2019-2020学年七年级数学上册2.3绝对值课件(新版)北师大版
合集下载
北师大版七年级上册第二章2.3《绝对值》教案

其次,在新课讲授环节,我发现有些同学在理解绝对值性质时遇到困难,尤其是对称性和传递性。这可能是因为我在讲解时没有给出足够的具体例子,使得学生难以理解抽象的性质。在以后的教学中,我会增加一些生活中的实际例子,让学生更好地理解这些性质。
此外,在实践活动环节,学生们在分组讨论和实验操作中表现出较高的积极性,但我也注意到,有些小组在讨论过程中偏离了主题。为了提高讨论的效率,我应该在活动前给出更明确的讨论要求和指导,确保学生在讨论中能够紧扣主题。
(2)掌握绝对值的性质:非负性、对称性、传递性等。
举例:非负性,即任何数的绝对值都是非负数;对称性,即|-a| = |a|;传递性,若|a| = |b|,则a = b或a = -b。
(3)计算含有绝对值符号的表达式:能够正确计算形如|a±b|的表达式。
举例:若a = 3,b = -4,则|3 - (-4)| = |3 + 4| = 7。
五、教学反思
在本次《绝对值》的教学中,我尝试了多种方法引导学生理解绝对值的概念和性质。从学生的反馈来看,大部分同学能够掌握绝对值的基本知识,但我也发现了一些问题。
首先,对于绝对值概念的理解,部分同学仍然存在困难。在导入新课环节,虽然我通过提问和举例引导学生思考,但部分同学似乎还没有完全将绝对值与距离联系起来。在今后的教学中,我需要在这个环节多花一些时间,让学生充分体会绝对值与数轴之间的联系。
2.教学难点
(1)理解绝对值与数轴的关系:学生需要理解数轴上的点与其绝对值之间的联系,明确绝对值表示距离的概念。
难点解析:对于刚接触绝对值的学生来说,理解数轴上的距离与绝对值的关系可能存在困难,需要通过具体实例和数轴演示来帮助学生理解。
(2)绝对值性质的理解与运用:学生需要掌握并运用绝对值的性质解决相关问题。
此外,在实践活动环节,学生们在分组讨论和实验操作中表现出较高的积极性,但我也注意到,有些小组在讨论过程中偏离了主题。为了提高讨论的效率,我应该在活动前给出更明确的讨论要求和指导,确保学生在讨论中能够紧扣主题。
(2)掌握绝对值的性质:非负性、对称性、传递性等。
举例:非负性,即任何数的绝对值都是非负数;对称性,即|-a| = |a|;传递性,若|a| = |b|,则a = b或a = -b。
(3)计算含有绝对值符号的表达式:能够正确计算形如|a±b|的表达式。
举例:若a = 3,b = -4,则|3 - (-4)| = |3 + 4| = 7。
五、教学反思
在本次《绝对值》的教学中,我尝试了多种方法引导学生理解绝对值的概念和性质。从学生的反馈来看,大部分同学能够掌握绝对值的基本知识,但我也发现了一些问题。
首先,对于绝对值概念的理解,部分同学仍然存在困难。在导入新课环节,虽然我通过提问和举例引导学生思考,但部分同学似乎还没有完全将绝对值与距离联系起来。在今后的教学中,我需要在这个环节多花一些时间,让学生充分体会绝对值与数轴之间的联系。
2.教学难点
(1)理解绝对值与数轴的关系:学生需要理解数轴上的点与其绝对值之间的联系,明确绝对值表示距离的概念。
难点解析:对于刚接触绝对值的学生来说,理解数轴上的距离与绝对值的关系可能存在困难,需要通过具体实例和数轴演示来帮助学生理解。
(2)绝对值性质的理解与运用:学生需要掌握并运用绝对值的性质解决相关问题。
新北师大版七年级数学上册《绝对值》公开课课件

C.正数或0
D.负数或0
11.在有理数中,绝对值等于它本身的数在数轴上的对应点一定 在( D ) A.原点左侧 B.原点或原点左侧 C.原点右侧 D.原点或原点右侧 12.填“>”或“<”.
> -0.01 (1)0________
5 < 2 (3)12________3
1 < 1 (2)-2________3
19.有理数 a,b 在数轴上对应点的位置如图所示,下列式子正确 的是( A ) A.|b|>-a B.|a|>-b C.b>a D.|a|>|b|
±4 ; ±7 . 20. (1)若|x|=4, 则 x=________ 若|-a|=|-7|, 则 a=________
0 3 (2)若-a=a,则 a=________ ;若|x-3|=0,则 x=________ .
±4,± 3,±2,±1,0 (3)绝对值不大于 4 的整数是________ , 0 绝对值最小的数是________ .
21.计算: (1)|-5|+|-17|;
(2)|-14|-|8|;
(1)原式=22
(2)原式=6
(3)|-10|÷ |15|;
2 (3)原式=3
1 (4)|23|×|-0.3|.
它本身 ;一个负数的绝对值是 3.一个正数的绝对值是________ 0 它的相反数 ________;0的绝对值是________ .
4.有理数的大小比较: 大于 大于 负数,正数________ 大于 负数; (1)正数________0 ,0________ 反而小 . (2)两个负数,绝对值大的________
2.3 绝对值
1.只有符号不同的两个数叫做________ .在任意一个数的 互为相反数 相反数 ,即a的相 前面添上“-”,新的数就表示原数的________ 负数 ,一个负数的相反 反数是-a.一个正数的相反数是________ 正数 ,0的相反数是________ 数是________ . 0 绝对值 ,记 2.数轴上表示数a的点与原点的距离叫做a的________ |a| ,读作a的绝对值. 作________
北师大版七年级上册数学《2-3 绝对值》课件

结论:它们的行驶路线不同,行驶路程相同.
自学互研
两只小狗分别 距原点多远?
大象距原点距原 点多远?
-3 -2 -1 0 1 2 3 4
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作|-a|
例如,上面的问题中在数轴上表示-3的点 和表示3的点到原点的距离都是3,所以3和-3的 绝对值都是3,即|-3|=| 3 |=3.你能说说-2 和2吗?
随堂练习
1.化简:
| 0.2 | = 0.2
| b | = (b<0)
-273
=ቤተ መጻሕፍቲ ባይዱ
2
7 3
| a – b | =(a>b)
| a | = ±a或0
2.任何一个有理数的绝对值一定( D )
A.大于0
B.小于0
C.小于或等于0
D.大于或等于0
3.若|a|+|b-1|=0,则a =___0__, b =___1__. |2|=____2__,|-2|=___2___ 若|x|=4,则x =__±__4_
小组讨论下面3个问题: (1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是什么数?
不论有理数a取何值,它的绝对值总是正
数或0(非负数),即对任意有理数a,
总有 a ≥0
自主探究
1.互为相反数的两个数的绝对值有什么关系? 学生观察讨论:一对相反数虽然分别在原点 两边,但它们到原点的距离是相等的.
谢谢 大家
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早 退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心 、吊带 上衣、 超短裙 、拖鞋 等进入 教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂 良好纪 律秩序 。 听课时有问题,应先举手,经教师同 意后, 起立提 问。 上课期间离开教室须经老师允许后方 可离开 。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗 、墙壁 上涂写 、刻划 。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师 关好门 窗、关 闭电源 。
自学互研
两只小狗分别 距原点多远?
大象距原点距原 点多远?
-3 -2 -1 0 1 2 3 4
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2呢?
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作|-a|
例如,上面的问题中在数轴上表示-3的点 和表示3的点到原点的距离都是3,所以3和-3的 绝对值都是3,即|-3|=| 3 |=3.你能说说-2 和2吗?
随堂练习
1.化简:
| 0.2 | = 0.2
| b | = (b<0)
-273
=ቤተ መጻሕፍቲ ባይዱ
2
7 3
| a – b | =(a>b)
| a | = ±a或0
2.任何一个有理数的绝对值一定( D )
A.大于0
B.小于0
C.小于或等于0
D.大于或等于0
3.若|a|+|b-1|=0,则a =___0__, b =___1__. |2|=____2__,|-2|=___2___ 若|x|=4,则x =__±__4_
小组讨论下面3个问题: (1)有没有绝对值等于-2的数? (2)一个数的绝对值会是负数吗?为什么? (3)不论有理数a取何值,它的绝对值总是什么数?
不论有理数a取何值,它的绝对值总是正
数或0(非负数),即对任意有理数a,
总有 a ≥0
自主探究
1.互为相反数的两个数的绝对值有什么关系? 学生观察讨论:一对相反数虽然分别在原点 两边,但它们到原点的距离是相等的.
谢谢 大家
学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早 退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心 、吊带 上衣、 超短裙 、拖鞋 等进入 教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂 良好纪 律秩序 。 听课时有问题,应先举手,经教师同 意后, 起立提 问。 上课期间离开教室须经老师允许后方 可离开 。 上课必须按座位表就坐。 要爱护公共财物,不得在课桌、门窗 、墙壁 上涂写 、刻划 。 要注意保持教室环境卫生。 离开教室要整理好桌椅,并协助老师 关好门 窗、关 闭电源 。
2022-2023学年北师大版七年级数学上册 2.3绝对值

−[+ −6 ] = 6
“+”不起作用,或者说表示一个数的本身
一、相反数 应用
例3.已知 , 在数轴上的位置如图所示.在数轴上作出它们的相反数.
0
可以利用圆规截取相等线段.
注意合理性
二、绝对值
活动:观察下图两只狗狗追寻食物的情景,请试着在数轴上表示出这
一情景,并回答问题.
西
东
3米
3米
二、绝对值
一、相反数 相反数的特征
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
观察:-3与 3; -5与 5在数轴上的位置,你能用自己的语言描述一
下它们位置关系吗?你还能举出几对具有这种位置关系的数吗?
(1)符号不同
位于原点两侧
(2)符号后的“数”相同
到原点的距离相同
规定:0的相反数是0.
几何意义:在数轴上,互为相反数的两点到原点的距离相等.
9
4
|=
9
思考:如果表示有理数,那么││有什么含义?
答: || 表示数 的绝对值;
||表示数轴上数对应的点与原点的距离.
|0|= 0
|-7.8|= 7.8
二、绝对值 绝对值的特征
一个数的绝对值与这个数有什么关系?
正数的绝对值是它本身
>0, ||=
分类讨论思想
负数的绝对值是它的相反数 <0,||=-
答:第五个排球的质量好一些,因为它的绝对值最小,
也就是离标准质量的克数最近。
负数和0
二、绝对值 绝对值的特征
±2
4. = −
若 = ||,则_______.
“+”不起作用,或者说表示一个数的本身
一、相反数 应用
例3.已知 , 在数轴上的位置如图所示.在数轴上作出它们的相反数.
0
可以利用圆规截取相等线段.
注意合理性
二、绝对值
活动:观察下图两只狗狗追寻食物的情景,请试着在数轴上表示出这
一情景,并回答问题.
西
东
3米
3米
二、绝对值
一、相反数 相反数的特征
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
观察:-3与 3; -5与 5在数轴上的位置,你能用自己的语言描述一
下它们位置关系吗?你还能举出几对具有这种位置关系的数吗?
(1)符号不同
位于原点两侧
(2)符号后的“数”相同
到原点的距离相同
规定:0的相反数是0.
几何意义:在数轴上,互为相反数的两点到原点的距离相等.
9
4
|=
9
思考:如果表示有理数,那么││有什么含义?
答: || 表示数 的绝对值;
||表示数轴上数对应的点与原点的距离.
|0|= 0
|-7.8|= 7.8
二、绝对值 绝对值的特征
一个数的绝对值与这个数有什么关系?
正数的绝对值是它本身
>0, ||=
分类讨论思想
负数的绝对值是它的相反数 <0,||=-
答:第五个排球的质量好一些,因为它的绝对值最小,
也就是离标准质量的克数最近。
负数和0
二、绝对值 绝对值的特征
±2
4. = −
若 = ||,则_______.
北师大七年级数学上册《绝对值》课件(共25张PPT)

A.5
B.-5
1 C.5
D.-15
答案:A
2.下列各组数中,互为相反数的是( )
A.2 和-2
B.-2 和12
C.-2 和-12
D.12和 2
答案:A
3.一个数的相反数是12,则这个数是( )
A.-12 C.-2
1 B.2 D.2
答案:A
4.相反数等于本身的数为( )
A.正数
B.负数
C.零
答案:C
本身
相反数
0
4.(1)正数的绝对值是它_____;负相数等的绝对值是它
的_______;0的9绝对值是___.
(2)互为相反数的两个数的绝对值_____.如小-9和9的
绝对值都是____.
(3)两个负数比较大小,绝对值大的反而____.
1.什么是相反数?它如何表示? 2.绝对值如何理解? 3.两个负数如何比较大小?
3 绝对值
自 主预 习
1.了解相反数、绝对值的概念,会求有理数的相反 数和绝对值.(重点)
2.会利用绝对值比较两个负数的大小.(难点) 3.在绝对值概念的形成过程中,渗透数形结合的思 想.
相反数
互为相反数
1.如果两个数只0 有符号不同,互那为么相称反其数中一个数为
另一个数的________,也称这两个数___________.特别
A.12
B.0
答案:D
C.1
D.-2
9.下列各式中,正确的是( )
A.|-0.1|≤|0.01|
B.|-13|<14
C.-|-23|>|-34| 学科网
答案:D
D.-|18|>-17
10.写出一个x的值,使|x-1|=x-1成立.你写出的x的
北师大版初中数学七年级上册-2.3绝对值课件(共17张PPT)

合作探究 达成目标
【小组讨论3】阅读教材第31页例2, 特别地,0的相反数是0。 绝对值是4的数有______个,它们分别是 2、在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。 -5,0,5, -4, -1, 0, , -400, +0.
(1)│+2│= ——,│ (2)│0│= ——;
比较大小: (1) -1和-5 (2)-5/6和-2.7
思考:比较两负数的大小,一般有哪些步骤?
【反思小结】
比较两负数的大小的步骤: (1)分别求出两负数的绝对值; (2)比较这两个数的绝对值大小; (3)根据“两个负数比较大小,绝对值大的
反而小”作出判断.
达标检测 反思目标
1.一个数在数轴上表示的点距原点6个单位长 度, 且在原点的左边,则这个数是________.
3、相反数的表示方法:如6的相反数是-6,即在6的前面添加一个“-”号,那么-3的相反数就可以表示成-(-3)=+3. (2)求出(1)中各数的绝对值,并比较它们的大
记作|a| 距原点 个单位长度的数是________和________,
绝对值是4的数有______个,它们分别是 探究点一:相反数的概念
距原点 5 个单位长度的数是________和________,
2
距原点最近的是__________.
【展示点评】像2,52
,0分别是±2,± 5
2
,0的绝对值.
在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.
如:+2的绝对值是2,记作|+2|=2;-2的绝对值是2,记作|-2| =2.
2│= ——,│-8.
2.比较大小: -80( )-81 -2016( )0.1 2.5( )0 -6666( )0
【小组讨论3】阅读教材第31页例2, 特别地,0的相反数是0。 绝对值是4的数有______个,它们分别是 2、在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。 -5,0,5, -4, -1, 0, , -400, +0.
(1)│+2│= ——,│ (2)│0│= ——;
比较大小: (1) -1和-5 (2)-5/6和-2.7
思考:比较两负数的大小,一般有哪些步骤?
【反思小结】
比较两负数的大小的步骤: (1)分别求出两负数的绝对值; (2)比较这两个数的绝对值大小; (3)根据“两个负数比较大小,绝对值大的
反而小”作出判断.
达标检测 反思目标
1.一个数在数轴上表示的点距原点6个单位长 度, 且在原点的左边,则这个数是________.
3、相反数的表示方法:如6的相反数是-6,即在6的前面添加一个“-”号,那么-3的相反数就可以表示成-(-3)=+3. (2)求出(1)中各数的绝对值,并比较它们的大
记作|a| 距原点 个单位长度的数是________和________,
绝对值是4的数有______个,它们分别是 探究点一:相反数的概念
距原点 5 个单位长度的数是________和________,
2
距原点最近的是__________.
【展示点评】像2,52
,0分别是±2,± 5
2
,0的绝对值.
在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.
如:+2的绝对值是2,记作|+2|=2;-2的绝对值是2,记作|-2| =2.
2│= ——,│-8.
2.比较大小: -80( )-81 -2016( )0.1 2.5( )0 -6666( )0
北师大七年级数学上册《绝对值》课件(共21张PPT)

点将游戏1
A同学任意说出 一个有理数,再 随意地点另一个 同学B回答它的 相反数。
B同学回答后, 也任意说出一个 有理数,再点另 一个同学C回答 它的相反数……
1、teacher affects eternity; he can never tell where his influence stops.教师的影响是永恒的;无法估计他的影响会有多 深远。
作 业:
必做题:
习题2.3,知识技能第2,3,4,5题.
选做题:
若 a a, 则a
0;
若 a a, 则a
0.
也就是说绝对值等于2的数是___ .
2.在数轴上表示下列各数,并求它们的绝对值:
3 2
, 6 , -3 ,
5 4
3.比较下列各组数的大小:
(1) 0.5,3 2; (2) 110,7 2;
(3)
0,
2 3
;
(4) 7 , 7 .
4.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小; (3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等.
小 结:这节课你学到了什么?
1、相反数的意义:只有符号不同的两个数互为相反数 。 0的相反数是 0
2、绝对值 :在数轴上,一个数所对应的点与原点
的距离叫做该数的绝对值.
正数的绝对值是它本身; 负数的绝对值是它的相反数;
0 的绝对值是 0. 互为相反数的两个数的绝对值相等. 3、会用绝对值比较两个负数的大小:
6、does not mean teaching people to kow what they do not know ; it means teachng them to behave as they do not behave. 教育不在于使人知其所未知,而在于按其所未行而行。2021年11月2021/11/252021/11/252021/11/2511/25/2021
北师大版七年级数学上册课件:第二章3

性
质:(1)互为相反数的两个数的绝对值_______ 相等 ;
(2)一个数的绝对值与这个数可能相等,也可能互为相反数; (3)一个数a的绝对值是一个非负数,即|a|≥0. 3.用绝对值比较两个负数的大小
小. 比较方法:两个负数比较大小,绝对值大的数反而____
归类探究
类型之一 相反数的概念 下列各数中,相反数等于5的数是( A ) A.-5 B.5 1 C.-5 1 D.5
2.绝对值的概念 定 义:在数轴上,一个数所对应的点与原点的距离叫做该数的
绝对值 . ________
表示方法:如果a表示一个有理数,那么有理数a的绝对值用“|a|”表示. 意 义:正数的绝对值是它______ ______,0的 本身 ,负数的绝对值是它的相反数
0 . 绝对值是____
a (a>0), 即a表示一个数,有|a|=0 (a=0), -a(a<0).
知识管理
1.相反数的概念 定 特 义:如果两个数只有符号不同,那么称其中一个数为另一个数的 征:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与
0 . 相反数 ,也称这两个数_____________ ________ 互为相反数 .特别地,0的相反数是____
原点的距离相等. 表示方法:一般地,数a的相反数表示为-a,其中a代表任何有理数.
分层作业
1 1.-5的相反数是( B ) A.5 1 B.5 1 C.-5 1 C.-5 D.-5
2.-5的绝对值是( B ) A.-5 B.5 1 D.5
3.下列式子中成立的是( B ) A.-|-5| >4 C.-|-4|=4
B.-3 <|-3| D.|-5.5| < 5