2018-2019哈尔滨市中考必备数学考前押题密卷模拟试卷6-10(共4套)附详细试题答案
2018年黑龙江省哈尔滨市中考数学试卷含答案

BE DG
DG DF
AE CF ,故选 D. BE DF
【考点】平行线的性质.
11.【答案】 9.2 108 【解析】920 000 000= 9.2 108 .
【考点】科学记数法.
12.【答案】 x 4
【解析】由
5x x4
有意义得
x
4
0
,解得
x
4
,所以函数
y=
5x x4
中,自变量
4.【答案】B 【解析】俯视图是从几何体的上方观察几何体得到的平面图形,由图易得 B 选项中的图
形符合题意,故选 B. 【考点】几何体的俯视图.
5.【答案】A 【解析】连接 OA ,则 OA OB 3 ,又因为 PA 为圆 O 的切线,所以 OA PA ,则在
RtPOA 中,由 P 30 得 OP 2OA 6 ,则 BP OP OB 3 ,故选 A. 【考点】圆的切线、含特殊角的直角三角形的性质.
次骰子,骰子向上的一面出现的点数是 3 的倍数的概率是
.
18.一个扇形的圆心角为 135°,弧长为 3πcm,则此扇形的面积是
cm².
19.在 ABC 中,AB=AC,∠BAC=100°,点 D 在 BC 边上,连接 AD,若 ABD 为直
角三角形,则∠ADC 的度数为
.
20.如图,在平行四边形 ABCD 中,对角线 AC,BD 相交于点 O,AB=OB,点 E,点 F
B. y= 5 x 12 1
C. y= 5 x 12 3
D. y= 5 x 12 3
效
数学试卷第 1页(共 26页)数学试卷第 2页(共 26页)
7.方程 1 = 2 的解为 2x x 3
【附5套中考模拟试卷】黑龙江省哈尔滨市2019-2020学年中考最新终极猜押数学试题含解析

黑龙江省哈尔滨市2019-2020学年中考最新终极猜押数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( ) A .567×103 B .56.7×104 C .5.67×105 D .0.567×106 2.下列运算正确的是( ) A .()a b c a b c -+=-+ B .()2211x x =++ C .()33a a -=D .235236a a a =⋅3.如图,△ABC 中,∠C=90°,D 、E 是AB 、BC 上两点,将△ABC 沿DE 折叠,使点B 落在AC 边上点F 处,并且DF ∥BC ,若CF=3,BC=9,则AB 的长是( )A .254B .15C .454D .94.如图,A 、B 、C 是⊙O 上的三点,∠BAC =30°,则∠BOC 的大小是( )A .30°B .60°C .90°D .45°5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 劳动时间(小时) 3 3.5 4 4.5 人 数1132A .中位数是4,众数是4B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.56.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A.4233π-B.2233π-C.433π-D.233π-7.若数a,b在数轴上的位置如图示,则()A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>08.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知甲的路线为:A→C→B;乙的路线为:A→D→E→F→B,其中E为AB的中点;丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为()A.甲=乙=丙B.甲<乙<丙C.乙<丙<甲D.丙<乙<甲9.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>110.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是()A.a≥1B.a>1 C.a≥1且a≠4D.a>1且a≠4 11.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C.D.12.函数y+2x=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:16a3﹣4a=_____.14.圆锥底面圆的半径为3,高为4,它的侧面积等于_____(结果保留π).15.如图,在△ABC中,CA=CB,∠ACB=90°,AB=4,点D为AB的中点,以点D为圆心作圆,半圆恰好经过三角形的直角顶点C,以点D为顶点,作90°的∠EDF,与半圆交于点E,F,则图中阴影部分的面积是____.16.分解因式8x2y﹣2y=_____.17.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.18.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=16x(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P (m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.20.(6分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.21.(6分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.22.(8分)如图,已知函数kyx(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.23.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式 月使用费/元 包时上网时间/h 超时费/(元/min) A 7 25 0.01 Bmn0.01设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ; (2)写出y A 与x 之间的函数关系式; (3)选择哪种方式上网学习合算,为什么.24.(10分)已知:如图.D 是ABC V 的边AB 上一点,//CN AB ,DN 交AC 于点M ,MA MC =. (1)求证:CD AN =;(2)若2AMD MCD ∠=∠,试判断四边形ADCN 的形状,并说明理由.25.(10分)已知,数轴上三个点A 、O 、P ,点O 是原点,固定不动,点A 和B 可以移动,点A 表示的数为a ,点B 表示的数为b .(1)若A 、B 移动到如图所示位置,计算+a b 的值.(2)在(1)的情况下,B 点不动,点A 向左移动3个单位长,写出A 点对应的数a ,并计算b a -. (3)在(1)的情况下,点A 不动,点B 向右移动15.3个单位长,此时b 比a 大多少?请列式计算.26.(12分)如图:△PCD 是等腰直角三角形,∠DPC=90°,∠APB=135° 求证:(1)△PAC ∽△BPD ; (2)若AC=3,BD=1,求CD 的长.27.(12分)如图1,在圆O 中,OC 垂直于AB 弦,C 为垂足,作BAD BOC ∠=∠,AD 与OB 的延长线交于D .(1)求证:AD 是圆O 的切线;(2)如图2,延长BO ,交圆O 于点E ,点P 是劣弧AE 的中点,5AB =,132OB =,求PB 的长 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是非负数;当原数的绝对值<1时,n 是负数. 【详解】567000=5.67×105, 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.D 【解析】 【分析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:(a±b )2=a 2±2ab+b 2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可. 【详解】解:A、a-(b+c)=a-b-c≠a-b+c,故原题计算错误;B、(x+1)2=x2+2x+1≠x²+1,故原题计算错误;C、(-a)3=3a-≠3a,故原题计算错误;D、2a2•3a3=6a5,故原题计算正确;故选:D.【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则.3.C【解析】【分析】由折叠得到EB=EF,∠B=∠DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长.【详解】由折叠得到EB=EF,∠B=∠DFE,在Rt△ECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,∴EF=EB=5,CE=4,∵FD∥BC,∴∠DFE=∠FEC,∴∠FEC=∠B,∴EF∥AB,∴EF CE AB BC=,则AB=•EF BCCE=549⨯=454,故选C.【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键.4.B【解析】【分析】欲求∠BOC ,又已知一圆周角∠BAC ,可利用圆周角与圆心角的关系求解. 【详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半), 故选B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 5.A 【解析】 【分析】根据众数和中位数的概念求解. 【详解】这组数据中4出现的次数最多,众数为4, ∵共有7个人,∴第4个人的劳动时间为中位数, 所以中位数为4, 故选A . 【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错. 6.A 【解析】试题分析:连接AB 、OC ,AB ⊥OC ,所以可将四边形AOBC 分成三角形ABC 、和三角形AOB ,进行求面积,求得四边形面积是S=13πr 2= 43π,所以阴影部分面积是扇形面积减去四边形面积即43π-故选A. 7.D 【解析】 【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 8.A 【解析】分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.详解:根据以上分析:所以图2可得AE=BE ,AD=EF ,DE=BE .∵AE=BE=12AB ,∴AD=EF=12AC ,DE=BE=12BC ,∴甲=乙. 图3与图1中,三个三角形相似,所以 JK AI =JB AJ =BK AI IJ AC ,=AJ AB =IJBC.∵AJ+BJ=AB ,∴AI+JK=AC ,IJ+BK=BC , ∴甲=丙.∴甲=乙=丙. 故选A .点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系. 9.B 【解析】 【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m >0,解之即可得出结论. 【详解】∵关于x 的一元二次方程x 2-2x+m=0有两个不相等的实数根, ∴△=(-2)2-4m=4-4m >0, 解得:m <1. 故选B . 【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键. 10.C 【解析】试题分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为1求出a 的范围即可.解:去分母得:2(2x ﹣a )=x ﹣2,解得:x=223a -, 由题意得:223a -≥1且223a -≠2, 解得:a≥1且a≠4, 故选C .点睛:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为1. 11.B 【解析】A 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a ->,∴0a <,所以A 错误; B 选项中,由图可知:在2y ax =,0a >;在y ax b =-+,0a -<,∴0a >,所以B 正确;C 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以C 错误;D 选项中,由图可知:在2y ax =,0a <;在y ax b =-+,0a -<,∴0a >,所以D 错误.故选B .点睛:在函数2y ax =与y ax b =-+中,相同的系数是“a ”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“a ”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关. 12.B 【解析】 要使y=所以x+1≥0且x+1≠0, 解得x >-1. 故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.4a (2a+1)(2a ﹣1) 【解析】【分析】首先提取公因式,再利用平方差公式分解即可.【详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14.15π【解析】【分析】根据圆的面积公式、扇形的面积公式计算即可.【详解】圆锥的母线长,圆锥底面圆的面积=9π圆锥底面圆的周长=2×π×3=6π,即扇形的弧长为6π,∴圆锥的侧面展开图的面积=12×6π×5=15π,【点睛】本题考查的是扇形的面积,熟练掌握扇形和圆的面积公式是解题的关键.15.π﹣1.【解析】【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【详解】连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,则扇形FDE的面积是:2902360π⨯=π.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA.又∵DM⊥BC,DN⊥AC,∴DM=DN.∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN.在△DMG和△DNH中,∵DMG DNHGDM HDNDM DN∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=1.则阴影部分的面积是:π﹣1.故答案为π﹣1.【点睛】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到S四边形=S四边形DMCN是关键.DGCH16.2y(2x+1)(2x﹣1)【解析】【分析】首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222-=-=6,OA AD108∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.18.4 3【解析】【分析】根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可. 【详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=16x交于第一象限点C,若BC=2AB,设点C的坐标为(c,16 c)∴OA=0.5c,OB=1163c⨯=163c,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析;(3)194π.【解析】【分析】(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,∴△ABC向右平移6个单位,向上平移了一个单位,∴A1(4,4),B1(2,0),C1(8,1);顺次连接A1,B1,C1三点得到所求的△A1B1C1(2)如图所示:△A2B2C即为所求三角形.(3)BC2222(42)(10)(6)137--+--=-+=BC扫过的面积211379 44ππ=【点睛】本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.(1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF 即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF (AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.21.(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解析】【分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1.(2)如图,设直线y=﹣12x+1与x轴交于C,则C(2,0).S△AOB=S△AOC﹣S△BOC=12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.22.(1)a=34,b=2;(2)5【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,4m),则C点的坐标为:(m,0),得出tan∠ADF=42AF mDF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF mDF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =, ∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则考点:反比例函数与一次函数的交点问题.23.(1)10,50;(2)见解析;(3)当0<x <30时,选择A 方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x >30时,选择B 方式上网学习合算.【解析】【分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x ﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.24.(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【解析】【分析】(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN 是平行四边形即可;(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.【详解】证明:(1)∵CN∥AB,∴∠DAM=∠NCM,∵在△AMD和△CMN中,∠DAM=∠NCMMA=MC∠DMA=∠NMC,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;(2)解:四边形ADCN是矩形,理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由(1)知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴四边形ADCN是矩形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.25.(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.【解析】【分析】(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,即可求解.可得a=3,b=2,b a(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,∴a+b= 2故a+b的值为2.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2∴b|a|=b+a=23= 3故a的值为3,b|a|的值为3.(1)∵点A不动,点B向右移动15.1个单位长∴a=10,b=17.1∴b a=17.1(10)=27.1故b比a大27.1.【点睛】本题主要考查了数轴,关键在于数形结合思想.26.(1)见解析;(2).【解析】【分析】(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,从而即可证明;(2)根据相似三角形对应边成比例即可求出PC=PD=,再由勾股定理即可求解.【详解】证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,∵∠PCA=∠PDB,∴△PAC∽△BPD;(2)∵,PC=PD,AC=3,BD=1∴PC=PD=,∴CD=.【点睛】本题考查了相似三角形的判定与性质及等腰直角三角形,属于基础题,关键是掌握相似三角形的判定方法.PB27.(1)详见解析;(2)313【解析】【分析】(1)连接OA,利用切线的判定证明即可;(2)分别连结OP、PE、AE,OP交AE于F点,根据勾股定理解答即可.【详解】解:(1)如图,连结OA,∵OA=OB,OC⊥AB,∴∠AOC=∠BOC,又∠BAD=∠BOC,∴∠BAD=∠AOC∵∠AOC+∠OAC=90°,∴∠BAD+∠OAC=90°,∴OA⊥AD,即:直线AD是⊙O的切线;(2)分别连结OP、PE、AE,OP交AE于F点,∵BE是直径,∴∠EAB=90°,∴OC∥AE,∵OB=132,∴BE=13∵AB=5,在直角△ABE中,AE=12,EF=6,FP=OP-OF=132-52=4在直角△PEF中,FP=4,EF=6,PE2=16+36=52,在直角△PEB中,BE=13,PB2=BE2-PE2,2135213【点睛】本题考查了切线的判定,勾股定理,正确的作出辅助线是解题的关键.Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
哈尔滨市中考数学模拟试卷分类汇编整式乘法与因式分解易错压轴解答题(附答案)

哈尔滨市中考数学模拟试卷分类汇编整式乘法与因式分解易错压轴解答题(附答案)一、整式乘法与因式分解易错压轴解答题1.阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.(1)填空:i3=________,i4="________";(2)计算:① ;② ;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将化简成a+bi的形式2.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次_一项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1, a2, c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1, c1位于图的上一行,a2, c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3);然后把1,1,2,-3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).(1)请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=________.(2)【理解与应用】请你仔细体会上述方法,并尝试对下面两个二次三项式进行分解因式:Ⅰ.2x2+5x-7=________;Ⅱ.6x2-7xy+2y2=________ .(3)【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解.如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:Ⅰ.分解因式3x2+5xy-2y2+x+9y-4=________ .Ⅱ.若关于x,y的二元二次式x2+7xy-18y2-5x+my-24 可以分解成两个一次因式的积,求m的值.________Ⅲ.己知x,y为整数,且满足x2+3xy+2y2+2x+3y=-1,请写出一组符合题意的x,y的值.________3.阅读下列材料:对于多项式x2+x-2,如果我们把x=1代入此多项式,发现x2+x-2的值为0,这时可以确定多项式中有因式(x-1):同理,可以确定多项式中有另一个因式(x+2),于是我们可以得到:x2+x-2=(x-1)(x+2)又如:对于多项式2x2-3x-2,发现当x=2时,2x2-3x-2的值为0,则多项式2x2-3x-2有一个因式(x-2),我们可以设2x2-3x-2=(x-2)(mx+n),解得m=2,n=1,于是我们可以得到:2x2-3x-2=(x-2)(2x+1)请你根据以上材料,解答以下问题:(1)当x=________时,多项式6x2-x-5的值为0,所以多项式6x2-x-5有因式________ ,从而因式分解6x2-x-5=________.(2)以上这种因式分解的方法叫试根法,常用来分解一些比较复杂的多项式.请你尝试用试根法分解多项式:①2x2+5x+3;②x3-7x+6(3)小聪用试根法成功解决了以上多项式的因式分解,于是他猜想:代数式(x-2)3-(y-2)3-(x-y)3有因式________ ,________ ,________ ,所以分解因式(x-2)3-(y-2)3-(x-y)3= ________。
2019年黑龙江省哈尔滨市四中中考数学模拟检测试卷(6月份)(含答案)

2019年黑龙江省哈尔滨市四中中考数学模拟检测试卷(6月份)一.选择题(每小题3分,满分30分)1.﹣的倒数是()A.B.2 C.﹣D.﹣22.下列计算正确的是()A.a3a2=a6B.(﹣3a2)3=﹣27a6C.(a﹣b)2=a2﹣b2D.2a+3a=5a23.下列图形中,即是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D5.已知点A (x 1,y 1),(x 2,y 2)是反比例函数y =图象上的点,若x 1>0>x 2,则一定成立的是( ) A .y 1>y 2>0B .y 1>0>y 2C .0>y 1>y 2D .y 2>0>y 16.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( )A .B .C .D .7.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°8.下列说法正确的是( )A .为了解某市中学生的体能状况,应采用普查的方式B .“打开电视机,正在播放足球比赛”是必然事件C .“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就有1次正面朝上D .两运动员10次射击成绩的平均数相同,则方差小的运动员成绩更稳定9.如图,在平行四边形ABCD 中,点E 在边AB 上,点F 在边CD 上,如果添加一个条件,使△ADE ≌△CBF ,那么添加的条件不能为( )A .DE =BFB .AE =CFC .BE =DFD .∠ADE =∠CBF10.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y (升)与时间x (分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满二.填空题(满分30分,每小题3分)11.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.12.函数y=中,自变量x的取值范围为.13.计算:()2015()2016=.14.分解因式:3x3﹣27x=.15.若不等式组的解集是x>3,则m的取值范围是.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,点P是射线BC上的一个动点,连接AP、PE,将△AEP沿着边PE折叠,折叠后得到△EPA′,当折叠后△EPA′与△BEP的重叠部分的面积恰好为△ABP面积的四分之一,则此时BP的长为.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF2为.18.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为(平方单位).19.在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.20.在等腰Rt△ABC中,∠C=90°,AC=,过点C作直线l∥AB,F是l上的一点,且AB=AF,则FC=.三.解答题21.(7分)先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(7分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分(要求:尺规作图,保留作图,痕迹,不写作法).23.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人? (2)补全上面的条形统计图;(3)扇形统计图中C 对应的中心角度数是 ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A ,B 口味的牛奶共约多少盒?24.(8分)如图,已知 l 1∥l 2,射线MN 分别和直线l 1,l 2交于A 、B ,射线ME 分别和直线l 1,l 2交于C 、D ,点P 在A 、B 间运动(P 与A 、B 两点不重合),设∠PDB =α,∠PCA =β,∠CPD =γ. (1)试探索 α,β,γ之间有何数量关系?说明理由.(2)如果BD =3,AB =9,AC =6,并且AC 垂直于MN ,那么点P 运动到什么位置时,△ACP ≌△BPD 说明理由.(3)在(2)的条件下,当△ACP ≌△BPD 时,PC 与PD 之间有何位置关系,说明理由.25.(10分)潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?26.(10分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE 相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.27.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣×(﹣2)=1,∴﹣的倒数是﹣2, 故选:D .2.解:A 、a 3a 2=a 5,错误;B 、(﹣3a 2)3=﹣27a 6,正确;C 、(a ﹣b )2=a 2﹣2ab +b 2,错误;D 、2a +3a =5a ,错误;故选:B .3.解:A 、是轴对称图形,是中心对称图形;B 、不是轴对称图形,是中心对称图形;C 、是轴对称图形,不中心对称图形;D 、是轴对称图形,不是中心对称图形.故选:A .4.解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆, 故选:D . 5.解:∵k =2>0, ∴函数为减函数, 又∵x 1>0>x 2,∴A ,B 两点不在同一象限内, ∴y 2<0<y 1; 故选:B .6.解:∵商场自动扶梯的长l =13米,高度h =5米,∴m ===12米,∴tan θ=;故选:A .7.解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠AD′C′=∠ADC=90°,∵∠2=∠1=112°,而∠ABC=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选:D.8.解:A、为了解某市中学生的体能状况,因调查范围比较广,宜采用抽查的方式进行,错误;B、“打开电视机,正在播放足球比赛”是随机事件,故错误;C、“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次可能有1次正面朝上,错误;D、两运动员10次射击成绩的平均数相同,则方差小的运动员成绩更稳定,正确,故选:D.9.解:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.当DE=BF时,不能用SSA证明△ADE≌△CBF,所以A选项内容错误,符合题意;当AE=CF时,用SAS可以证明△ADE≌△CBF,所以B选项内容正确,不符合题意;当BE=DF时,则AB﹣BE=CD﹣DF,即AE=CF,与B答案思路一样,所以C选项内容正确,不符合题意;当∠ADE=∠CBF时,用ASA可以证明△ADE≌△CBF,所以D选项内容正确,不符合题意.故选:A.10.解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.二.填空题11.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.12.解:函数y=中,2x+4≠0,解得:x≠﹣2,故自变量x的取值范围为:x≠﹣2.故答案为:x≠﹣2.13.解:()2015()2016=[()2015()2015](﹣2)=[()×()]2015(﹣2)=2﹣.故答案为:2﹣.14.解:3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).15.解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.16.解:∵∠ACB=90°,∠B=30°,AC=2,E为斜边AB的中点,∴AB=4,AE=AB=2,BC=2.①若PA′与AB交于点F,连接A′B,如图1.由折叠可得S △A ′EP =S △AEP ,A ′E =AE =2,. ∵点E 是AB 的中点, ∴S △BEP =S △AEP =S △ABP .由题可得S △EFP =S △ABP ,∴S △EFP =S △BEP =S △AEP =S △A ′EP ,∴EF =BE =BF ,PF =A ′P =A ′F . ∴四边形A ′EPB 是平行四边形, ∴BP =A ′E =2;②若EA ′与BC 交于点G ,连接AA ′,交EP 与H ,如图2..同理可得GP =BP =BG ,EG =EA ′=×2=1. ∵BE =AE ,∴EG =AP =1, ∴AP =2=AC , ∴点P 与点C 重合, ∴BP =BC =2. 故答案为2或2.17.解:∵图中两个阴影部分的面积相等,∴S 扇形ADF =S △ABC ,即:=×AC ×BC ,又∵AC =BC =1,∴AF 2=.故答案为:.18.解:设小长方形的长为x,宽为y,依题意有,解得,9×(4+1×3)﹣5×1×9=9×7﹣45=63﹣45=18.即:图中阴影部分的面积为18.故答案是:18.19.解:在平行四边形ABCD中,∠A+∠B=180°,又有∠A﹣∠B=60°,把这两个式子相加相减即可求出∠A=∠C=120°,故答案为:120°.20.解:作AD⊥l于点D,∵△ACB为等腰直角三角形,∴CA=CB,∠CAB=45°,∵l∥AB,∴∠ACD=∠CAB=45°,∴AD=CD,由勾股定理得,AD2+CD2=AC2=2,AC2+BC2=4=AB2,解得,AD=CD=1,AB=2,∴AF=2,∴DF==,则CF=+1,同理,CF′=﹣1,故答案为:±1.三.解答题21.解:原式=÷(﹣)=÷=•=,当a=2cos30°+1=2×+1=+1,b=tan45°=1时,原式=.22.解:如图,作线段BC的中垂线,交BC于点D,则直线AD即为所求.23.解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.24.解:(1)∠γ=α+∠β,理由:过点P作PF∥l1(如图1),∵l1∥l2,∴PF∥l2,∴∠α=∠DPF,∠β=∠CPF,∴∠γ=∠DPF+∠CPF=α+∠β;(2)当AP=BD=3,△ACP≌△BPD,∵l1∥l2,AC垂直于MN,∴BD⊥MN,∴∠CAP=∠PBD=90°,∵AB=9,∴PB=6,∴AC=PB,在△CAP与△PBD中,,∴△ACP≌△BPD,∴当AP=3时,△ACP≌△BPD;(3)CP⊥PD,理由:∵△ACP≌△BPD,∴∠ACP=∠DPB,∵∠ACP+∠APC=90°,∴∠APC+∠DPB=90°,∴∠CPD=90°,∴CP⊥PD.25.解:(1)设凤凰茶叶公司公司第一次购x千克茶叶,则第二次购进2x千克茶叶,根据题意得:﹣=10,解得:x=200,经检验,x=200是原方程的根,且符合题意,∴2x+x=2×200+200=600.答:凤凰茶叶公司两次共购进这种凤凰茶叶600千克.(2)设每千克茶叶售价y元,根据题意得:600y﹣32000﹣68000≥(32000+68000)×20%,解得:y≥200.答:每千克茶叶的售价至少是200元.26.(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.…(4分)(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.…(6分)②若△PFE∽△A BE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(9分)(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;故答案为:x=或0≤x<1.…(12分)27.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y =﹣x 2+x +8;(2)①∵OA =8,OC =6, ∴AC ==10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB ===,∴=,∴QE =(10﹣m ),∴S =•CP •QE =m ×(10﹣m )=﹣m 2+3m ;②∵S =•CP •QE =m ×(10﹣m )=﹣m 2+3m =﹣(m ﹣5)2+,∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =﹣x 2+x +8的对称轴为x =,D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(,8),当∠FQD =90°时,则F 2(,4),当∠DFQ =90°时,设F (,n ), 则FD 2+FQ 2=DQ 2,即+(8﹣n )2++(n ﹣4)2=16,解得:n =6±,∴F 3(,6+),F 4(,6﹣),满足条件的点F 共有四个,坐标分别为F 1(,8),F 2(,4),F 3(,6+),F 4(,6﹣).。
黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)

黑龙江省哈尔滨市2019年中考数学模拟试卷(含答案)一.选择题(满分30分,每小题3分)1.我市有一天的最高气温为5℃,最低气温为﹣4℃,则这天的最高气温比最低气温高()A.9℃B.4℃C.﹣4℃D.﹣9℃2.下列运算中,计算正确的是()A.(3a2)3=27a6B.(a2b)3=a5b3C.x6+x2=x3D.(a+b)2=a2+b23.下列图形中,可以看作是中心对称图形的是()A.B.C.D.4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.6.若双曲线y=在每一个象限内,y随x的增大而减小,则k的取值范围是()A.k≠3 B.k<3 C.k≥3 D.k>37.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.148.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. +=t B. +=tC.•+•=t D. +=t9.如图,▱ABCD的对角线AC与BD相交于点O,AC⊥BC,且AB=10,AD=6,则OB的长度为()A.2B.4 C.8 D.410.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为()A.购买A类会员卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡二.填空题(满分30分,每小题3分)11.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.12.函数y=中,自变量x的取值范围是.13.因式分解:4x2y﹣9y3=.14.若关于x的不等式组有且只有两个整数解,则m的取值范围是.15.计算结果为.16.如图,点A、B、C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为.17.扇形的弧长为10πcm,面积为120πcm2,则扇形的半径为cm.18.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.19.如图,P是边长为3的等边△ABC边AB上一动点,沿过点P的直线折叠∠B,使点B落在AC上,对应点为D,折痕交BC于E,点D是AC的一个三等分点,PB的长为.20.如图,边长为4正方形ABCD中,E为边AD的中点,连接线段EC交BD于点F,点M是线段CE延长线上的一点,且∠MAF为直角,则DM的长为.三.解答题(共7小题,满分60分)21.(7分)先化简,再求代数式÷(﹣2)的值,其中x=2sin60°+tan45°.22.(7分)在如图所示的方格纸中,将等腰△ABC绕底边BC的中点O旋转180°.(1)画出旋转后的图形;(2)观察:旋转后得到的三角形与原三角形拼成什么图形?(3)若要使拼成的图形为正方形,那么△ABC应满足什么条件?23.(8分)随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数.24.(8分)已知矩形ABCD,其中AD>AB,依题意先画出图形,然后解答问题.(1)F为DC边上一点,把△ADF沿AF折叠,使点D恰好落在BC上的点E处.在图1中先画出点E,再画出点F,若AB=8,AD=10,直接写出EF的长为;(2)把△ADC沿对角线AC折叠,点D落在点E处,在图2先画出点E,AE交CB于点F,连接BE.求证:△BEF是等腰三角形.25.(10分)某电器超市销售每台进价分别为2000元、1700元的A、B两种型号的空调,如表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(进价、售价均保持不变,利润=销售总收入﹣进货成本)(1)求A、B两种型号的空调的销售单价;(2)若超市准备用不多于54000元的金额再采购这两种型号的空调共30台,求A种型号的空调最多能采购多少台?26.(10分)△ABC内接于⊙O,AC为⊙O的直径,∠A=60°,点D在AC上,连接BD作等边三角形BDE,连接OE.(1)如图1,求证:OE=AD;(2)如图2,连接CE,求证:∠OCE=∠ABD;(3)如图3,在(2)的条件下,延长EO交⊙O于点G,在OG上取点F,使OF=2OE,延长BD到点M使BD=DM,连接MF,若tan∠BMF=,OD=3,求线段CE的长.27.(10分)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当△PBC面积最大时,求点P的坐标;(4)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.参考答案一.选择题1.解:5﹣(﹣4)=5+4=9℃.故选:A.2.解:A、(3a2)3=27a6,故A正确;B、(a2b)3=a6b3,故B错误;C、x6与x2不是同类项,不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误;故选:A.3.解:A、不是中心对称图形,故本选项不合题意;B、不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不合题意;故选:C.4.解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.5.解:几何体的俯视图是:故选:C.6.解:∵双曲线y=在每一个象限内,y随x的增大而减小,∴k﹣3>0∴k>3故选:D.7.解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PFA =PGA =90°, ∴S △PBC =BC •PE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4, ∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13, ∴由切线长定理可知:S △APG =S 四边形AFPG =,∴=×AG •PG ,∴AG =,由切线长定理可知:CE =CF ,BE =BG , ∴△ABC 的周长为AC +AB +CE +BE =AC +AB +CF +BG =AF +AG =2AG =13, 故选:C .8.解:设小水管的注水速度为x 立方米/分钟,可得:,故选:C .9.解:∵四边形ABCD 是平行四边形, ∴BC =AD =6,OA =OC , ∵AC ⊥BC ,AB =10, ∴==8,∴AO =CO =AC =4, ∴OB ===2;故选:A.10.解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当40≤x≤50时,1050≤y A≤1300;1000≤y B≤1200;1000≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.二.填空题11.解:数字55000用科学记数法表示为5.5×104.故答案为:5.5×104.12.解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.解:原式=y(4x2﹣9y2)=y(2x+3y)(2x﹣3y),故答案为:y(2x+3y)(2x﹣3y)14.解:解不等式①得:x>﹣2,解不等式②得:x≤,∴不等式组的解集为﹣2<x≤,∵不等式组只有两个整数解,∴0≤<1,解得:﹣2≤m<1,故答案为﹣2≤m<1.15.解:原式===x.故答案为:x.16.解:∵∠BOC=2∠BAC=60°,又OB=OC,∴△BOC是等边三角形∴OB=BC=6,故答案为6.=lr17.解:∵S扇形∴120π=•10π•r∴r=24;故答案为24.18.解:由题意得:=解得:n=16;故答案为:16.19.解:两种情形:①如图1中,当AD=AC=1时,设PB=x,∵△ABC是等边三角形,∴AB=BC=AC=3,∠A=∠B=∠C=60°,∵∠PDE=∠B=60°,∠PDC=∠PDE+∠EDC=∠A+∠APD,∴60°+∠EDC=60°+∠APD,∴∠EDC=∠APD,∴△APD∽△CDE,∴==,∴==,∴BE=DE=,EC=,∵BE+EC=3,∴+=3,∴x=.②如图2中,当AD=AC=2时,由△APD∽△CDE,可得==,∴==,∴DE=,EC=,∵BE+EC=3,∴=3,∴x=,综上所述,PB的长为或.20.解:作MN⊥AD垂足为N.∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,∵BF=BF,∴△BFA≌△BFC,∴∠BAF=∠BCF=∠CED=∠AEM,∵∠MAF=∠BAD=90°,∴∠BAF=∠MAE,∴∠MAE=∠AEM,∴MA=ME∵AE=ED=AD=2,∴AN=NE==1,∵∠MNE=∠CDE=90°,∴MN∥CD,∴=,∵CD=4,∴MN=2,在RT△MND中,∵MN=2,DN=3,∴DM===,故答案为.三.解答题21.解:原式=÷=÷=•=,当x=2sin60°+tan45°=2×+1=+1时,原式==.22.解:(1)旋转后的图形如图所示.(2)旋转后得到的三角形与原三角形拼成菱形.理由:设△ABC绕0旋转180°后得到△A′B′C′,则△ABC≌△A′B′C′,∵O是BC的中点,∴B点的对应点B′与C重合,C点的对应点C′与B重合,∴A′B=AC,A′C=AB,∵AB=AC,∴A′B=AB=AC=A′C,∴四边形ABA’C是菱形.(3)当△ABC是等腰直角三角形时,拼成的图形是正方形.理由:由(2)知,四边形ABA,C是菱形,又因为∠BAC=90°,所以四边形ABA’C是正方形.23.解:(1)本次调查的学生总人数为:18÷20%=90,在线听课的人数为:90﹣24﹣18﹣12=36,补全的条形统计图如右图所示;(2)扇形统计图中“在线讨论”对应的扇形圆心角的度数是:360°×=48°,即扇形统计图中“在线讨论”对应的扇形圆心角的度数是48°;(3)2100×=560(人),答:该校对在线阅读最感兴趣的学生有560人.24.解:(1)如图1,在BC上截取AE=AD得点E,作AF垂直DE交CD于点F(或作∠AED 的平分线AF交CD于点F,或作EF垂直AE交CD于点F等等),∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=10,∠B=∠C=90°,在Rt△ABE中,BE==6,∴EC=10﹣6=4,设EF=DF=x,在Rt△EFC中,则有x2=(8﹣x)2+42,解得x=5,∴EF=5.故答案为:5;(2)证明:如图2,作DH垂直AC于点H,延长DH至点E,使HE=DH.方法1:∵△ADC≌△AEC,∴AD=AE=BC,AB=DC=EC,在△ABE与△CEB中,,∴△ABE≌△CEB(SSS),∴∠AEB=∠CBE,∴BF=EF,∴△BEF是等腰三角形.方法2:∵△ADC≌△AEC,∴AD=AE=BC,∠DAC=∠EAC,又∴AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴FA=FC,∴FE=FB,∴△BEF是等腰三角形.25.解:(1)设A、B两种型号的空调的销售单价分别为x元,y元,根据题意,得:,解得:,答:A、B两种型号的空调的销售单价分别为2500元,2100元;(2)设采购A种型号的空调a台,则采购B型号空调(30﹣a)元,根据题意,得:2000a+1700(30﹣a)≤54000,解得:a≤10,答:A种型号的空调最多能采购10台.26.解:(1)如图1所示,连接OB,∵∠A=60°,OA=OB,∴△AOB为等边三角形,∴OA=OB=AB,∠A=∠ABO=∠AOB=60°,∵△DBE为等边三角形,∴DB=DE=BE,∠DBE=∠BDE=∠DEB=60°,∴∠ABD=∠OBE,∴△ADB≌△OBE(SAS),∴OE=AD.(2)如图2所示,由(1)可知△ADB≌△OBE,∴∠BOE=∠A=60°,∵∠BOA=60°,∴∠EOC=60°,∴△BOE≌△COE(SAS),∴∠OCE=∠OBE,∴∠OCE=∠ABD.(3)如图3所示,过点M作AB的平行线交AC于点Q,过点D作DN垂直EG于点N,∵BD=DM,∠ADB=∠QDM,∠QMD=∠ABD,∴△ADB≌△MQD(ASA),∴AB=MQ,∵∠A=60°,∠ABC=90°,∴∠ACB=30°,∴AB==AO=CO=OG,∴MQ=OG,∵AB∥GO,∴MQ∥GO,∴四边形MQOG为平行四边形,设AD为x,则OE=x,OF=2x,∵OD=3,∴OA=OG=3+x,GF=3﹣x,∵DQ=AD=x,∴OQ=MG=3﹣x,∴MG=GF,∵∠DOG=60°,∴∠MGF=120°,∴∠GMF=∠GFM=30°,∵∠QMD=∠ABD=∠ODE,∠ODN=30°,∴∠DMF=∠EDN,∵OD=3,∴ON=,DN=,∵tan∠BMF=,∴tan∠NDE=,∴,解得x=1,∴NE=,∴DE=,∴CE=.27.解:(1)函数的表达式为:y=a(x﹣1)(x﹣3)=a(x2﹣4x+3),即:3a=3,解得:a=1,故抛物线的表达式为:y=x2﹣4x+3,则顶点D(2,﹣1);(2)∵OB=OC=3,∴∠OBC=∠OCB=45°,AM=MB=AB sin45°==AD=BD,则四边形ADBM为菱形,而∠AMB=90°,∴四边形ADBM为正方形;(3)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=﹣x+3,过点P作y轴的平行线交BC于点H,设点P(x,x2﹣4x+3),则点H(x,﹣x+3),则S=PH×OB=(﹣x+3﹣x2+4x﹣3)=(﹣x2+3x),△PBC∵﹣<0,故S有最大值,此时x=,△PBC故点P(,﹣);(4)存在,理由:如上图,过点C作与y轴夹角为30°的直线CH,过点A作AH⊥CH,垂足为H,则HQ=CQ,AQ+Q C最小值=AQ+HQ=AH,直线HC所在表达式中的k值为,直线HC的表达式为:y=x+3…①则直线AH所在表达式中的k值为﹣,则直线AH的表达式为:y=﹣x+s,将点A的坐标代入上式并解得:则直线AH的表达式为:y=﹣x+…②,联立①②并解得:x=,故点H(,),而点A(1,0),则AH=,即:AQ+QC的最小值为.。
黑龙江省哈尔滨市2024届中考数学押题卷含解析

黑龙江省哈尔滨市2024年中考数学押题卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.一元二次方程x 2-2x=0的解是( )A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-23.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .44.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 5.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差7.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE CA ,DF BA .下列四种说法: ①四边形AEDF 是平行四边形;②如果90BAC ∠=,那么四边形AEDF 是矩形;③如果AD 平分BAC ∠,那么四边形AEDF 是菱形;④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中,正确的有( ) 个A .1B .2C .3D .48.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;149.在△ABC 中,∠C =90°,1cos 2A =,那么∠B 的度数为( ) A .60°B .45°C .30°D .30°或60° 10.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 二、填空题(本大题共6个小题,每小题3分,共18分)112x -x 的取值范围是_____.12.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.13.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为__________.14.已知,直接y=kx+b (k >0,b >0)与x 轴、y 轴交A 、B 两点,与双曲线y=16 x (x >0)交于第一象限点C ,若BC=2AB ,则S △AOB =________.15.如图,宽为(1020)m m <<的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则m 的值为__________.16.如图,在△ABC 中,DE ∥BC ,1=2AD DB ,则ADE BCED 的面积四边形的面积=_____.三、解答题(共8题,共72分)17.(8分)先化简,再求值:先化简22211x x x -+-÷(11x x -+﹣x +1),然后从﹣2<x 5为x 的值代入求值.18.(8分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.19.(8分)当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?20.(8分)在△ABC中,∠A,∠B都是锐角,且sinA=12,tanB=3,AB=10,求△ABC的面积.21.(8分)如图,△ABC中,∠C=90°,∠A=30°.用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);连接BD,求证:BD平分∠CB A.22.(10分)如图,半圆D的直径AB=4,线段OA=7,O为原点,点B在数轴的正半轴上运动,点B在数轴上所表示的数为m.当半圆D与数轴相切时,m=.半圆D与数轴有两个公共点,设另一个公共点是C.①直接写出m的取值范围是.②当BC=2时,求△AOB与半圆D的公共部分的面积.当△AOB的内心、外心与某一个顶点在同一条直线上时,求tan∠AOB的值.23.(12分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB∆,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDE,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.24.如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120°角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好.此时,路灯的灯柱AB的高应该设计为多少米.(结果保留根号)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解. 【题目详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【题目点拨】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2、A【解题分析】试题分析:原方程变形为:x(x-1)=0x1=0,x1=1.故选A.考点:解一元二次方程-因式分解法.3、A【解题分析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如22-+=0,0是有理数,故本小题错误;④例如(﹣2)×2=﹣2,﹣2是有理数,故本小题错误.故选A.点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.4、B【解题分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【题目详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【题目点拨】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、C【解题分析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.6、A【解题分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【题目详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键. 7、D【解题分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.【题目详解】解:∵DE∥CA,DF∥BA,∴四边形AEDF是平行四边形,选项①正确;若∠BAC=90°,∴平行四边形AEDF为矩形,选项②正确;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四边形AEDF为菱形,选项③正确;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,选项④正确,则其中正确的个数有4个.故选D.【题目点拨】此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.8、C【解题分析】根据统计图,利用众数与中位数的概念即可得出答案.【题目详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【题目点拨】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.9、C【解题分析】根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可. 【题目详解】解:∵1 cos2A=,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.10、B【解题分析】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、x<1【解题分析】要使代数式12x-有意义时,必有1﹣x>2,可解得x的范围.【题目详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【题目点拨】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.12、【解题分析】根据概率的公式进行计算即可.【题目详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【题目点拨】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.13258+【解题分析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.【题目详解】如图,在y =﹣x 2+2x +3中,当x =0时,y =3,即点C (0,3),∵y =﹣x 2+2x +3=﹣(x -1)2+4,∴对称轴为x =1,顶点D (1,4),则点C 关于对称轴的对称点E 的坐标为(2,3),作点D 关于y 轴的对称点D′(﹣1,4),作点E 关于x 轴的对称点E′(2,﹣3),连结D′、E′,D′E′与x 轴的交点G 、与y 轴的交点F 即为使四边形EDFG 的周长最小的点,四边形EDFG 的周长=DE +DF +FG +GE=DE +D′F +FG +GE′=DE +D′E′ =2222(12)(43)(12)(43)-+-+﹣-++=258+∴四边形EDFG 周长的最小值是258+. 【题目点拨】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案. 14、43【解题分析】根据题意可设出点C 的坐标,从而得到OA 和OB 的长,进而得到△AOB 的面积即可.【题目详解】∵直接y=kx+b 与x 轴、y 轴交A 、B 两点,与双曲线y=16x 交于第一象限点C ,若BC=2AB ,设点C 的坐标为(c,16c ) ∴OA=0.5c,OB=1163c =163c ,∴S△AOB=1·2OA OB=1160.523cc⨯⨯=43【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.15、16【解题分析】设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b= a+53a=83a,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答. 【题目详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=53a,m=a+b= a+53a=83a,因为1020m<<,所以10<83a<20,解得:154<a<152,又因为小长方形的边长为整数,a=4、5、6、7,因为b=53a,所以5a是3的倍数,即a=6,b=53a=10,m= a+b=16.故答案为:16.【题目点拨】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.16、1 8【解题分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【题目详解】解:∵DE∥BC,AD1=DB2,∴AD1= AB3,由平行条件易证△ADE~△ABC, ∴S△ADE:S△ABC=1:9,∴ADE S ADEBCED S ABC S ADE的面积四边形的面积=-=18.【题目点拨】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.三、解答题(共8题,共72分)17、﹣1x,﹣12.【解题分析】根据分式的减法和除法可以化简题目中的式子,然后在-2<x<5中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【题目详解】原式=2x-11(1)(1) x+1(1)1x x xx x---+÷-+()()=2x-1x+1x+1x-1-x+1⋅=x-1-x x-1()=1x-,∵-2<x<5(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-1 2 .【题目点拨】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.18、(1)14;(2)112.【解题分析】试题分析:(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为14;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为1 12.19、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.20、253 2【解题分析】根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.【题目详解】如图:由已知可得:∠A=30°,∠B=60°,∴△ABC为直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=1012⨯=5,AC=AB·cos30°=103=3∴S△ABC=125 AC?BC3 22=【题目点拨】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.21、(1)作图见解析;(2)证明见解析.【解题分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.【题目详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE 是AB 边上的中垂线,∠A =30°,∴AD =BD ,∴∠ABD =∠A =30°,∵∠C =90°,∴∠ABC =90°﹣∠A =90°﹣30°=60°,∴∠CBD =∠ABC ﹣∠ABD =60°﹣30°=30°,∴∠ABD =∠CBD ,∴BD 平分∠CB A .【题目点拨】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.22、(1)33(2)3311m <<;②△AOB 与半圆D 的公共部分的面积为4+33π(3)tan ∠AOB 的值为157125. 【解题分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D 与数轴相切时,只有一个公共点,和当O 、A 、B 三点在数轴上时,求出两种情况m 的值即可②如图,连接DC ,得出△BCD 为等边三角形,可求出扇形ADC 的面积,即可解答(3)根据题意如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答【题目详解】(1)当半圆与数轴相切时,AB ⊥OB ,由勾股定理得m =22227433OA AB -=-= ,故答案为33 .(2)①∵半圆D 与数轴相切时,只有一个公共点,此时m =33,当O 、A 、B 三点在数轴上时,m =7+4=11,∴半圆D 与数轴有两个公共点时,m 的取值范围为3311m <<.故答案为3311m <<.②如图,连接DC ,当BC =2时,∵BC =CD =BD =2,∴△BCD 为等边三角形,∴∠BDC =60°,∴∠ADC =120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2, 解得x =178 ,OH =498,AH 715 ,∴tan∠AOB=157,如图2,当OB=OA时,内心、外心与顶点O在同一条直线上,作AH⊥OB于点H,设BH=x,则72﹣(4﹣x)2=42﹣x2,解得x=87,OH=417,AH=1257,∴tan∠AOB=125 41.综合以上,可得tan∠AOB的值为157或12541.【题目点拨】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线23、(1)见解析;(2)见解析;(3)见解析,5CE .【解题分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【题目详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【题目点拨】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键.24、3-4)米【解题分析】延长OC,AB交于点P,△PCB∽△PAO,根据相似三角形对应边比例相等的性质即可解题.【题目详解】解:如图,延长OC,AB交于点P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=12AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC•tan60°=23米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴PC BC PA OA=,∴PA=PC OABC⋅=23102⨯=103米,∴AB=PA﹣PB=(1034-)米.答:路灯的灯柱AB高应该设计为(1034-)米.。
2019年哈尔滨市初中中考模拟试题一数学试卷(含答案)

{2019年哈尔滨市初中升学考试模拟试题(一)数学试卷参考答案二、11、2.019×109 12、 -2 2 13、x ≠32 14、4a (x-2y )215、x>3 16、(0,22) 17、6 2 18、16 19、36或72 20、2511(提示:如图过点C 作CM ⊥FB 于点M ,过点D 作DN ⊥EC 于点N ,△CMB≌△DNC △END ≌△FMC 再勾股可求)21.化简结果-)3a (21+--------------------------------3a =tan60°-6sin30°= 3 -2-------------------------------2 原式= -16 3 --------------------------------222.(1)图形正确------------------------------------3(2)图形正确----------------------------------2AF=17 -----------223、 解:(1)40;----------------------------------------------1答---------------------------------------------------------------------1(2)40%-------------------------------------------2答---------------------------------------------------------------------1(3)170----------------------------------------2 答-----------------------------------124、(1)略---------------------------------------------4(2)△FAE △ADO △D 、OC △FEC-----------------------------------425、解:(1)设购进甲种灯x 只,乙为y 只由题意得:25x+45y=46000x+y=1200 ---------------------------------------------------------------------2解得: x=400 y=800----------------------------------------------------------------------------2 答:--------------------------------------------------------------------------------------------1(2)设每支笔售价为m 元,根据题意得:5m+15( 1200-m )≤[25m+45(1200-m )]×30%----------------------------------------------2 解得:m ≥450---------------------------------------------------------------------------------------------2 答:.-----------------------------------------------------------------------------------------------------1 NM26.(1)连接AD 、AB∵CD 为⊙O 直径 ∴∠CAD=90°设∠DCA 为α,则∠CDA=90°-α∵∠D 与∠B 同对弧AC ∴∠D=∠B=90°-α-------------------------------1 ∵点A 为弧BAC 中点,∴弧AB=弧AC∴AB=AC ∴∠ACB=∠B=90°-α-----------------------------------1 ∵AF ⊥CD ∴∠CAE=90°-α∴∠CAE=∠ECA=90°-α∴EA=EC--------------------------------------------------------------1(2)连接OA∵EC=EA EO=EO OC=OA∴△EOC ≌△EOA --------------------------------------------------1∴∠CEO=∠AEO∵EC=EA∴CG =AG----------------------------------------------------------------1在Rt △FCA 中,FG 为斜边中线∴AC =2FG--------------------------------------------------------------1(3)连接AD 、AB 过F 作FH ⊥AC 于点H由(2)可知EC=EA ∠CEO=∠AEO∴EG ⊥AC ∴∠EGA=90°∵FH ⊥AC ∴∠FHA=90°∴∠EGA=∠FHA ∴EG ∥FH ∴∠FGE=∠GFH∵sin ∠FGE =13 ∴sin ∠GFH =13 ---------------------------1设GH =a 则GF=3a 勾股得FH=2 2 a由(2)可知CG=AG=3a ∴AG=2a∴tan ∠FAG= 2易证∠D=∠FAG∴tan ∠D=AF DF = 2∴AF=2 2 ----------------------------------------------------1∴tan ∠FAG=CF AF ∴CF=4易求AG=CG= 6∵tan ∠FAG=FG AG = 2 ∴EG=2 3 -------------------------------1S 四边形ECGF =S △ACE -S △AFG =4 2 ---------------------------------------------------127.(1)tan ∠BAO=12------------------------------------------------2 (2) 在OA 的延长线上截取AM=AC 则∠AMC=∠ACM=12 ∠OAC∵∠OAC=2∠BAO ∴∠BAO=∠AMC∴tan ∠AMC= tan ∠BAO=12 ————————————1设OC=m 则OM=2m AM=2m-3在Rt △AOC 中,由勾股定理得m=4∴C (4,0)---------------------------------------------------------1 设直线AC 解析式为y=kx+b将A (0,-3)C (4,0)代入得AC 解析式y=34 x-3--------------------------------------------------------------1(3)过点D 作DN ⊥y 轴于点N ,过点E 作EK ⊥AC 于点K ∵直线y=kx 平行于直线AB∴k=2∴直线OD 解析式为y=2x------------------------------1 导角可得∠DAN=∠EAK∴△DAN ≌△ AK∴DN=EK AN=AK-----------------------------------1tan ∠KCE=tan ∠ACO=34设EK=3a 则CK=4a AK=4a+5∴DN=EK=3a ON=AK-OA=4a+2∴D (-3a ,4a+2)-------------------------------------1将点D 代八直线y=2x得D (-3,6)------------------------------------------1解△AEK 可得∠DEA=45°--------------------------------------------1。
2024年中考数学考前押题密卷(黑龙江哈尔滨卷)(全解全析)

2024年中考考前押题密卷(黑龙江哈尔滨卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.有理数13-的倒数()A .13B .13-C .3D .3-【答案】D 【详解】解:∵()1313-⨯-=∴有理数13-的倒数是3-.故选:D .2.下列有关学科的图标中,是中心对称图形的是()A .B .C .D .【答案】B【详解】解:A 、此图不是中心对称图形,故此选项不符合题意;B 、此图是中心对称图形,故此选项符合题意;C 、此图不是中心对称图形,故此选项不符合题意;D 、此图不是中心对称图形,故此选项不符合题意.故选:B .3.下列运算正确的是()A .2374x x x -=-B .236()a a -=C .22234y y y -+=D .248a a a ⋅=【答案】C【详解】解:A 、23x 与7x -不属于同类项,不能合并,故A 不符合题意;B 、236()a a -=-,故B 不符合题意;C 、22234y y y -+=,故C 符合题意;D 、246a a a ⋅=,故D 不符合题意;故选:C .4.在我国古代建筑中经常使用榫卯构件,如图是某种榫卯构件的示意图,其中榫的俯视图是()A .B .C .D .【答案】D 【详解】解:根据主视图可以发现,顶端是一个上宽下窄的梯形,∴从上往下看立体图,可以得到俯视图的形状应该是四根实线夹着两根虚线的长方形,故选:D .5.如图,在RtΔABC 中,90ABC ∠=︒,D 为边AB 上一点,过点D 作DE AC ⊥,垂足为E ,则下列结论中正确的是()A .sin BC A AB =B .cos =AE A ADC .tan =BC A AD D .tan =AB A BC【答案】B 【详解】解:DE AC ⊥ ,90AED ABC ︒∴∠=∠=,A 、sin BC A AC=,故A 不符合题意;B 、结论正确,故B 符合题意;C 、tan =CB A AB,故C 不符合题意;D 、tan BC A AB =,故D 不符合题意.故选:B .6.从写有数字1,2,3的3张卡片中任意抽取两张,摆成一个两位数,摆出的两位数是3的倍数的概率为()A .12B .13C .23D .16【答案】B 【详解】解:列表如下:123112132212333132共有6种等可能的结果,其中摆出的两位数是3的倍数的结果有:12,21,共2种,∴摆出的两位数是3的倍数的概率为2163=.故选:B .7.深高小学部饲养了两只萌萌的羊驼,建筑队在学校一边靠墙处,计划用15米长的铁栅栏围成三个相连的长方形羊驼草料仓库,仓库总面积为y 平方米,为方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,若设AB x =米,则y 关于x 的函数关系式为()A .(184)y x x =-B .(162)y x x =-C .(172)y x x =-D .(154)y x x =-【答案】A 【详解】解: 铁栅栏的全长为15米,AB x =米,∴平行于墙的一边长为1534(184)x x +-=-米.根据题意得:(184)y x x =-.故选:A8.如图,在矩形ABCD 中,E ,F 分别在CD 边和AD 边上,BE CF ⊥于点G ,且G 为CF 的中点.若4,5==AB BC ,则BG 的长为()A .4B .32C .25D .26【答案】C【详解】解:连接BF ,四边形ABCD 是矩形,90BAF CDF ∴∠=∠=︒,∵BE CF ⊥且G 为CF 的中点,5BF BC ∴==,90FGB ∠=︒,在Rt ABF 中2222543AF BF AB =-=-=,532DF AD AF ∴=-=-=,在Rt CDF △中22224225CF CD DF -=+=,152FG CG ∴===在Rt BGF 中()2222555BG BF FG =--故选:C .9.如图,OA 、OB 、OC 都是O 的半径,2ACB BAC ∠=∠,若4AB =,5BC =O 的半径为()A .32B .52C .2D .3【答案】B【详解】证明:∵ AB AB =,∴12ACB AOB ∠=∠,∵ BCBC =,∴12BAC BOC ∠=∠,2ACB BAC ∠=∠ ,2AOB BOC ∴∠=∠.过点O 作半径OD AB ⊥于点E ,则1,2∠=∠=DOB AOB AE BE ,∴DOB BOC ∠=∠,BD BC ∴=,4,5== AB BC ,2,5∴==BE DB ,在Rt BDE △中,90DEB =︒∠Q 221∴=-=DE BD BE ,在Rt BOE 中,90OEB ∠=︒ ,222(1)2∴=-+OB OB ,52OB ∴=,即O 的半径是52.故选:B .10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 的坐标为()2,0-,D 的坐标为()0,4,矩形ABCD 向右平移7个单位长度后点B 恰好落在直线3y kx =+上,若点B 的横坐标为4-,则k 的值为()A .2-B .1-C .34-D .23-【答案】D【详解】过点B 作BE x ⊥轴交于点E ,90AEB ∴∠=︒,点A 的坐标为()2,0-,D 的坐标为()0,4,∴2OA =,4OD =,四边形ABCD 是矩形,∴90BAD ∠=︒,90BAE DAO ∴∠+∠=︒,90AOD ∠=︒ ,90OAD ODA ∴∠+∠=︒,BAE ODA ∴∠=∠,90AEB AOD ∠=∠=︒ ,AEB DOA ∴△∽△,∴4122BE OA EA OD ===,点B 的横坐标为4-,4OE ∴=,2AE OE OA ∴=-=,1BE =,()4,1B ∴-,矩形ABCD 向右平移7个单位长度后点B 恰好落在直线3y kx =+上,∴平移后点B 坐标变为()3,1,把()3,1代入3y kx =+中,解得:23k =-;故选:D .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)11.“新型冠状病毒”发生以来,各相关部门和地方按照党中央、国务院的部署,对人民高度负责,全力以赴科学有效抓好疫情防控,同时提醒市民要勤洗手,戴口罩,多通风,不扎堆.经科学研究发现,该病毒的直径大小约为100纳米(1纳米=0.0000001米),则100纳米用科学记数法表示为米.【答案】51.010-⨯【详解】解:100纳米=100×0.0000001米=0.00001米,50.00001=110-⨯,故答案为:5110-⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的知识.122124m m ++有意义,则m 的取值范围是.【答案】2m >-【详解】解:∵211m +≥,21024m m +≥+且240m +≠,∴240m +>,∴2m >-;故答案为:2m >-.13.若分解因式()()263x mx x x n +-=++,则m n -=.【答案】3【详解】解:()()3x x n ++()233x n x n=+++∵()()263x mx x x n +-=++∴()22633x mx x n x n+-=+++336n mn +=⎧∴⎨=-⎩解得12m n =⎧⎨=-⎩∴()123m n -=--=.故答案为:3.14133333a b ==,则ab =.【答案】29-【详解】解:1123333333=-∵1233333333a b ===∴1233a b ==-∴,122339ab ⎛⎫⨯-=- ⎪⎝⎭=∴故答案为:29-.15.不等式组210353x xx x ≥-⎧⎨+>⎩的解集为.【答案】522x ≤<【详解】解:210353x x x x ≥-⎧⎨+>⎩①②解不等式①得:2x ≥解不等式②得:52x <∴不等式组的解集为:522x ≤<故答案为:522x ≤<.16.如图,在Rt ABC △中,点D 是AB 中点,EF CD ,若:2:3AE EC =,2EF =,则AB =.【答案】10【详解】∵:2:3AE EC =∴25AE AC =∵EF CD∴AEF ACD∽△△∴25AE EF AC CD ==∴225CD =∴5CD =∵在Rt ABC △中,点D 是AB 中点,∴210AB CD ==.故答案为:10.17.二次函数277y kx x =--的图象与x 轴有两个交点,则k 的取值范围为.【答案】74k >-且0k ≠【详解】解:∵二次函数277y kx x =--的图象与x 轴有两个交点,∴关于x 的一元二次方程2770kx x --=有两个不相等的实数根,∴()()2Δ74700k k ⎧=--⨯-⋅>⎪⎨≠⎪⎩,解得74k >-且0k ≠,故答案为:74k >-且0k ≠.18.对于字母m 、n ,定义新运算22m n m mn n =++★,若方程2310x x ++=的解为a 、b ,则2a b +★的值为.【答案】10【详解】解:∵方程2310x x ++=的解为a 、b ,∴3,1a b ab +=-=,∵22m n m mn n =++★,∴2222a b a ab b +=+++★2222a ab b ab =++-+()22a b ab =+-+()2312=--+912=-+10=.故答案为:10.19.如图,在矩形ABCD 中,点G 在AD 上,且1GD AB ==,3AG =,点E 是线段BC 上的一个动点(点E 不与点B ,C 重合),连接GB ,GE ,将GBE 关于直线GE 对称的三角形记作GFE ,当点E 运动到使点F 落在矩形任意一边所在的直线上时,则线段BE 的长是.【答案】3或5210【详解】解:①当点F 落在DC 的延长线上时,设BE EF x ==,1== AB GD ,BG GF =,90D A ∠=∠=︒,∴()Rt Rt HL ABG DGF ≌3∴==AG DF ,2CF ∴=,在Rt ECF 中,222EC CF EF +=,222(4)2x x ∴-+=,解得52x =,52BE ∴=;②当点F 落在BC 的延长线上时,则3BE AG ==,③当点F 落在AD 的延长线上时,∵AD BC∥∴BEG EGF∠=∠∵GBE 关于直线GE 对称的三角形记作GFE ,∴BGE EGF∠=∠∴BGE BEG ∠=∠,∴2210BE BG AG AB ==+=,综上所述,满足条件的BE 的值为3或5210.20.如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为2【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,22AC AB ==BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EBABF EBF BF BF=⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴ ≌,45BFE BFA ∴∠=∠=︒,90AFC BFA BFE ∴∠=∠+∠=︒,O 为对角线AC 的中点,122OF AC ∴=,2三、解答题(本大题共7个小题,共60分.解答应写出文字说明,证明过程或演算步骤)21.(本小题满分7分)先化简,再求代数式22122444x x x x x x +⎛⎫-÷ ⎪--++⎝⎭的值,其中tan 602x =︒+.【详解】解:22122444x x x x x x +⎛⎫-÷ ⎪--++⎝⎭()()()()()22222222x x x x x x x x ⎡⎤++=-÷⎢⎥-+-++⎢⎥⎣⎦........................................................................................2分()()()222222x x x x +=⋅-++22x =-,.................................................................................................................................................4分当tan 60232x =︒+=时,..............................................................................................................6分原式233322==+-......................................................................................................................8分22.(本小题满分7分)如图,正方形网格中每个小正方形边长都是1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)10的线段PQ ,其中P 、Q 都在格点上(2)面积为5的正方形ABCD ,其中A 、B 、C 、D 都在格点上【详解】(1)解:如图,线段PQ 即为所求,其中221310PQ =+=...................................................................................................................3分(2)如图,四边形ABCD 即为所求,其中:22215AB BC CD AD ===+连接AC ,...............................................................................................................................................5分∴2221310AC =+=,∴222AB BC AC +=,∴90ABC ∠=︒,∴四边形ABCD 555=..........................................................................7分23.(本小题满分8分)我校鹿鸣“博·约”和融课程极大地满足了学生的兴趣需求,受到社会的广泛赞誉,现在“博·约”和融课程需开设数学类拓展性课程,为了解学生最喜欢的数学类拓展性课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).根据统计图提供的信息,解答下列问题:(1)m =________,n =________;(2)在扇形统计图中,“C .实验探究”所对应的扇形的圆心角度数是________度;(3)请根据以上信息补全条形统计图;(4)我校共有6000名学生,试估计全校最喜欢“思想方法”的学生人数.【详解】(1)解:观察条形统计图与扇形统计图知:选A 的有12人,占20%,故总人数有1220%60÷=(人),1560100%25%m =÷⨯=,960100%15%n =÷⨯=,故答案为:25%,15%;.....................................................................................................................2分(2)解:36015%54︒⨯=︒,故答案为:54;.....................................................................................................................................4分(3)解:D 类别人数为6030%18⨯=(人),补全图形如下:..............................................................................................6分(4)解:6600060060⨯=(人),答:估计全校最喜欢“思想方法”的学生人数有600人...................................................................8分24.(本小题满分8分)为进一步落实“德、智、体、美、劳”五育并举工作,某学校体育社团准备从商场一次性购买若干副羽毛球拍和乒乓球拍,已知羽毛球拍的单价比乒乓球拍的单价高50元,用320元购买羽毛球拍的数量和用120元购买乒乓球拍的数量相等.(1)求购买一副羽毛球拍、一副乒乓球拍各需要多少元?(2)如果该校需要乒乓球拍的数量是羽毛球拍数量的2倍还多3副,且购买乒乓球拍和羽毛球拍的总费用不超过2890元,那么学校最多可购买多少副羽毛球拍?【详解】(1)设购买一副乒乓球拍需要x 元,则购买一副羽毛球拍需要()50x +元,根据题意得32012050x x=+,解得30x =,............................................................................................................................................2分经检验,30x =是原方程的解,所以50305080x +=+=,....................................................................................................................3分答:购买一副羽毛球拍需要80元,购买一副乒乓球拍需要30元;.............................................4分(2)设该校购买羽毛球拍a 副,则需要购买乒乓球拍是()23a +副,由题意得:()8030232890a a ++≤,..................................................................................................6分解得20a ≤,答:学校最多可购买20副羽毛球拍................................................................................................8分25.(本小题满分10分)问题背景:如图1,在正方形ABCD 中,边长为4.点M ,N 是边AB ,BC 上两点,且1BM CN ==,连接CM ,DN ,CM 与DN 相交于点O .(1)探索发现:探索线段DN 与CM 的数量关系和位置关系,并证明;(2)拓展提高:如图2,延长CM 至P ,连接BP ,若45BPC ∠=︒,求线段PM 的长.【详解】(1)解:CM DN =,且DN CM ⊥,.................................................................................1分理由:∵四边形ABCD 是正方形,∴BC CD =,90B NCD ∠=∠=︒,∵BM CN =,∴()SAS BCM CDN ≌,∴CM DN =,BCM CDN ∠=∠,......................................................................................................3分∵90BCM MCD ∠+∠=︒,∴90CDN MCD ∠+∠=︒,∴90COD ∠=︒,∴DN CM ⊥,∴线段CM 和DN 的关系为:CM DN =,且DN CM ⊥;..............................................................5分(2)如图,过点B 作BH CM ⊥于点H ,.........................................................................................6分∵222CM BC BM =+,∴221417CM =+∵1122CM BH BC BM ⨯=⨯,∴1717BH =,∴221717CH BC BH =-=,..........................................................................................................8分∵45BPC ∠=︒,∴45PBH ∠=︒,∴41717PH BH ==,∴201717PC PH CH =+=,∴31717PM PC CM =-=...............................................................................................................10分26.(本小题满分10分)如图,AC 是O 的直径,弦BD 交AC 于点E , 2BCCD =,连结AB ,AD .(1)如图1,若50D ∠=︒,求CAD ∠的度数.(2)如图2,点N 在弦AD 上,作MN AD ⊥,MN 分别交弦AB ,AC 于点M ,P ,=MN BE ,过B 作BF MN ∥交AC 于点F .①求证:BF MN =.②如图3,连结ME ,若4BM =,211ME =,求AP ,PE 的长.【详解】(1)解:∵50D ∠=︒,∴ AB 的度数为100︒,∵AC 是O 的直径,∴ BC的度数为:18010080︒-︒=︒,..................................................................................................1分∵ 2BCCD =,∴ CD的度数为40︒,∴20CAD ∠=︒,∴CAD ∠的度数为20︒;.......................................................................................................................2分(2)①证明:连结BC ,∵AC 是O 的直径,∴90ABC ∠=︒,∵CAD ∠和CBD ∠是 CD 所对的圆周角,∴CAD CBD ∠=∠,令CAD CBD x ∠=∠=,∴90ABE ABC CBD x ∠=∠-∠=︒-, CD 的度数为2x ,.................................................................3分∵ 2BC CD =,∴ BC 的度数为4x ,∴2BAC x ∠=,∴()180********AEB BAE ABE x x x ∠=︒-∠-∠=︒--︒-=︒-,∵MN AD ⊥,∴9090MPC APN PAN x ∠=∠=︒-∠=︒-,......................................................................................4分∵BF MN ∥,∴90BFE MPC x ∠=∠=︒-,∴BFE AEB ∠=∠,∴BE BF =,..........................................................................................................................................5分∵=MN BE ,∴BF MN =;............................................................................................................................6分②解:连结FN ,由①知:BF MN =,又∵BF MN ∥,4BM =,211ME =∴四边形MNFB 是平行四边形,∴NF MB ∥,4NF MB ==,∴23FND BAN BAC CAD x x x ∠=∠=∠+∠=+=,2AFN BAE x ∠=∠=,...................................7分取AP 的中点Q ,连结QN ,∵MN AD ⊥,∴AQ QP QN ==,∴QNA QAN x ∠=∠=,∴2PQN QNA QAN x x x ∠=∠+∠=+=,∴2PQN x AFN ∠==∠,∴4QN NF ==,∴2248AP QN ==⨯=,......................................................................................................................8分过M 作MT BE ∥交AC 于点T ,过M 作MH AC ⊥交AC 于点H ,∴90MTA BEA x MPE ∠=∠=︒-=∠,∴MT MP =,∴PH HT =,.........................................................................................................................................9分设()0PH HT a a ==>,由①知:90ABE x AEB ∠=︒-=∠,∴AMT ABE AEB ATM ∠=∠=∠=∠,AB AE =,∴82AM AT AP PT a ==+=+,∴4TE BM ==,在Rt MHA △与Rt MHE △中,22222AM AH MH ME HE -==-,∴()()(()22228282114a a a +-+=-+,解得:1a =或7a =-(负值不符合题意,舍去),∴1146PE PT TE PH HT TE =+=++=++=,∴8AP =,6PE =............................................................................................................................10分27.(本小题满分10分)如图1,在平面直角坐标系中,抛物线223y ax ax =-+与x 轴交于点A ,B (点A在点B 的左侧),交y 轴于点C ,点A 的坐标为()1,0-,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)填空:a =_____,点B 的坐标是______;(2)连接BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN BD ⊥,交抛物线于点N(点N 在对称轴的右侧),过点N 作NH x ⊥轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MNF 的周长取得最大值时,求12FP PC +的最小值;(3)在(2)中,当MNF 的周长取得最大值时,12FP PC +取得最小值时,如图2,把点P 233单位得到点Q ,连接AQ ,把AOQ △绕点O 顺时针旋转一定的角度()0360αα︒<<︒,得到A OQ '' ,其中边A Q ''交坐标轴于点G .在旋转过程中,是否存在一点G ,使得GQ OG '=?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.【详解】(1)解:将点(10)A -,代入223y ax ax =-+,得230a a ++=,解得,1a =-,......................................................................................................................................1分∴223y x x =-++,当0y =时,2230x x -++=,解得,1213x x =-=,,∴点B 的坐标是()3,0;故答案为:1-,()3,0;........................................................................................................................2分(2)解:∵223y x x =-++()214x =--+,∴点(03)C ,,点4(1)D ,,设直线BD 的解析式为()0y kx b k =+≠,将(30)B ,,4(1)D ,代入得:3=0=4k b k b +⎧⎨+⎩,解得,=2=6k b -⎧⎨⎩,∴26y x =-+,......................................................................................................................................3分设点()()2,26,23F m m N m m m -+-++,,由图形可知,MNF DBE ∠=∠,∵2sin 55DBE ∠=5cos 5DBE ∠=,∴52535555MN MF NF NF +=+=,∴355MNF C NF NF=+ 3555+=()235523265m m m +=-+++-()2355435m m +=-+-()2355215m ⎡⎤=⨯--+⎣⎦,∴当2m =时,MNF C 最大,此时2(2)F ,,2HF =,.......................................................................5分在x 轴上取点()3K -,,则30OCK ∠=︒,过F 作CK 的垂线段FG 交y 轴于点P ,此时12PG PC =,∴12PF PC FP PG +=+,∴当点F ,P ,G 三点共线时,12PF PC +有最小值为FG ,而此时点P 不在线段OC 上,故不符合题意,∴12PF PC +的最小值为FC 的长度,∵点(03)C ,,点2(2)F ,,∴22125CF =+∴当MNF 的周长取得最大值时,12PF PC +5.....................................................6分(3)解:存在.由(2)可知,点3(0)P ,,将点P 233Q ,∴点230,33Q ⎛ ⎝⎭,在Rt AOQ 中,23133OA OQ ==-,,则5AQ =....................................................................7分取AQ 的中点G ,则有OG GQ =,∴A OQ '' 在旋转过程中,只需使AQ '的中点G 在坐标轴上即可使得GQ OG '=,如图所示,当点G 在y 轴正半轴上时,过点Q '作Q I x '⊥轴,垂足为I ,∵GQ OG '=,∴GOQ GQ O∠='∠'∵OG IQ ∥,∴GOQ IQ O ''∠=∠,∴IQ O GQ O ''∠=∠,设(),Q x y ',则有:sin sin IQ O AQ O ∠''∠=2x =5=,∴255x =,则点2545Q ⎝⎭',....................................................................................................8分同理可知,当点G 在x 轴正半轴上时,点455,55Q ⎛⎫- ⎝'⎪⎪⎭;当点G 在y 轴负半轴上时,点255,55Q ⎛-- ⎪ '⎪⎝⎭;当点G在x轴负半轴上时,点45555Q⎛⎫-⎝'⎪⎪⎭.综上,点Q'的坐标为2545452525454525,,,,,,55555555⎛⎫⎛⎫⎛⎫---⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭................10分。