⎪⎪⎪31⎪⎪⎪41=3×1-4×1=-1.14.已知关于x 的方程a (x +m )2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),求关于x 的方程a (x +m +2)2+b =0的解. 解:x 1=-4,x 2=-1.15.选取二次三项式ax 2+bx +c (a ≠0)中的两项,配成完全平方式的过程叫配方.例如 ①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x ,或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2. 根据上述材料,解决下面问题:(1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y的值. 解:(1)x 2-8x +4 =x 2-8x +16-16+4=(x -4)2-12;x 2-8x +4=(x -2)2+4x -8x =(x -2)2-4x ;(2)x 2+y 2+xy -3y +3=0,(x +y 2)2+34(y -2)2=0,x +y2=0,y -2=0,x =-1,y =2,则x y=(-1)2=1.。
九年级数学配方法及公式法检测题

九年级(上册)数学配方法及公式法姓名:◆回顾归纳1.通过配方,把方程的一边化为______,另一边化为_____,然后利用开平方法解方程,这种方法叫配方法,如ax2+bx+c=0(a≠0),配方得a(x+_____)2=244b aca-.2.一元二次方程ax2+bx+c=0(a≠0),运用公式法求解的方法叫做公式法,•求根公式x=_______.◆课堂测控测试点1 配方法1.(1)x2-2x+_____=(x-1)2; (2)x2+32x+916=(x+_______)2.2.(1)x2+4x+_____=(x+_____)2;(2)y2-_______+9=(y-_____)2.3.若x2+6x+m2是一个完全平方式,则m的值为( )A.3 B.9 C.±3 D.±94.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2•可以配方成下列的() A.(x-p)2=5 B.(x-p)2=9 C.(x-p+2)2=9 D.(x-p+2)2=55.用配方法解下列方程:(1)x2+6x+7=0;(2)2x2-4x=-5;(3)3x2+2x-3=0; (4)12x2-3x+3=0.6.阅读下列解题过程,并解答后面的问题.用配方法解方程2x2-5x-8=0.解:2x2-5x-8=0.∴x2-5x-8=0.①∴x2-5x+(-52)2=8+(-52)2.②∴(x-52)2=574.③∴x1,x2④(1)指出每一步的解题根据:①______;②______;③_______;④_______.(2)上述解题过程有无错误,如有错在第______步,原因是_________.(3)写出正确的解答过程.测试点2 公式法7.方程(x+2)(x+3)=20的解是______.8.方程3x2+2x+4=0中,b2-4ac=_______,则该一元二次方程_______实数根.9.方程x2+4x=2的正根为()A.2..-2.-10.用求根公式解下列方程.(1)3x2-x-2=0; (2)12x2+18=-12x;(3)(x+2)(x-2);(4)3x2+2x=2.11.用公式法解方程12x2+12x+18=0.解:4x2+4x+1=0 ①∵a=4,b=4,c=1,②∴b2-4ac=42-4×4×1=0.③∴=12.④∴x1=x2=-12.(1)以上①步______,②步______,③步_______,④步_______.(2)体验以上解题过程,用公式法解方程:13x2+13x-16=0.◆课后测控1.若关于x的方程2x2+3ax-2a=0有一根为x=2,则关于y的方程y2+a=7的解是______.2.设x,x是方程x2-4x-2=0的两根,那么x=______,x=_____.3.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是______.4.将二次三项式2x2-3x-5进行配方,其结果为______.5.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_____;若一根为0,则c=______.6.若│x2-x-2│+│2x2-3x-2│=0,则x=_______.7.一元二次方程x2-2x=0的解是( )A.0 B.0或2 C.2 D.此方程无实数根11.用适当的方法解下列方程.(1)4x2-7x+2=0; (2)x2-x-1=0;(3)x2-7x+6=0;(4)3(x+1)2-5(x+1)=2.参考答案回顾归纳1.完全平方式 非负数 2ba2(b -4ac ≥0)课堂测控1.(1)1 (2)34 2.(1)4 2 (2)6y 3 3.C 4.B5.(1)x 1=-x 2=-3(2)无解(3)x 1=13-,x 2=13-(4)x 1x 2=36.(1)①把二次项系数化为1 ②移项,•方程的两边加上一次项系数一半的平方③方程左边化为完全平方式 ④直接用开平方法解方程(2)① 常数项和一次项系数未同时除以2(3)正确解答:x 2-52x -4=0,∴x 2-52x+(-54)2=4+(-54)2,∴(x -54)2=8916,∴x 1=54,x 2=54-.7.x 1=-7,x 2=28.-44 没有 9.D10.(1)x 1=1,x 2=-23 (2)x 1=x 2=-12(3)x 1x 2(4)x 1=13-+,x 2=13-11.(1)①把系数化为整数 ②确定二次项系数,一次项系数,常数项 •③求出b 2-4ac 的值 ④求出方程的根(2)2x 2+2x -1=0,∵a=2,b=2,c=-1,∴b 2-4ac=4-4×2×(-1)=12.∴==.∴x 1,x 2 课后测控1.y=±32.x=4422±==2) 3.±4(点拨:令2a+2b=x ,则(x+1)(x -1)=63,∴x=±8,∴a+b=±4)4.2[(x -34)2-4916] (点拨:2x 2-3x -5=2(x 2-32x -52) =2[x 2-32x+(-34)2-52-916]=2[(x -34)2-4916]) 5.0 0 6.2(点拨:要使等式成立,则必有x 2-x -2=0,且2x 2-3x -2=0,∴x=2)7.B8.A (点拨:x 2+y 2+2x -4y+7=(x+1)2+(y -2)2+2,∵(x+1)2≥0,(y -2)2≥0,∴x 2+y 2+2x -4y+7≥2)9.B (点拨:x 2-16x+60=0的两根为x 1=10,x 2=6,根据三角形三边关系,则10和6都可为第三边长,∴当第三边长为10,则此三角形为直角三角形,则S=24,当第三边长为6时,10.C (点拨:∵x*(x+1)=5,∴x+(x+1)2=5,即x 2+3x -4=0,∴x 1=1,x 2=-4)11.(1)这里a=4,b=-7,c=2.∴△=49-4×4×2=17,∴=.∴x 1=78,x 2=78.(2)x =,x 2 (3)(x -1)(x -6)=0,∴x -1=0或x -6=0.∴x 1=1,x 2=6.(4)令x+1=y ,则原方程变为3y 2-5y -2=0,∴y 1=-13,y 2=2. 当y 1=-13,x 1=-43;y 2=2时,x 2=1. 12.∵(x+1)△x=10,∴(x+1)2+(x+1)x+x 2=10,整理得x 2+x -3=0.解得x 12 13.∵△=4-2(2-m )=4m -4〉0,∴m>1.将m=2代入方程得x 2+2x=0,∴x 2+2x+1=1,即(x+1)2=1,∴1+x=±1,∴x 1=0,x 2=-2.14.设平均每箱应降价x 元,根据题意得(4-x )·(20+0.4x ×8)=120. 整理得x 2-3x+2=0,即(x -2)(x -1)=0.∴x=2,x=1.因为要扩大销售量,减少库存,所以应取x=2,将x=1舍去,∴每箱牛奶应降价2元. 拓展创新设道路宽为x 米,列方程为20×32-(20+32)x+x 2=540,∴x 1=2,x 2=50(舍去),•∴道路宽为2米.。
21 配方法 练习人教版九年级 数学 上册

21.2.1配方法一、选择题。
1.一元二次方程(x ﹣2)2+1=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根4.若,则x 2+y 2+z 2可取得的最小值为( ) A .3 B . C . D .6 5对于多项式224x x ++,由于()2224133x x x ++=++≥,所以224x x ++有最小值3.已知关于x 的多项式26x x m -+-的最大值为10,则m 的值为( )A .1B .1-C .10-D .19-6.关于x 的一元二次方程新定义:若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=就是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a x b x ++-+=是“同族二次方程”.那么代数式22015ax bx -++取的最大值是( ) A .2020B .2021C .2022D .2023二、填空题。
1.将方程26100x x --=化成2()x m n +=(m ,n 为常数)的形式,则m =________.5.一元二次方程y 2﹣y 34-=0配方后可化为________. 三、解答题。
123x -==5914921.用配方法解下列方程:(1)2x 2+7x -4=0;(2)-23x 2-13x +2=0; (3)x (x +4)=6x +12;(4)3(x -1)(x +2)=x -7.2.若a 为方程2(16x =的一个正根,b 为方程22113y y -+=的一个负根,求+a b 的值.3.已知代数式2231x x --,先用配方法说明,不论x 取何值,这个代数式的值总是负数;再求出当x 取何值时,这个代数式的值最大,最大值是多少?4.在实数范围内定义一种新运算“※”,其规则为a ※b =(a ﹣1)2﹣b 2.根据这个规则,求方程(x +3)※5=0的解.。
最新人教版初中九年级上册数学《配方法》同步练习

21.2 解一元二次方程21.2.1 配方法第2课时 配方法基础题知识点1 配方1.下列各式是完全平方式的是( )A .a 2+7a +7B .m 2-4m -4C .x 2-12x +116D .y 2-2y +2 2.若x 2+6x +m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对3.(兰州中考)用配方法解方程x 2-2x -1=0时,配方后得的方程为( )A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.(河北模拟)把一元二次方程x 2-6x +4=0化成(x +n)2=m 的形式时,m +n 的值为( )A .8B .6C .3D .25.(吉林中考)若将方程x 2+6x =7化为(x +m)2=16,则m =________.6.用适当的数或式子填空:(1)x 2-4x +______=(x -______)2;(2)x 2-______+16=(x -______)2;(3)x 2+3x +94=(x +______)2; (4)x 2-25x +______=(x -______)2. 知识点2 用配方法解一元二次方程7.如果一元二次方程通过配方能化成(x +n)2=p 的形式,那么(1)当p>0时,方程有____________的实数根,x 1=__________,x 2=__________;(2)当p =0时,方程有________的实数根,x 1=x 2=________;(3)当p<0,方程__________.8.解方程:2x 2-3x -2=0.为了便于配方,我们将常数项移到右边,得2x 2-3x =______;再把二得(x -34)2=2516,解得方程的两个根为____________________. 9.用配方法解下列方程:(1)x 2-4x -2=0;(2)2x 2-3x -6=0;(3)23x 2+13x -2=0;(4)x 2-23x +1=0.10.(燕山区一模)在多项式x 2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是( )A .xB .3xC .6xD .9x11.(长清区期末)用配方法解下列方程时,配方正确的是( )A .方程x 2-6x -5=0,可化为(x -3)2=4B .方程y 2-2y -2 015=0,可化为(y -1)2=2 015C .方程a 2+8a +9=0,可化为(a +4)2=25D .方程2x 2-6x -7=0,可化为(x -32)2=23412.若方程4x 2-(m -2)x +1=0的左边是一个完全平方式,则m 等于( )A .-2B .-2或6C .-2或-6D .2或-613.(聊城中考)用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为() A .(x +b 2a )2=b 2-4ac4a 2B .(x +b 2a )2=4ac -b 24a 2C .(x -b 2a )2=b 2-4ac4a 2D .(x -b 2a )2=4ac -b24a 214.用配方法解下列方程:(1)2x 2+7x -4=0;(2)x 2-6x +1=2x -15;(3)x(x +4)=6x +12;(4)3(x -1)(x +2)=x -7.15.(河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-c a,第一步 x 2+b a x +(b 2a )2=-c a +(b 2a)2,第二步 (x +b 2a )2=b 2-4ac 4a 2,第三步 x +b 2a =b 2-4ac 2a(b 2-4ac>0),第四步 x =-b +b 2-4ac 2a.第五步 (1)嘉淇的解法从第______步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a ≠0)的求根公式是________________________;(2)用配方法解方程:x 2-2x -24=0.16.若要用一根长20厘米的铁丝,折成一个面积为16平方厘米的矩形方框,则应该怎样折呢?综合题17.(葫芦岛中考)有n 个方程:x 2+2x -8=0;x 2+2×2x -8×22=0;……;x 2+2nx -8n 2=0. 小静同学解第1个方程x 2+2x -8=0的步骤为:“①x 2+2x =8;②x 2+2x +1=8+1;③(x +1)2=9;④x +1=±3;⑤x =1±3;⑥x 1=4,x 2=-2.”(1)小静的解法是从步骤______开始出现错误的;(2)用配方法解第n 个方程x 2+2nx -8n 2=0.(用含n 的式子表示方程的根)参考答案基础题1.C2.C3.D4.D5.36.(1)4 2 (2)8x 4 (3)32 (4)125 157.两个不相等 -n -p -n +p 两个相等 -n 无实数根 8.2 32 1 32 (34)2 1+(34)2 x 1=2,x 2=-129.(1)(x -2)2=6,x 1=6+2,x 2=-6+2.(2)方程无实数根.(3)(x -34)2=5716,x 1=3+574,x 2=3-574.(4)(x +14)2=4916,x 1=32,x 2=-2 中档题10.C 11.D 12.B 13.A 14.(x +74)2=8116,x 1=12,x 2=-4.(2)(x -4)2=0,∴x 1=x 2=4.(3)(x -1)2=13,x 1=1+13,x 2=1-13.(4)(x +13)2=-29,原方程无实数解. 15.(1)四 x =-b±b 2-4ac 2a(2)方程x 2-2x -24=0变形,得x 2-2x =24,x 2-2x +1=24+1,(x -1)2=25,x -1=±5,x =1±5,所以x 1=-4,x 2=6.16.设折成的矩形的长为x 厘米,则宽为(10-x)厘米,由题意,得x(10-x)=16.解得x 1=2,x 2=8.∴矩形的长为8厘米,宽为2厘米.综合题17.(1)⑤(2)x 2+2nx -8n 2=0,x 2+2nx =8n 2,x 2+2nx +n 2=8n 2+n 2,(x +n)2=9n 2,x +n =±3n ,x =-n±3n ,∴x =-4n ,x =2n.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
人教版九年级数学上册《配方法》能力提升卷

人教版九年级数学上册《配方法》能力提升卷一、选择题(共10小题,3*10=30)1.y 2-y -34=0配方后可化为( )A .(y +12)2=1B .(y -12)2=1C .(y +12)2=34D .(y -12)2=342.若x 2-6x +m 2是一个完全平方式,则m 的值是( )A .3B .-3C .±3D .以上都不对3.对于任意实数x ,多项式x 2-3x +3的值是一个( )A .整数B .负数C .正数D .无法确定4.下列配方有错误的是( )A .x 2-2x -3=0化为(x -1)2=4B .x 2+6x +8=0化为(x +3)2=1C .x 2-4x -1=0化为(x -2)2=5D .x 2-2x -124=0化为(x -1)2=1245.不论x ,y 为何实数,代数式x 2+y 2+2x -4y +7的值( )A .总不小于2B .总不小于7C .可为任何实数D .可能为负数6. 用配方法解下列方程时,配方正确的是( )A .方程x 2-6x -5=0,可化为(x -3)2=4B .方程y 2-2y -2 022=0,可化为(y -1)2=2 022C .方程a 2+8a +9=0,可化为(a +4)2=25D .方程2x 2-6x -7=0,可化为⎝⎛⎭⎫x -322=2347.若关于x 的方程4x 2-(m -2)x +1=0的左边是一个完全平方式,则m 等于() A .-2 B .-2或6 C .-2或-6 D .2或-68.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么p +q 的值为() A .5 B .-1 C .2 D .127A.M<N B.M=N C.M>N D.不能确定10.若三角形两边的长分别是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( )A.14B.12C.12或14D.以上都不对二.填空题(共8小题,3*8=24)11.若x2+2(m-3)x+16是关于x的完全平方式,则m=________.12. 填空:x2+10x+=(x+)2;13.解方程3x2-9x+1=0,两边都除以3得__ __,配方后得___.14.已知三角形一边长为12,另两边长是方程x2-18x+65=0的两个实数根,那么其另两边长分别为__ __,这个三角形的面积为__ __.15.当y=__ __时,式子y2+2y+5有最__ __值为__ __16.一元二次方程x2-8x=48可表示成(x-a)2=48+b的形式,其中a,b为整数,则a+b的值为__ __.17.规定:a☆b=(a+b)b,如:2☆3=(2+3)×3=15,若2☆x=3,则x=________.18.已知a,b,c是△ABC的三边长,且a2+b2+c2=ab+ac+bc,则△ABC的形状为_______________.三.解答题(共7小题,46分)19.(6分) 用配方法解方程:(1)x2+10x+9=0.(2)3x2+6x+2=0.20.(6分) )配方法求一元二次方程x 2+6x =-7的实数根.21.(6分) 先阅读,后解题.若m 2+2m +n 2-6n +10=0,求m 和n 的值.解:由已知得m 2+2m +1+n 2-6n +9=0,即(m +1)2+(n -3)2=0.∵(m +1)2≥0,(n -3)2≥0,∴(m +1)2=0,(n -3)2=0.∴m +1=0,n -3=0.∴m =-1,n =3.利用以上解法,解答下面的问题:已知x 2+5y 2-4xy +2y +1=0,求x 和y 的值.22.(6分) 当x 满足条件⎩⎪⎨⎪⎧x +1<3x -3,12(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根.23.(6分) 若△ABC 的三边长a ,b ,c 满足a 2+b +|c -1-2|=10a +2b -4-22,试判断△ABC 的形状.24.(8分) 选取二次三项式ax 2+bx +c(a≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x 或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2.根据上述材料,解决下列问题:(1)写出x 2-8x +4的两种不同形式的配方;(2)已知x 2+y 2+xy -3y +3=0,求x y 的值.25.(8分) 已知实数x 满足x 2+1x 2+2⎝⎛⎭⎫x +1x =0,求x +1x的值.参考答案1-5BCCDA 6-10DBAAB11. -1或712. 25,513. x2-3x+13=0,(x -32)2=231214. 5和13,3015. -1,小,416.2017. 1或-318.等边三角形19. (1)解:x 2+10x +25=-9+25,(x +5)2=16,x +5=±4,解得x 1=-1,x 2=-9.(2)解:3(x 2+2x +1)=1,3(x +1)2=1,(x +1)2=13, x +1=±33, 解得x 1=33-1,x 2=-33-1. 20. 解:∵x 2+6x =-7,∴x 2+6x +9=-7+9,即(x +3)2=2,则x +3=±2,∴x =-3±2,即x 1=-3+2,x 2=-3- 2.21. 解:∵x 2+5y 2-4xy +2y +1=0,∴x 2-4xy +4y 2+y 2+2y +1=0.∴(x -2y)2+(y +1)2=0.∴x -2y =0,y +1=0.解得x =-2,y =-1.⎧x +1<3x -3,得⎩⎪⎨⎪⎧x >2,x <4.∴2<x <4, 解方程x 2-2x -4=0可得x 1=1+5,x 2=1- 5.∵2<5<3,∴3<5+1<4,-2<1-5<-1,∴x =1+523. 解:原等式可变形为(a 2-10a +25)+(b -4-2b -4+1)+|c -1-2|=0. ∴(a -5)2+(b -4-1)2+|c -1-2|=0.∴a -5=0,b -4-1=0,c -1-2=0.∴a =5,b =5,c =5.∴a =b =c.∴△ABC 是等边三角形.24. 解:(1)x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12;x 2-8x +4=(x -2)2+4x -8x =(x -2)2-4x(2)x 2+y 2+xy -3y +3=0可化为(x 2+xy +14y 2)+(34y 2-3y +3)=0, 即(x +12y)2+34(y -2)2=0, 又∵(x +12y)2≥0,34(y -2)2≥0, ∴x +12y =0,y -2=0, ∴x =-1,y =2,则x y =(-1)2=125. 解:将已知等式两边同时加上2,得x 2+1x2+2+2⎝⎛⎭⎫x +1x =2,即⎝⎛⎭⎫x +1x 2+2⎝⎛⎭⎫x +1x =2. 设x +1x=y ,则⎝⎛⎭⎫x +1x 2+2⎝⎛⎭⎫x +1x =2可化为y 2+2y =2. 配方,得y 2+2y +1=2+1,∴(y +1)2=3.直接开平方,得y +1=± 3.解得y 1=3-1,y 2=-3-1.即x +1x =3-1或x +1x=-3-1. 经检验,不存在实数x 使x +1x=3-1,故舍去. 1。
人教版九年级上册配方法同步习题

21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法1.若x2=a(a≥0),则x就叫做a的平方根,记为x=__±a___(a≥0),由平方根的意义降次来解一元二次方程的方法叫做直接开平方法.2.直接开平方,把一元二次方程“降次”转化为__两个一元一次方程___.3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么x=__±p___或mx+n=__±p___.知识点1:可化为x2=p(p≥0)型方程的解法1.方程x2-16=0的根为( C )A.x=4 B.x=16C.x=±4 D.x=±82.方程x2+m=0有实数根的条件是( D )A.m>0 B.m≥0C.m<0 D.m≤03.方程5y2-3=y2+3的实数根的个数是( C )A.0个B.1个C.2个D.3个4.若4x2-8=0成立,则x的值是.5.解下列方程:(1)3x2=27;解:x1=3,x2=-3(2)2x2+4=12;解:x1=2,x2=-2(3)5x2+8=3.解:没有实数根知识点2:形如(mx+n)2=p(p≥0)的解法6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( D )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-47.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( D )A.k<1 B.k<-1C.k≥1 D.k>18.一元二次方程(x-3)2=8的解为__x=3±22___.9.解下列方程:(1)(x-3)2-9=0;解:x1=6,x2=0(2)2(x-2)2-6=0;解:x1=2+3,x2=2- 3(3)x2-2x+1=2.解:x1=1+2,x2=1- 210.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=__1___.11.若x2-4x+2的值为0,则x=__2___.12.由x2=y2得x=±y,利用它解方程(3x-4)2=(4x-3)2,其根为__x=±1___.13.在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的根为__x1=3,x2=-7___.14.下列方程中,不能用直接开平方法求解的是( C )A.x2-3=0 B.(x-1)2-4=0C.x2+2x=0 D.(x-1)2=(2x+1)215.(2014·枣庄)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( A ) A.x1小于-1,x2大于3B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于316.若(x2+y2-3)2=16,则x2+y2的值为( A )A.7 B.7或-1C.-1 D.1917.解下列方程:(1)3(2x+1)2-27=0;解:x1=1,x2=-2(2)(x-2)(x+2)=10;解:x1=23,x2=-2 3(3)x2-4x+4=(3-2x)2;解:x1=1,x2=53(4)4(2x-1)2=9(2x+1)2.解:x1=-52,x2=-11018.若2(x2+3)的值与3(1-x2)的值互为相反数,求x+3x2的值.解:由题意得2(x2+3)+3(1-x2)=0,∴x=±3.当x=3时,x+3x2=23;当x=-3时,x+3x2=019.如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意有ab-4x2=4x2,将a=6,b=4代入,得x2=3,解得x1=3,x2=-3(舍去),即正方形的边长为 3第2课时配方法1.通过配成__完全平方形式___来解一元二次方程的方法叫做配方法.2.配方法的一般步骤:(1)化二次项系数为1,并将含有未知数的项放在方程的左边,常数项放在方程的右边;(2)配方:方程两边同时加上__一次项系数的一半的平方___,使左边配成一个完全平方式,写成__(mx +n)2=p___的形式;(3)若p__≥___0,则可直接开平方求出方程的解;若p__<___0,则方程无解.知识点1:配方1.下列二次三项式是完全平方式的是( B )A.x2-8x-16 B.x2+8x+16C.x2-4x-16 D.x2+4x+162.若x2-6x+m2是一个完全平方式,则m的值是( C )A.3 B.-3C.±3 D.以上都不对3.用适当的数填空:x2-4x+__4___=(x-__2___)2;m2__±3___m+94=(m__±32___)2.知识点2:用配方法解x2+px+q=0型的方程4.用配方法解一元二次方程x2-4x=5时,此方程可变形为( D ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=95.下列配方有错误的是( D )A.x2-2x-3=0化为(x-1)2=4B.x2+6x+8=0化为(x+3)2=1C.x2-4x-1=0化为(x-2)2=5D.x2-2x-124=0化为(x-1)2=1246.(2014·宁夏)一元二次方程x2-2x-1=0的解是( C )A.x1=x2=1B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2D.x1=-1+2,x2=-1- 27.解下列方程:(1)x2-4x+2=0;解:x1=2+2,x2=2- 2(2)x2+6x-5=0.解:x1=-3+14,x2=-3-14知识点3:用配方法解ax2+bx+c=0(a≠0)型的方程8.解方程3x2-9x+1=0,两边都除以3得__x2-3x+13=0___,配方后得__(x-32)2=2312___.9.方程3x2-4x-2=0配方后正确的是( D ) A.(3x-2)2=6 B.3(x-2)2=7C.3(x-6)2=7 D.3(x-23)2=10310.解下列方程:(1)3x2-5x=-2;解:x1=23,x2=1(2)2x2+3x=-1.解:x1=-1,x2=-1211.对于任意实数x ,多项式x 2-4x +5的值一定是( B )A .非负数B .正数C .负数D .无法确定12.方程3x 2+2x =6,左边配方得到的方程是( B )A .(x +26)2=-3718B .(x +26)2=3718C .(x +26)2=3518D .(x +26)2=611813.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p)2=5B .(x -p)2=9C .(x -p +2)2=9D .(x -p +2)2=514.已知三角形一边长为12,另两边长是方程x 2-18x +65=0的两个实数根,那么其另两边长分别为__5和13___,这个三角形的面积为__30___.15.当x =__2___时,式子200-(x -2)2有最大值,最大值为__200___;当y =__-1___时,式子y 2+2y +5有最__小___值为__4___.16.用配方法解方程: (1)23x 2=2-13x ;解:x1=32,x2=-2(2)3y2+1=23y.解:y1=y2=3 317.把方程x2-3x+p=0配方得到(x+m)2=12,求常数m与p的值.解:m=-32,p=7418.试证明关于x的方程(a2-8a+20)x2+2ax+1=0,无论a为何值,该方程都是一元二次方程.解:∵a2-8a+20=(a-4)2+4≠0,∴无论a取何值,该方程都是一元二次方程19.选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:x2-4x+2=(x-2)2+(22-4)x,或x2-4x+2=(x+2)2-(4+22)x;③选取一次项和常数项配方:x2-4x+2=(2x-2)2-x2.根据上述材料,解决下列问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.解:(1)x2-8x+4=x2-8x+16-16+4=(x-4)2-12;x2-8x+4=(x-2)2+4x-8x=(x-2)2-4x(2)x2+y2+xy-3y+3=0,(x2+xy+14y2)+(34y2-3y+3)=0,(x+12y)2+34(y-2)2=0,又∵(x+12y)2≥0,34(y-2)2≥0,∴x+12y=0,y-2=0,∴x=-1,y=2,则x y=(-1)2=1 先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
人教版数学九年级上册21.2.1 配方法 练习(含答案)

21.2.1 配方法一、选择题1.用配方法解一元二次方程x 2﹣4x ﹣6=0,变形正确的是( ) A .(x ﹣2)2=0 B .(x ﹣4)2=22C .(x ﹣2)2=10D .(x ﹣2)2=82.若2x+1与2x-1互为倒数,则实数x 为( ) A .x=12±B .x =±1C .±D .3.将一元二次方程x 2+6x+7=0进行配方正确的结果应为( ) A .(x+3)2+2=0 B .(x ﹣3)2+2=0C .(x+3)2﹣2=0D .(x ﹣3)2﹣2=04.用配方法解一元二次方程x 2﹣6x ﹣10=0时,下列变形正确的为( ) A .(x+3)2=1 B .(x ﹣3)2=1 C .(x+3)2=19 D .(x ﹣3)2=195.如果二次三项式4x 2+mx+1/9是一个完全平方式,那么m 的值是( ) A .34 B .34- C .34± D .±436.用配方法解方程2520x x ++=时,四个学生在变形时,得到四种不同的结果,其中配方正确的是( ) A .2517()24x += B .2521()24x += C .2525()24x +=D .2533()24x +=7.新定义,若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a xb x ++-+=是“同族二次方程”.那么代数式22018ax bx ++能取的最小值是( ) A .2011 B .2013C .2018D .20238.下列各命题中正确的是( )①方程x 2=-4的根为x 1=2,x 2=-2②∵(x-3)2=2,∴x-3=,即③∵x 2,∴x=±4 ④在方程ax 2+c=0中,当a >0,c >0时,一定无实根 A .①② B .②③C .③④D .②④9.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定10.方程2410x x ++=的解是( )A .1222x x ==B .1222x x ==-C .1222x x =-+=-D .1222x x =-=二、填空题11.解方程:9x 2﹣6x+1=0, 解:9x 2﹣6x+1=0,所以(3x ﹣1)2=0, 即3x ﹣1=0,解得x 1=x 2= .12.已知a 、b 、c 为△ABC 的三边长,且a 、b 满足2264130a a b b -+-+=,c 为奇数,则△ABC 的周长为______.13.用配方法解方程23650x x +-=,则配方后的方程是________14.用配方法解下列方程:(1)x 2+4x ﹣5=0,解:移项,得x 2+4x = ,方程两边同时加上4,得x 2+4x+4= ,即(x+2)2= ,所以x+2= 或x+2= ,所以x 1= ,x 2= .(2)2y 2﹣5y+2=0,解:方程两边同除以2,得y 2﹣y = ,方程两边同加上()2,得y 2﹣y+()2= ,所以( )2= ,解得y 1= ,y 2= .15.对于有理数,a b ,定义min{,}a b 的含义为:当a b ≥时,}{min ,a b b =;当a b ≤时,}{min ,a b a =.若}{22min 13,6413m n m n---=,则nm的值等于____.三、解答题16.用配方法解下列方程: (1)225x x -=; (2)22103x x -+=;(3)22360x x --=; (4)2212033x x +-=;(5))3x x =; (6)(23)(6)16x x +-=.17.解方程:2232mx x -=+()1m ≠18.若代数式233x x -的值与2(1)x -的值互为相反数,求x 的值?19.已知一元二次方程ax 2+bx +c =0(a ≠0)的一个根是1,且a ,b 满足b =+﹣3,求关于y 的方程y 2﹣c =0的根.20.已知:x 2+4x+y 2-6y+13=0,求222x y x y -+的值.21.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现: 当a >0,b >0时:∵)2=a ﹣b ≥0∴a +b a =b 时取等号. 请利用上述结论解决以下问题: (1)请直接写出答案:当x >0时,x +1x的最小值为 .当x <0时,x +1x的最大值为 ; (2)若y =27101x x x +++,(x >﹣1),求y 的最小值;(3)如图,四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.22.实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果. 探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果. 归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果. 问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额. 拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.答案一、选择题1. C 2. C 3. C 4. D 5. C 6. A 7. B 8. D 9. A 10. C 二、填空题 11.12. 8 13. 28(1)3x +=14. (1)x 2+4x ﹣5=0,解:移项,得x 2+4x = 5 ,方程两边同时加上4,得x 2+4x+4= 9 ,即(x+2)2= 9 ,所以x+2= 3 或x+2= ﹣3 ,所以x 1= 1 ,x 2= ﹣5 .(2)2y 2﹣5y+2=0,解:方程两边同除以2,得y 2﹣y = ﹣1 , 方程两边同加上()2,得y 2﹣y+()2=,所以( y ﹣ )2= ,解得y 1= 2 ,y 2=.15.19三、解答题16. (1)1211x x ==(2)原方程无实数根;(3)123344x x +-==(4)123,22x x ==-;(5)12x x =;(6)129944-==x x .17. 当1m 时,原方程的解是x =,当1m <时,原方程无实数解18. 解:因为代数式233x x -的值与2(1)x -的值互为相反数所以233x x -+2(1)x -=0,整理的2125=636x -(),解得1221,3x x ==- 19. y =±2. 20. 813-21. (1)2;﹣2.(2)y 的最小值为9;(3)四边形ABCD 面积的最小值为25.22. 探究一:(3)7;(4)23n -(3n ≥,n 为整数);探究二:(1)4,(2)38n - ;探究三:415,n -归纳结论:21an a -+ (n 为整数,且3n ≥,1<a <n );问题解决:476;拓展延伸:(1)29个或7个;(2)()211a n a +-+.。
人教版初中数学九年级上册第二十一章《配方法解一元二次方程》 同步练习题(解析版)

九年级上册第二十一章?配方法解一元二次方程?同步练习题一、选择题〔每题只有一个正确答案〕1.用配方法解方程x2−4x−2=0变形后为()A.(x−2)2=6B.(x−4)2=6C.(x−2)2=2D.(x+2)2=62.将方程x2+8x+9=0左边变成完全平方式后,方程是〔〕A.(x+4)2=7B.(x+4)2=25C.(x+4)2=−9D.(x+4)2=−7 3.假设方程x2﹣8x+m=0可以通过配方写成〔x﹣n﹣2=6的形式,那么x2+8x+m=5可以配成〔〕A.﹣x﹣n+5﹣2=1B.﹣x+n﹣2=1C.﹣x﹣n+5﹣2=11D.﹣x+n﹣2=11 4.对二次三项式x2-10x+36,小聪同学认为:无论x取什么实数,它的值都不可能等于11;小颖同学认为:可以取两个不同的值,使它的值等于11.你认为( )A.小聪对,小颖错B.小聪错,小颖对C.他们两人都对D.他们两人都错5.假如一元二次方程x2-ax+6=0经配方后,得〔x+3﹣2=3,那么a的值为〔〕A.3 B.-3 C.6 D.-6二、填空题6.方程x2﹣2x﹣2﹣0的解是____________.7.总结配方法解一元二次方程的步骤是:(1)化二次项系数为__________;(2)移项,使方程左边只有__________项;(3)在方程两边都加上__________平方;(4)用直接开平方法求出方程的根.8.〔1〕x2+6x+9=(x+____)2,〔2〕x2-_______+p24=(x−p2)2.9.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是____________;假设多项式x2-ax+2a-3是一个完全平方式,那么a=_________.10.x²-3x+____=(x-___)².三、解答题11.解方程:x2−2x=4﹣12.用配方法解方程:2x2−3x+1=0﹣13.用配方法说明:不管x取何值,代数式2x2+5x-1的值总比代数式x2+7x-4的值大,并求出两代数式的差最小时x的值.14.关于x的一元二次方程kx2+2x﹣1=0有实数根,第 1 页〔1〕求k的取值范围;〔2〕当k=2时,请用配方法解此方程.15.大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为1,再进展配方.现请你先阅读如下方程〔1〕的解答过程,并按照此方法解方程〔2〕.方程〔1〕2x2−2√2x−3=0.解:2x2−2√2x−3=0,(√2x)2−2√2x+1=3+1,(√2x−1)2=4,√2x−1=±2,x1=−√22,x2=3√22.方程〔2〕3x2−2√6x=2.参考答案1.A【解析】【分析】在此题中,把常数项-2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4,配方得〔x-2〕2=6.应选:A【点睛】配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.A【解析】【详解】﹣x2+8x+9=0﹣﹣x2+8x=−9﹣﹣x2+8x+16=−9+16﹣﹣(x+4)2=7.应选A.【点睛】配方法的一般步骤:〔1〕将常数项移到等号右边;〔2〕将二次项系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.3.D【解析】分析:方程x2﹣8x+m=0可以配方成〔x﹣n〕2=6的形式,把x2﹣8x+m=0配方即可第 1 页得到一个关于m的方程,求得m的值,再利用配方法即可确定x2+8x+m=5配方后的形式.详解:∵x2﹣8x+m=0,∴x2﹣8x=﹣m,∴x2﹣8x+16=﹣m+16,∴〔x﹣4〕2=﹣m+16,依题意有:n=4,﹣m+16=6,∴n=4,m=10,∴x2+8x+m=5是x2+8x+5=0,∴x2+8x+16=﹣5+16,∴〔x+4〕2=11,即〔x+n〕2=11.应选D.点睛:考察理解一元二次方程﹣配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.D【解析】【分析】通过配方写成完全平方的形式,用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.再说明他的说法错误.【详解】当x2-10x+36=11时;x2-10x+25=0﹣﹣x-5﹣2=0﹣x1=x2=5﹣所以他们两人的说法都是错误的,应选D.【点睛】此题考察了配方法解一元二次方程,纯熟掌握配方法的一般步骤是解题的关键.配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1﹣﹣3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.D【解析】【分析】可把〔x+3〕2=3按完全平方式展开,比照即可知a的值.【详解】根据题意,〔x+3〕2=3可变为:x2+6x+6=0,和一元二次方程x2-ax+6=0比拟知a=-6.应选:D【点睛】此题考核知识点:此题考察了配方法解一元二次方程,是根底题.6.x1﹣1﹣√3﹣x2﹣1﹣√3【解析】分析: 首先把常数-2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.详解:x2-2x-2=0,移项得:x2-2x=2,配方得:x2-2x+1=2+1,〔x-1〕2=3,两边直接开平方得:x-1=±√3,那么x1=√3+1,x2=-√3+1.故答案为:x1=1+√3,x2=1-√3.点睛: 此题主要考察了配方法解一元二次方程,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 7.1二次项及一次一次项系数一半的【解析】分析:根据配方法的步骤解方程即可.详解:总结配方法解一元二次方程的步骤是:(1)化二次项系数为1;(2)移项,使方程左边只有二次项及一次项;(3)在方程两边都加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.点睛:此题考察了配方法,配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方,选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.第 3 页8.3 px【解析】【详解】根据完全平方公式得,x 2+6x +9=(x +3)2﹣x 2-px +p 24=(x −p 2)2. 故答案为3﹣px .9.3(x −13)2=103﹣2或6.【解析】【分析】首先把一元二次方程3x 2-2x -3=0提出3,然后再配方即可;【详解】根据题意,一元二次方程3x 2-2x -3=0化成,括号里面配方得,,即; ∵多项式x 2-ax+2a -3是一个完全平方式,,∴解得a=2或6.故答案为﹣(1). 3(x −13)2=103﹣ (2). 2或6.【点睛】此题考察了配方法解一元二次方程,解题的关键是纯熟掌握用配方法解一元二次方程的步骤.10. 94, 32 【解析】分析:根据配方法可以解答此题.详解:∵x 2﹣3x +94=〔x ﹣32〕2, 故答案为:94,32.点睛:此题考察了配方法的应用,解题的关键是纯熟掌握配方法.11.x 1=1+√5,x 2=1−√5.【解析】【分析】第 5 页两边都加1,运用配方法解方程.【详解】解:x 2−2x +1=5,(x −1)2=5,x −1=±√5,所以x 1=1+√5,x 2=1−√5.【点睛】此题考核知识点:解一元二次方程. 解题关键点:掌握配方法.12.x 1=12,x 2=1.【解析】【分析】利用配方法得到〔x ﹣34〕2=116,然后利用直接开平方法解方程即可.【详解】x 2﹣32x =﹣12, x 2﹣32x +916=﹣12+916, 〔x ﹣34〕2=116x ﹣34=±14, 所以x 1=12,x 2=1. 【点睛】此题考察理解一元二次方程﹣配方法:将一元二次方程配成〔x +m 〕2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.13.详见解析.【解析】【分析】用求差法比拟代数式2x 2+5x-1的值总与代数式x 2+7x-4的大小,即2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2;当x=1时,两代数式的差最小为2.【详解】解:2x 2+5x-1-〔x 2+7x-4〕=2x 2+5x-1-x 2-7x+4=x 2-2x+3=〔x-1〕2+2,∵〔x-1〕2≥0,∴〔x-1〕2+2>0,即2x 2+5x-1-〔x 2+7x-4〕>0,∴不管x 取任何值,代数式2x 2+5y-1的值总比代数式x 2+7x-4的值大,当x=1时,两代数式的差最小为2.【点睛】此题考核知识点:配方.解题关键点:用求差法和配方法比拟代数式的大小.14.〔1〕k ≥﹣1且k ≠0;〔2〕x 1=√3−12,x 2=−√3−12. 【解析】试题分析:﹣1〕当k =0时,是一元一次方程,有解;当k ≠0时,方程是一元二次方程,因为方程有实数根,所以先根据根的判别式﹣≥0,求出k 的取值范围;﹣2〕当k =2时,把k 值代入方程,用配方法解方程即可.解:〔1〕∵一元二次方程kx 2+2x ﹣1=0有实数根,∴22+4k ≥0,k ≠0,解得,k ≥﹣1且k ≠0;〔2〕当k=2时,原方程变形为2x 2+2x ﹣1=0,2〔x 2+x 〕=1,2〔x 2+x +〕=1+,2〔x +〕2=,〔x +〕2=x +=±, x 1=,x 2=. 15.x 1=√6+2√33 ,x 1=√6−2√33. 【解析】【分析】参照范例的步骤和方法进展分析解答即可.【详解】原方程可化为:(√3x)2−2×√3×√2x +(√2)2=2+(√2)2,﹣ (√3x −√2)2=4,∴ √3x−√2=±2,∴x1=√6+2√33,x2=√6−2√33.【点睛】读懂范例中的解题方法和步骤是解答此题的关键.第 7 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《配方法》测试题1.若x2=a(a≥0),则x就叫做a的平方根,记为x=__±a___(a≥0),由平方根的意义降次来解一元二次方程的方法叫做直接开平方法.2.直接开平方,把一元二次方程“降次”转化为__两个一元一次方程___.3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么x=__±p___或mx +n=__±p___.知识点1:可化为x2=p(p≥0)型方程的解法1.方程x2-16=0的根为( C)A.x=4B.x=16C.x=±4 D.x=±82.方程x2+m=0有实数根的条件是( D)A.m>0 B.m≥0C.m<0 D.m≤03.方程5y2-3=y2+3的实数根的个数是( C)A.0个B.1个C.2个D.3个4.若4x2-8=0成立,则x的值是__±2___.5.解下列方程:(1)3x2=27;解:x1=3,x2=-3(2)2x2+4=12;解:x1=2,x2=-2(3)5x2+8=3.解:没有实数根知识点2:形如(mx+n)2=p(p≥0)的解法6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x +6=4,则另一个一元一次方程是( D)A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-47.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( D)A.k<1 B.k<-1C.k≥1 D.k>18.一元二次方程(x-3)2=8的解为__x=3±22___.9.解下列方程:(1)(x-3)2-9=0;解:x1=6,x2=0(2)2(x-2)2-6=0;解:x1=2+3,x2=2- 3(3)x2-2x+1=2.解:x1=1+2,x2=1- 210.(2014·白银)一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则a =__1___.11.若x 2-4x +2的值为0,则x =__2___.12.由x 2=y 2得x =±y ,利用它解方程(3x -4)2=(4x -3)2,其根为__x =±1___.13.在实数范围内定义一种运算“*”,其规则为a*b =a 2-b 2,根据这个规则,方程(x +2)*5=0的根为__x 1=3,x 2=-7___.14.下列方程中,不能用直接开平方法求解的是( C ) A .x 2-3=0 B .(x -1)2-4=0C .x 2+2x =0D .(x -1)2=(2x +1)2 15.(2014·枣庄)x 1,x 2是一元二次方程3(x -1)2=15的两个解,且x 1<x 2,下列说法正确的是( A )A .x 1小于-1,x 2大于3B .x 1小于-2,x 2大于3C .x 1,x 2在-1和3之间D .x 1,x 2都小于316.若(x 2+y 2-3)2=16,则x 2+y 2的值为( A ) A .7 B .7或-1 C .-1 D .19 17.解下列方程: (1)3(2x +1)2-27=0; 解:x 1=1,x 2=-2(2)(x -2)(x +2)=10; 解:x 1=23,x 2=-2 3(3)x 2-4x +4=(3-2x)2;解:x 1=1,x 2=53(4)4(2x -1)2=9(2x +1)2.解:x 1=-52,x 2=-11018.若2(x 2+3)的值与3(1-x 2)的值互为相反数,求x +3x2的值.解:由题意得2(x 2+3)+3(1-x 2)=0,∴x =±3.当x =3时,x +3x 2=23;当x =-3时,x +3x2=019.如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意有ab-4x2=4x2,将a=6,b=4代入,得x2=3,解得x1=3,x2=-3(舍去),即正方形的边长为 3第2课时配方法1.通过配成__完全平方形式___来解一元二次方程的方法叫做配方法.2.配方法的一般步骤:(1)化二次项系数为1,并将含有未知数的项放在方程的左边,常数项放在方程的右边;(2)配方:方程两边同时加上__一次项系数的一半的平方___,使左边配成一个完全平方式,写成__(mx+n)2=p___的形式;(3)若p__≥___0,则可直接开平方求出方程的解;若p__<___0,则方程无解.知识点1:配方1.下列二次三项式是完全平方式的是( B)A.x2-8x-16B.x2+8x+16C.x2-4x-16 D.x2+4x+162.若x2-6x+m2是一个完全平方式,则m的值是( C)A.3 B.-3C.±3 D.以上都不对3.用适当的数填空:x2-4x+__4___=(x-__2___)2;m2__±3___m+94=(m__±32___)2.知识点2:用配方法解x2+px+q=0型的方程4.用配方法解一元二次方程x2-4x=5时,此方程可变形为( D) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=95.下列配方有错误的是( D)A.x2-2x-3=0化为(x-1)2=4B.x2+6x+8=0化为(x+3)2=1C.x2-4x-1=0化为(x-2)2=5D.x2-2x-124=0化为(x-1)2=1246.(2014·宁夏)一元二次方程x2-2x-1=0的解是( C)A.x1=x2=1B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2D.x1=-1+2,x2=-1- 27.解下列方程:(1)x2-4x+2=0;解:x1=2+2,x2=2- 2(2)x2+6x-5=0.解:x1=-3+14,x2=-3-14知识点3:用配方法解ax2+bx+c=0(a≠0)型的方程8.解方程3x 2-9x +1=0,两边都除以3得__x 2-3x +13=0___,配方后得__(x -32)2=2312___.9.方程3x 2-4x -2=0配方后正确的是( D ) A .(3x -2)2=6 B .3(x -2)2=7C .3(x -6)2=7D .3(x -23)2=10310.解下列方程: (1)3x 2-5x =-2;解:x 1=23,x 2=1(2)2x 2+3x =-1.解:x 1=-1,x 2=-1211.对于任意实数x ,多项式x 2-4x +5的值一定是( B ) A .非负数 B .正数 C .负数 D .无法确定12.方程3x 2+2x =6,左边配方得到的方程是( B )A .(x +26)2=-3718B .(x +26)2=3718C .(x +26)2=3518D .(x +26)2=611813.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p)2=5B .(x -p)2=9C .(x -p +2)2=9D .(x -p +2)2=514.已知三角形一边长为12,另两边长是方程x 2-18x +65=0的两个实数根,那么其另两边长分别为__5和13___,这个三角形的面积为__30___.15.当x =__2___时,式子200-(x -2)2有最大值,最大值为__200___;当y =__-1___时,式子y 2+2y +5有最__小___值为__4___.16.用配方法解方程: (1)23x 2=2-13x ; 解:x 1=32,x 2=-2(2)3y 2+1=23y.解:y 1=y 2=3317.把方程x 2-3x +p =0配方得到(x +m)2=12,求常数m 与p 的值.解:m =-32,p =7418.试证明关于x 的方程(a 2-8a +20)x 2+2ax +1=0,无论a 为何值,该方程都是一元二次方程.解:∵a 2-8a +20=(a -4)2+4≠0,∴无论a 取何值,该方程都是一元二次方程19.选取二次三项式ax 2+bx +c(a ≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x ,或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2.根据上述材料,解决下列问题:(1)写出x 2-8x +4的两种不同形式的配方; (2)已知x 2+y 2+xy -3y +3=0,求x y 的值. 解:(1)x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12;x 2-8x +4=(x -2)2+4x -8x =(x-2)2-4x (2)x 2+y 2+xy -3y +3=0,(x 2+xy +14y 2)+(34y 2-3y +3)=0,(x +12y)2+34(y -2)2=0,又∵(x +12y)2≥0,34(y -2)2≥0,∴x +12y =0,y -2=0,∴x =-1,y =2,则x y =(-1)2=121.2.2 公式法1.一元二次方程ax 2+bx +c =0(a ≠0),当__b 2-4ac ≥0___时,x =-b±b 2-4ac2a,这个式子叫做一元二次方程ax 2+bx +c =0的__求根公式___.2.式子__b 2-4ac___叫做一元二次方程ax 2+bx +c =0根的判别式,常用Δ表示,Δ>0⇔ax 2+bx +c =0(a ≠0)有__有两个不等的实数根___;Δ=0⇔ax 2+bx +c =0(a ≠0)有__两个相等的实数根___;Δ<0⇔ax 2+bx +c =0(a ≠0)__没有实数根___.知识点1:根的判别式1.下列关于x 的方程有实数根的是( C )A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=0 2.(2014·兰州)一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,下列选项中正确的是( B )A .b 2-4ac =0B .b 2-4ac >0C .b 2-4ac <0D .b 2-4ac ≥03.一元二次方程x 2-4x +5=0的根的情况是( D ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根4.利用判别式判断下列方程的根的情况: (1)9x 2-6x +1=0;解:∵a =9,b =-6,c =1,∴Δ=(-6)2-4×9×1=0,∴此方程有两个相等的实数根(2)8x 2+4x =-3;解:化为一般形式为8x 2+4x +3=0,∵a =8,b =4,c =3,∴Δ=42-4×8×3=-80<0,∴此方程没有实数根(3)2(x 2-1)+5x =0.解:化为一般形式为2x 2+5x -2=0,∵a =2,b =5,c =-2,∴Δ=52-4×2×(-2)=41>0,∴此方程有两个不相等的实数根知识点2:用公式法解一元二次方程5.方程5x =2x 2-3中,a =__2___,b =__-5___,c =__-3___,b 2-4ac =__49___. 6.一元二次方程x 2-x -6=0中,b 2-4ac =__25___,可得x 1=__3___,x 2=__-2___.7.方程x 2-x -1=0的一个根是( B )A .1- 5B .1-52C .-1+ 5D .-1+528.用公式法解下列方程: (1)x 2-3x -2=0;解:x 1=3+172,x 2=3-172(2)8x 2-8x +1=0;解:x 1=2+24,x 2=2-24(3)2x 2-2x =5.解:x 1=1+112,x 2=1-1129.(2014·广东)关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m的取值范围为( B )A .m >94B .m <94C .m =94D .m <-9410.若关于x 的一元二次方程kx 2-2x -1=0有实数根,则实数k 的取值范围是( C )A .k >-1B .k <1且k ≠0C .k ≥-1且k ≠0D .k >-1且k ≠011.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2___.12.关于x 的方程(a +1)x 2-4x -1=0有实数根,则a 满足的条件是__a ≥-5___.13.用公式法解下列方程:(1)x(2x -4)=5-8x ;解:x 1=-2+142,x 2=-2-142(2)(3y -1)(y +2)=11y -4.解:y 1=3+33,y 2=3-3314.当x 满足条件⎩⎪⎨⎪⎧x +1<3x -3,12(x -4)<13(x -4)时,求出方程x 2-2x -4=0的根. 解:解不等式组得2<x<4,解方程得x 1=1+5,x 2=1-5,∴x =1+ 515.(2014·梅州)已知关于x 的方程x 2+ax +a -2=0.(1)若该方程的一个根为1,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.解:(1)a =12,另一个根为x =-32(2)∵Δ=a 2-4(a -2)=(a -2)2+4>0,∴无论a 取何实数,该方程都有两个不相等的实数根16.关于x 的一元二次方程(a -6)x 2-8x +9=0有实数根.(1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程的根.解:(1)∵关于x 的一元二次方程(a -6)x 2-8x +9=0有实根,∴a -6≠0,Δ=(-8)2-4×(a-6)×9≥0,解得a≤709且a≠6,∴a的最大整数值为7(2)当a=7时,原一元二次方程变为x2-8x+9=0.∵a=1,b=-8,c=9,∴Δ=(-8)2-4×1×9=28,∴x=-(-8)±282=4±7,即x1=4+7,x2=4-717.(2014·株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)△ABC是等腰三角形.理由:∵x=-1是方程的根,∴(a+c)×(-1)2-2b+(a -c)=0,∴a+c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形(2)∵方程有两个相等的实数根,∴(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形(3)当a=b=c时,可整理为2ax2+2ax=0,∴x2+x=0,解得x1=0,x2=-121.2.3 因式分解法1.当一元二次方程的一边为0,另一边可以分解成两个一次因式的乘积时,通常将一元二次方程化为__两个一次因式___的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解___法.2.解一元二次方程,首先看能否用__直接开平方法___;再看能否用__因式分解法___;否则就用__公式法___;若二次项系数为1,一次项系数为偶数可先用__配方法___.知识点1:用因式分解法解一元二次方程1.方程(x +2)(x -3)=0的解是( C )A .x =2B .x =-3C .x 1=-2,x 2=3D .x 1=2,x 2=-32.一元二次方程x(x -5)=5-x 的根是( D )A .-1B .5C .1和5D .-1和53.(2014·永州)方程x 2-2x =0的解为__x 1=0,x 2=2___.4.方程x 2-2x +1=0的根是__x 1=x 2=1___.5.用因式分解法解下列方程:(1)x 2-4=0;解:x 1=2,x 2=-2(2)x 2-23x =0;解:x 1=0,x 2=2 3(3)(3-x)2-9=0;解:x 1=0,x 2=6(4)x 2-4x +4=(3-2x)2.解:x 1=1,x 2=53知识点2:用适当的方法解一元二次方程6.解方程(x +1)2-5(x +1)+6=0时,我们可以将x +1看成一个整体,设x +1=y ,则原方程可化为y 2-5y +6=0,解得y 1=2,y 2=3.当y =2时,即x +1=2,解得x =1;当y =3时,即x +1=3,解得x =2,所以原方程的解为x 1=1,x 2=2.利用这种方法求方程(2x -1)2-4(2x -1)+3=0的解为( C )A .x 1=1,x 2=3B .x 1=-1,x 2=-3C .x 1=1,x 2=2D .x 1=0,x 2=-17.用适当的方法解方程:(1)2(x -1)2=12.5;解:用直接开平方法解,x 1=3.5,x 2=-1.5(2)x 2+2x -168=0;解:用配方法解,x 1=12,x 2=-14(3)2x 2=2x ;解:用因式分解法解,x 1=0,x 2= 2(4)4x 2-3x -2=0.解:用公式法解,x 1=3+418,x 2=3-4188.方程x(x -1)=-x +1的解为( D )A .x =1B .x =-1C .x 1=0,x 2=-1D .x 1=1,x 2=-19.用因式分解法解方程,下列方法中正确的是( A )A .(2x +2)(3x +4)=0化为2x +2=0或3x +4=0B .(x -3)(x +1)=1化为x -3=1或x +1=1C .(x -2)(x -3)=2×3化为x -2=2或x -3=3D .x(x -2)=0化为x -2=010.一个三角形的两边长分别为3和6,第三边的边长是方程(x -2)(x -4)=0的根,则这个三角形的周长是( C )A .11B .11或13C .13D .以上都不对11.(2014·陕西)若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值是( B )A .1或4B .-1或-4C .-1或4D .1或-412.已知x =1是关于x 的方程(1-k)x 2+k 2x -1=0的根,则常数k 的值为__0或1___.13.已知(x 2+2x -3)0=x 2-3x +3,则x =__2___.14.用因式分解法解下列方程:(1)x 2-3x =x -4;解:x 1=x 2=2(2)(x -3)2=3(x -3).解:x 1=3,x 2=615.用适当的方法解下列方程:(1)4(x -1)2=2;解:x 1=2+22,x 2=-2+22(2)x 2-6x +4=0; 解:x 1=3+5,x 2=3- 5(3)x 2-4=3x -6;解:x 1=1,x 2=2(4)(x +5)2+x 2=25.解:x 1=-5,x 2=016.一跳水运动员从10 m 高台上跳下,他离水面的高度h(单位:m )与所用时间t(单位:s)的关系是h=-5(t-2)(t+1),那么运动员从起跳到入水所用的时间是多少?解:依题意,得-5(t-2)(t+1)=0,解得t1=-1(不合题意,舍去),t2=2,故运动员从起跳到入水所用的时间为2 s17.先阅读下列材料,然后解决后面的问题:材料:因为二次三项式x2+(a+b)x+ab=(x+a)(x+b),所以方程x2+(a+b)x+ab=0可以这样解:∵(x+a)(x+b)=0,∴x+a=0或x+b=0,∴x1=-a,x2=-b.问题:(1)用因式分解法解方程x2-kx-16=0时,得到的两根均为整数,则k的值可以为__-15,-6,0,6,15___;(2)已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为__7___.专题训练(一) 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值 6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x的二次三项式x2+4x+9进行配方得x2+4x+9=(x+m)2+n.(1)求m,n的值;(2)求x为何值时,x2+4x+9有最小值,并求出最小值为多少?解:(1)∵x2+4x+9=(x+m)2+n=x2+2mx+m2+n,∴2m=4,m2+n=9,∴m=2,n=5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形21.2.4 一元二次方程的根与系数的关系1.若一元二次方程x 2+px +q =0的两个根分别为x 1,x 2,则x 1+x 2=__-p___,x 1x 2=__q___.2.若一元二次方程ax 2+bx +c =0(a ≠0)的两个根分别为x 1,x 2,则x 1+x 2=__-b a___,x 1x 2=__c a___. 3.一元二次方程ax 2+bx +c =0的根与系数的关系应用条件:(1)一般形式,即__ax 2+bx +c =0___;(2)二次方程,即__a ≠0___;(3)有根,即__b 2-4ac ≥0___.知识点1:利用根与系数的关系求两根之间关系的代数式的值1.已知x 1,x 2是一元二次方程x 2+2x -1=0的两根,则x 1+x 2的值是( C )A .0B .2C .-2D .42.(2014·昆明)已知x 1,x 2是一元二次方程x 2-4x +1=0的两个实数根,则x 1x 2等于( C )A .-4B .-1C .1D .43.已知方程x 2-6x +2=0的两个解分别为x 1,x 2,则x 1+x 2-x 1x 2的值为( D )A .-8B .-4C .8D .44.已知x 1,x 2是方程x 2-3x -4=0的两个实数根,则(x 1-2)(x 2-2)=__-6___.5.不解方程,求下列各方程的两根之和与两根之积:(1)x 2+3x +1=0;解:x 1+x 2=-3,x 1x 2=1(2)2x 2-4x -1=0;解:x 1+x 2=2,x 1x 2=-12(3)2x 2+3=5x 2+x.解:x 1+x 2=-13,x 1x 2=-1 6.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)x 12+x 22; (2)1x 1+1x 2. 解:(1)x 12+x 22=(x 1+x 2)2-2x 1·x 2=11(2)1x 1+1x 2=x 1+x 2x 1x 2=-3知识点2:利用根与系数的关系求方程中待定字母的值7.已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根互为相反数,则( B )A .b >0B .b =0C .b <0D .c =08.已知一元二次方程x 2-6x +c =0有一个根为2,则另一根和c 分别为( C )A .1,2B .2,4C .4,8D .8,169.若关于x 的一元二次方程x 2+bx +c =0的两个实数根分别为x 1=-2,x 2=4,则b +c 的值是( A )A .-10B .10C .-6D .-110.(2014·烟台)关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( D )A .-1或5B .1C .5D .-111.若关于x 的一元二次方程x 2-4x +k -3=0的两个实数根为x 1,x 2,且满足x 1=3x 2,试求出方程的两个实数根及k 的值.解:由根与系数的关系得⎩⎨⎧x 1+x 2=4①,x 1x 2=k -3②,又∵x 1=3x 2③,联立①③,解方程组得⎩⎨⎧x 1=3,x 2=1,∴k =x 1x 2+3=3×1+3=612.已知一元二次方程x 2-2x +2=0,则下列说法正确的是( D )A .两根之和为2B .两根之积为2C .两根的平方和为0D .没有实数根13.已知α,β满足α+β=6,且αβ=8,则以α,β为两根的一元二次方程是( B )A .x 2+6x +8=0B .x 2-6x +8=0C .x 2-6x -8=0D .x 2+6x -8=014.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( B ) A .5 B .-5 C .1 D .-115.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( C )A .-2或3B .3C .-2D .-3或216.(2014·呼和浩特)已知m ,n 是方程x 2+2x -5=0的两个实数根,则m 2-mn +3m +n =__8___.17.在解某个方程时,甲看错了一次项的系数,得出的两个根为-8,-1;乙看错了常数项,得出的两个根为8,1,则这个方程为__x 2-9x +8=0___.18.已知x 1,x 2是一元二次方程x 2-4x +1=0的两个实数根,求(x 1+x 2)2÷(1x 1+1x 2)的值.解:由根与系数的关系得x 1+x 2=4,x 1x 2=1,∴(x 1+x 2)2÷(1x 1+1x 2)=x 1x 2(x 1+x 2)=419.已知关于x 的一元二次方程x 2-2kx +k 2+2=2(1-x)有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)若方程的两实数根x 1,x 2满足|x 1+x 2|=x 1x 2-1,求k 的值.解:(1)方程整理为x 2-2(k -1)x +k 2=0,由题意得Δ=4(k -1)2-4k 2≥0,∴k ≤12(2)由题意得x 1+x 2=2(k -1),x 1x 2=k 2,∵|x 1+x 2|=x 1x 2-1,∴|2(k -1)|=k 2-1,∵k ≤12,∴-2(k -1)=k 2-1,整理得k 2+2k -3=0,解得k 1=-3,k 2=1(舍去),∴k =-320.设x 1,x 2是方程x 2-x -2015=0的两个实数根,求x 13+2016x 2-2015的值.解:x 2-x -2015=0,∴x 2=x +2015,x =x 2-2015.又∵x 1,x 2是方程x 2-x -2015=0的两个实数根,∴x 1+x 2=1,∴x 13+2016x 2-2015=x 1·x 12+2016x 2-2015=x 1·(x 1+2015)+2016x2-2015=x12+2015x1+2016x2-2015=x1+2015+2015x1+2016x2-2015=2016(x1+x2)+2015-2015=2016。