2015辽宁中考数学几何压轴题
2015年辽宁省大连市中考数学试题(解析版)

2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C. 21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱 【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D . 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=xB. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。
故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
辽宁省大连市2015年中考数学试卷(解析版)

2015辽宁省大连市中考数学试卷(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A. 2 B.-2 C.21 D.-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C .3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A. 1,2,3 B.,1,2,3 C.3,4,8 D.4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D .4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2)【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D .5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( ) A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x +2-2x =4.移项合并得:2=x 。
故选C .6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6 B.2x 6- C.2x 9 D.2x 9-【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C .7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B .8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C =90°,AC =2,点D 在BC 上,∠ADC =2∠B ,AD =5,则BC 的长为( )A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C =90°,AC =2,所以CD =()1252222=-=-AC AD ,因为∠ADC =2∠B ,∠ADC =∠B +∠BAD ,所以∠B =∠BAD ,所以BD =AD =5,所以BC =5+1,故选D .二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=) 【答案】>【解析】解:根据一切正数大于负数,故答案为>。
辽宁省葫芦岛市2015年中考数学真题试题(含解析)

辽宁省葫芦岛市2015年中考数学试卷一.选择题(每小题3分,共30分,在每小题给出的四个选项中只有一个是符合题意的)1.(2015•葫芦岛)﹣的绝对值是()A.﹣B.C.2 D.﹣2考点:绝对值.分析:根据一个负数的绝对值是它的相反数进行解答即可.解答:解:|﹣|=,故选:B.点评:本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(2015•葫芦岛)下列图形属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的定义即可作出判断.解答:解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是中心对称图形,故选项错误;C、是中心对称图形,故选项正确;D、是轴对称图形,不是中心对称图形,故选项错误.故选C.点评:本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2015•葫芦岛)从正面观察下面几何体,能看到的平面图形是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个正方形,在中间,第二层从左到右有3个正方形.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2015•葫芦岛)不等式组的解集在数轴上表示正确的是()A.B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:解不等式①得:x>﹣1;解不等式②得:x≤2,所以不等式组在数轴上的解集为:故选C点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.5.(2015•葫芦岛)张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,95,那么这组数据的中位数是()A.80 B.90 C.85 D.75考点:中位数.分析:根据中位数的概念求解.解答:解:这组数据按从小到大的顺序排列为:70,80,80,90,95,100,则中位数为:=85.故选C.点评:本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2015•葫芦岛)下列事件属于必然事件的是()A.蒙上眼睛射击正中靶心B.买一张彩票一定中奖C.打开电视机,电视正在播放新闻联播D.月球绕着地球转考点:随机事件.分析:必然事件就是一定发生的事件,根据定义即可判断.解答:解:A、蒙上眼睛射击正中靶心是随机事件,故选项错误;B、买一张彩票一定中奖是不可能事件,错误;C、打开电视机,电视正在播放新闻联播是随机事件,故选项错误;D、月球绕着地球转是必然事件,正确;故选D点评:本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2015•葫芦岛)如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π考点:弧长的计算;圆周角定理.分析:根据圆周角得出圆心角为90°,再利用弧长公式计算即可.解答:解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长=,故选B.点评:此题考查弧长公式,关键是根据圆周角得出圆心角为90°.8.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°考点:多边形内角与外角;三角形内角和定理.分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解答:解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.点评:本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.9.(2015•葫芦岛)已知k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系;解一元二次方程-因式分解法.分析:首先利用因式分解法解一元二次方程求出k和b的值,然后判断函数y=x﹣的图象不经过的象限即可.解答:解:∵k、b是一元二次方程(2x+1)(3x﹣1)=0的两个根,且k>b,∴k=,b=﹣,∴函数y=x﹣的图象不经过第二象限,故选B.点评:本题主要考查了一次函数图象与系数的关系以及因式分解法解一元二次方程的知识,解答本题的关键是利用因式分解法求出k和b的值,此题难度不大.10.(2015•葫芦岛)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E 的运动路程为x,△AE F的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:应用题.分析:分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.解答:解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在DQ上运动时,△AEF的面积为y=AE•AF=x(x﹣2)=x2﹣x(2<x≤4),图象为:故选A点评:此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x的函数解析式.二.填空题(每小题3分,共24分)11.(2015•葫芦岛)若代数式有意义,则实数x的取值范围是x≥0且x≠1.考点:二次根式有意义的条件;分式有意义的条件.分析:利用二次根式有意义的条件以及分式有意义的条件得出即可.解答:解:∵有意义,∴x≥0,x﹣1≠0,∴实数x的取值范围是:x≥0且x≠1.故答案为:x≥0且x≠1.点评:此题主要考查了二次根式有意义以及分式有意义的条件,正确把握定义是解题关键.12.(2015•葫芦岛)根据最新年度报告,全球互联网用户达到3 200 000 000人,请将3 200 000 000用科学记数法表示 3.2×109.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于3 200 000 000有10位,所以可以确定n=9.解答:解:3200000000=3.2×109,故答案为:3.2×109.点评:本题考查学生对科学记数法的掌握,一定要注意a的形式,以及指数n的确定方法.13.(2015•葫芦岛)分解因式:4m2﹣9n2= (2m+3n)(2m﹣3n).考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:4m2﹣9n2=(2m+3n)(2m﹣3n).故答案为:(2m+3n)(2m﹣3n).点评:此题主要考查了运用公式法分解因式,正确应用平方差公式是解题关键.14.(2015•葫芦岛)若一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,则m的取值范围是m<.考点:根的判别式;一元二次方程的定义.分析:据关于x的一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,得出△=16﹣4(m﹣1)×(﹣5)<0,从而求出m的取值范围.解答:解:∵一元二次方程(m﹣1)x2﹣4x﹣5=0没有实数根,∴△=16﹣4(m﹣1)×(﹣5)<0,且m﹣1≠0,∴m<.故答案为:m<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(2015•葫芦岛)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.8环,方差分别是:S甲2=1,S乙2=0.8,则射击成绩较稳定的是乙.(填“甲”或“乙”)考点:方差;算术平均数.分析:直接根据方差的意义求解.解答:解:∵S甲2=1,S乙2=0.8,1<0.8,∴射击成绩比较稳定的是乙,故答案为:乙.点评:本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(x n﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好16.(2015•葫芦岛)如图,在菱形ABCD中,AB=10,AC=12,则它的面积是96 .考点:菱形的性质.分析:首先根据勾股定理可求出BO的长,进而求出BD的长,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解答:解:∵四边形ABCD是菱形,∴AC⊥BD,∵AC=12,∴AO=6,∵AB=10,∴BO==8,∴BD=16,∴菱形的面积S=AC•BD=×16×12=96.故答案为:96.点评:本题考查了菱形的性质以及勾股定理的运用,熟练掌握菱形的面积等于对角线乘积的一半是解题的关键.17.(2015•葫芦岛)如图,一次函数y=kx+2与反比例函数y=(x>0)的图象交于点A,与y轴交于点M,与x轴交于点N,且AM:MN=1:2,则k= .考点:反比例函数与一次函数的交点问题.分析:利用相似三角形的判定与性质得出A点坐标,进而代入一次函数解析式得出答案.解答:解:过点A作AD⊥x轴,由题意可得:MO∥AO,则△NOM∽△NDA,∵AM:MN=1:2,∴==,∵一次函数y=kx+2,与y轴交点为;(0,2),∴MO=2,∴AD=3,∴y=3时,3=,解得:x=,∴A(,3),将A点代入y=kx+2得:3=k+2,解得:k=.故答案为:.点评:此题主要考查了反比例函数与一次函数交点问题以及相似三角形的判定与性质等知识,得出A点坐标是解题关键.18.(2015•葫芦岛)如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n﹣1的面积为.考点:相似多边形的性质.专题:规律型.分析:根据已知和矩形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律即可求得第n个矩形的面积.解答:解:∵四边形ABCD是矩形,∴AD⊥DC,∴AC===,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积=,依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4∴矩形AB2C2C1的面积=∴矩形AB3C3C2的面积=,按此规律第n个矩形的面积为:故答案为:.点评:本题考查了矩形的性质,勾股定理,相似多边形的性质,解此题的关键是能根据求出的结果得出规律.三.解答题19.(10分)(2015•葫芦岛)先化简,再求值:(﹣)÷,其中x=3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=•=•=,当x=3时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(12分)(2015•葫芦岛)某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.请根据所给信息解答以下问题:(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为.考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.分析:(1)根据A的人数与所占的百分比列式求出随机抽取的总人数,再求出B的人数,最后补全两个统计图即可;(2)用全市的总人数乘以B所占的百分比,计算即可得解;(3)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)被抽查的总人数:290÷29%=1000,B的人数:1000﹣290﹣180﹣120=410,C所占的百分比:180÷1000=18%;(2)280×41%=114.8(万人),答:最喜欢“虹螺岘干豆腐”的市民约有114.8万人;(3)根据题意作出树状图如下:一共有16种情况,两次都摸到“A”的有1种情况,所以P(A,A)=.故答案为:.点评:本题考查了列表法和树状图法,扇形统计图和条形统计图,用到的知识点为:概率=所求情况数与总情况数之比.21.(12分)(2015•葫芦岛)如图,小岛A在港口B的北偏东50°方向,小岛C在港口B的北偏西25°方向,一艘轮船以每小时20海里的速度从港口B出发向小岛A航行,经过5小时到达小岛A,这时测得小岛C在小岛A的北偏西70°方向,求小岛A距离小岛C有多少海里?(最后结果精确到1海里,参考数据:≈1.1414,≈1.732)考点:解直角三角形的应用-方向角问题.分析:过点B作BD⊥AC,垂足为点D,根据题意求出∠ABC和∠BAC的度数以及AB的长,再求出AD和BD的长,结合CD=BD,即可求出AC的长.解答:解:由题意得,∠ABC=25°+50°=75°,∠BAC=180°﹣70°﹣50°=60°,∴在△ABC中,∠C=45°,过点B作BD⊥AC,垂足为点D,∵AB=20×5=100,在Rt△ABD中,∠BAD=60°,∴BD=ABsin60°=100×=50,∴AD=ABcos60°=100×=50,在Rt△BCD中,∠C=45°,∴CD=BD=50,∴AC=AD+CD=50+50≈137(海里),答:小岛A距离小岛C约是137海里.点评:此题考查了解直角三角形的应用﹣方向角问题的知识,解答此类题目的关键是构造出直角三角形,利用解直角三角形的相关知识解答,此题难度不大.22.(12分)(2015•葫芦岛)某中学要进行理、化实验加试,需用九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设二班单独整理这批实验器材需要x分钟,则15(+)+=1,求出x的值,再进行检验即可;(2)设一班需要m分钟,则+≥1,求出m的取值范围即可.解答:解:(1)设二班单独整理这批实验器材需要x分钟,则15(+)+=1,解得x=60.经检验,x=60是原分式方程的根.答:二班单独整理这批实验器材需要60分钟;(2)方法一:设一班需要m分钟,则+≥1,解得m≥20,答:一班至少需要20分钟.方法二:设一班需要m分钟,则+=1,解得m=20.答:一班至少需要20分钟.点评:本题考查的是分式方程的应用,根据题意列出关于x的方程是解答此题的关键.23.(12分)(2015•葫芦岛)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?考点:切线的判定与性质;勾股定理;解直角三角形.分析:(1)过点O作OM⊥AB,垂足是M,证明OM等于圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,则四边形OMBN是矩形,在直角△OBM利用三角函数求得OM和BM的长,则BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,则BF即可求解.解答:解:(1)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D.∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠NAO,∴OM=OD.∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60du6,∴OM=OB•sin60°=,BM=OB•cos60°=1.∵BE⊥AB,∴四边形OMBN是矩形.∴ON=BM=1,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=+.点评:本题考查了切线的性质与判定,以及等边三角形的性质,正确作出辅助线构造矩形是解决本题的关键.24.(12分)(2015•葫芦岛)小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10元,乙商品每件利润20元,则每周能卖出甲商品40件,乙商品20件.经调查,甲、乙两种商品零售单价分别每降价1元,这两种商品每周可各多销售10件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x元.(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:y甲= 10x+40 ,y 乙= 10x+20 ;(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的,那么当x定为多少元时,才能使小明每周销售甲、乙两种商品获得的总利润最大?考点:二次函数的应用.分析:(1)根据题意可以列出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式;(2)根据每周甲商品的销售量不低于乙商品的销售量的,列出不等式求出x的取值范围,根据题意列出二次函数的解析式,根据二次函数的性质求出对称轴方程,得到答案.解答:解:(1)由题意得,y甲=10x+40;y乙=10x+20;(2)由题意得,W=(10﹣x)(10x+40)+(20﹣x)(10x+20)=﹣20x2+240x+800,由题意得,10x+40≥(10x+20)解得x≤2,W=﹣20x2+240x+800=﹣20(x﹣6)2+1520,∵a=﹣20<0,∴当x<6时,y随x增大而增大,∴当x=2时,W的值最大.答:当x定为2元时,才能使小明每周销售甲、乙两种商品获得的总利润最大.点评:本题考查的是二次函数的应用,正确列出二次函数的关系式,掌握二次函数的性质是解题的关键.25.(12分)(2015•葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.考点:四边形综合题.分析:(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan.解答:(1)AG⊥DG,AG=DG,证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵∠DCF=90°,∴∠DCB=90°,∴∠ACD=45°,∴∠ABH=∠ACD=45°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°,即∠HAD=90°,∴AG⊥GD,AG=GD;(2)AG⊥GD,AG=DG;证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=60,∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=60°;∴A G⊥HD,∠HAG=∠DAG=30°,∴tan∠DAG=tan30°==,∴AG=DG.(3)DG=AGtan;证明:延长DG与BC交于H,连接AH、AD,∵四边形DCEF是正方形,∴DE=DC,DE∥CF,∴∠GBH=∠GED,∠GHB=∠GDE,∵G是BC的中点,∴BG=EG,在△BGH和△EGD中∴△BGH≌△EGD(AAS),∴BH=ED,HG=DG,∴BH=DC,∵AB=AC,∠BAC=∠DCF=α,∴∠ABC=90°﹣,∠ACD=90°﹣,∴∠ABC=∠ACD,在△ABH和△ACD中∴△ABH≌△ACD(SAS),∴∠BAH=∠CAD,AH=AD,∴∠BAC=∠HAD=α;∴AG⊥HD,∠HAG=∠DAG=,∴tan∠DAG=tan=,∴DG=AGtan.点评:本题是四边形的综合题,考查了正方形的性质,菱形的性质,三角形求得的判定和性质,等腰三角形三线合一的性质以及直角三角函数等,作出辅助线构建全等三角形是解题的关键.26.(14分)(2015•葫芦岛)如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.考点:二次函数综合题.分析:(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C 的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.解答:解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△ABC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x=﹣(x﹣2)2+3,∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.①如图2,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x<0,∴点P的坐标是(﹣3,﹣).②如图3,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x>0,∴点P的坐标是(5,﹣).③如图4,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得,∴点P的坐标是(﹣1,).综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣3,﹣)、(5,﹣)、(﹣1,).点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了函数解析式的求法,以及二次函数的最值的求法,要熟练掌握.(3)此题还考查了三角形的面积的求法,要熟练掌握.21。
2015年中考数学压轴题及答案汇总

2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
中考数学总复习《几何压轴题》专项提升练习题(附答案)

中考数学总复习《几何压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________专题02三角形之直角、等腰问题 题型训练训练题01【2023·内蒙古·中考真题】如图,在Rt ABC △中90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC 的值为 .训练题02【2023·山东菏泽·中考真题】无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60︒,楼顶C 点处的俯角为30︒,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)训练题03【2023·广东·中考真题】2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂10m AC BC ==,两臂夹角100ACB ∠=︒时,求A ,B 两点间的距离.(结果精确到0.1m ,参考数据sin500.766︒≈ cos500.643︒≈ tan50 1.192︒≈)训练题04【2023·湖北黄冈·中考真题】综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD 的中点A 处竖直上升30米到达B 处,测得博雅楼顶部E 的俯角为45︒,尚美楼顶部F 的俯角为30︒,已知博雅楼高度CE 为15米,则尚美楼高度DF 为 米.(结果保留根号)训练题05【2023·河北沧州·模拟预测】如图1,嘉淇在量角器的圆心O 处下挂一铅锤,制作了一个简易测角仪.将此测角仪拿到眼前,使视线沿着仪器的直径刚好到达树的最高点M .(1)在图1中,过点A 画出水平线,并标记观测M 的仰角α.若铅垂线在量角器上的读数为53︒,求α的值;(2)如图2,已知嘉淇眼睛离地1.5米,站在B 处观测M 的仰角为(1)中的α,向前走1.25米到达D 处,此时观测点M 的仰角为45︒,求树MN 的高度.(注:3tan 374︒≈ 3sin 375︒≈ 4cos375≈︒) 训练题06【2023·四川成都·八年级期末联考】如图 在等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥于点G 点M N 分别是DE DG 上的动点 且DN EM = 则FM FN +的最小值为 .训练题07【2022·陕西西安·滨河期末】如图 直线y =x ﹣3分别交x 轴 y 轴于B A 两点 点C (0 1)在y 轴上 点P 在x 轴上运动 则2PC +PB 的最小值为 .训练题08【2021·四川甘孜·中考真题】如图 腰长为22+2的等腰ABC 中 顶角∠A =45° D 为腰AB 上的一个动点将ACD 沿CD 折叠 点A 落在点E 处 当CE 与ABC 的某一条腰垂直时 BD 的长为 .训练题09【2022·福建泉州·九年级联考】如图 ABC 和AGF 是等腰直角三角形 90BAC G ∠=∠=︒ AGF 的边AF AG 交边BC 于点D E .若4=AD 3AE = 则BEDC 的值是 .训练题10【2021·宁夏固元·联考一模】如图在直角△BAD中延长斜边BD到点C 使得BD=2DC 连接AC 如果则的值是()A.B.C.D.答案&解析5 tanB3=tan CAD∠3 3351315训练题01【2023·内蒙古·中考真题】【答案】5【简证】因为tan 311tan 4522ABC CD ABD α∠=⎧⇒=⇒=⎨∠=︒⎩ 故5AD DC =【常规法】解:过点D 作DF AB ⊥于点F∵90ACB ∠=︒ 3AC = 1BC =∴223110AB =+=∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△∴==10AB AB ' 90BAB '∠=︒∴ABB '是等腰直角三角形∴45ABB '∠=︒又∵DF AB ⊥∴45FDB ∠=︒∴DFB △是等腰直角三角形∴DF BF =∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ 即=10AD DF ∵ 90C AFD ∠=∠=︒ CAB FAD ∠=∠∴AFDACB ∴DF AF BC AC= 即3AF DF = 又∵=10AF DF -45°α∴10=4 DF∴105=10=42AD⨯51=3=22CD-∴52==512ADCD故答案为:5.训练题02【2023·山东菏泽·中考真题】【答案】大楼的高度BC 为303m .【分析】如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥ 则四边形CQHB 是矩形 可得QH BC = BH CQ = 求解3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= 可得704030CQ BH ==-= tan 30103PQ CQ =︒= 可得403103303BC QH ==-=.【详解】解:如图 过P 作PH AB ⊥于H 过C 作CQ PH ⊥于Q 而CB AB ⊥则四边形CQHB 是矩形 ∴QH BC = BH CQ =由题意可得:80AP = 60PAH ∠=︒ 30PCQ ∠=︒ 70AB = ∴3sin 60804032PH AP =︒=⨯= cos6040AH AP =︒= ∴704030CQ BH ==-= ∴tan 30103PQ CQ =︒=∴403103303BC QH ==-= ∴大楼的高度BC 为303m .训练题03【2023·广东·中考真题】【答案】15.3m【分析】连接AB 作作CD AB ⊥于D 由等腰三角形“三线合一”性质可知2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中利用sin AD ACD AC∠=求出AD 继而求出AB 即可.【详解】解:连接AB 作CD AB ⊥于D∵AC BC = CD AB ⊥∴CD 是边AB 边上的中线 也是ACB ∠的角平分线∴2AB AD = 1502ACD ACB ∠=∠=︒ 在Rt ACD △中 10m AC = 50ACD ∠=︒ sin AD ACD AC ∠= ∴sin 5010AD ︒= ∴10sin50100.7667.66AD =︒≈⨯=∴()227.6615.3215.3m AB AD =≈⨯=≈答:A B 两点间的距离为15.3m .训练题04【2023·湖北黄冈·中考真题】【答案】3053-/5330-+【分析】过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N 首先证明出四边形ECAM 是矩形 得到15AM CE == 然后根据等腰直角三角形的性质得到15AC EM BM === 进而得到15==AD AC 然后利用30︒角直角三角形的性质和勾股定理求出53BN = 即可求解.【详解】如图所示 过点E 作EM AB ⊥于点M 过点F 作FN AB ⊥于点N由题意可得 四边形ECAM 是矩形 ∴15AM CE == ∵30AB = ∴15BM AB AM =-= ∵博雅楼顶部E 的俯角为45︒ ∴45EBM ∠=︒ ∴45BEM ∠=︒ ∴15AC EM BM ===∵点A 是CD 的中点 ∴15==AD AC 由题意可得四边形AMFN 是矩形 ∴15NF AD == ∵尚美楼顶部F 的俯角为30︒ ∴60NBF ∠=︒ ∴30BFN ∠=︒ ∴2BF BN =∴在Rt BNF △中 222BNNF BF += ∴()222152BN BN +=∴解得53BN =∴3053FD AN AB BN ==-=-.故答案为:3053-.训练题05【2023·河北沧州·模拟预测】【答案】(1)37︒(2)树MN 的高度为5.25米【分析】(1)根据互余的性质计算即可.(2) 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米.解直角三角形求解即可.【详解】(1)如图1;905337α=︒-︒=︒;(2)如图 过点A 作AP MN ⊥ 垂足为P 则 1.5PN AB ==米.设MN x =米. 在Rt APM △中 4( 1.5)tan 373MP AP x ==-︒(米) 在Rt MCP 中 1.5CP MP x ==-(米) 4( 1.5)( 1.5) 1.253AC AP CP x x ∴=-=---=(米) 解得 5.25x =. 答:树MN 的高度为5.25米.训练题06【2023·四川成都·八年级期末联考】【答案】23【分析】过点E 作AE EF ⊥ 使得2AE DF == 证得AEM FDN ≅ 利用全等三角形的性质证得FN AM = 求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长 在Rt AEF 中利用勾股定理即可求解.【详解】解:过点E 作AE EF ⊥ 使得2AE DF == 如图所示∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF ==∴45DEF ∠=︒ 222222EF =+=∴9045AEM DEF ∠=︒-∠=︒∵等腰Rt EDF 中 90EDF ∠=︒ 2DE DF == DG EF ⊥∴45FDN ∠=︒∴FDN AEM ∠=∠在AEM △和FDN 中AE DF AEM FDN EM DN =⎧⎪∠=∠⎨⎪=⎩∴AEM FDN≅()SAS ∴FN AM =∴求FM FN +的最小值即求FM AM +的最小值 此时只有A M F 在一条直线上时 FM AM +的最小 即为AF 的长∴在Rt AEF 中()222222223AF AE EF =+=+=的最小值为23即FM FN故答案为:23训练题07【2022·陕西西安·滨河期末】【答案】4【分析】过P作PD⊥AB于D依据△AOB是等腰直角三角形可得∠BAO=∠ABO=45°=∠BPD进而得到△BDP是等腰直角三角形故PD22=PB当C P D在同一直线上时CD⊥AB PC+PD的最小值等于垂线段CD的长求得CD的长即可得出结论.【详解】如图所示过P作PD⊥AB于D∵直线y=x﹣3分别交x轴y轴于B A两点令x=0 则y=﹣3;令y=0 则x=3∴A(0 ﹣3)B(3 0)∴AO=BO=3又∵∠AOB=90°∴△AOB是等腰直角三角形∴∠BAO=∠ABO=45°=∠BPD∴△BDP是等腰直角三角形∴PD22=PB∴2PC+PB2=(PC22+PB)2=(PC+PD)当C P D在同一直线上即CD⊥AB时PC+PD的值最小最小值等于垂线段CD 的长此时△ACD是等腰直角三角形又∵点C(0 1)在y轴上∴AC=1+3=4∴CD22=AC=22即PC+PD的最小值为22∴2PC+PB的最小值为222⨯=4 故答案为:4.训练题08【2021·四川甘孜·中考真题】【答案】2或22【分析】分两种情况:当CE ⊥AB 时 设垂足为M 在Rt △AMC 中 ∠A =45° 由折叠得:∠ACD =∠DCE =22.5° 证明△BCM ≌△DCM 得到BM =DM 证明△MDE 是等腰直角三角形 即可得解;当CE ⊥AC 时 根据折叠的性质 等腰直角三角形的判定与性质计算即可;【详解】当CE ⊥AB 时 如图设垂足为M 在Rt △AMC 中 ∠A =45°由折叠得:∠ACD =∠DCE =22.5°∵等腰△ABC 中 顶角∠A =45°∴∠B =∠ACB =67.5°∴∠BCM =22.5°∴∠BCM =∠DCM在△BCM 和△DCM 中90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△BCM ≌△DCM (ASA )∴BM =DM由折叠得:∠E =∠A =45° AD =DE∴△MDE 是等腰直角三角形∴DM =EM设DM =x 则BM =x DE 2=x∴AD 2=x .∵AB=22+2∴2x2x=22+2 解得:x2=∴BD=2x=22;当CE⊥AC时如图∴∠ACE=90°由折叠得:∠ACD=∠DCE=45°∵等腰△ABC中顶角∠A=45°∴∠E=∠A=45°AD=DE∴∠ADC=∠EDC=90°即点D E都在直线AB上且△ADC△DEC△ACE都是等腰直角三角形∵AB=AC==22+2∴AD22=AC=22BD=AB﹣AD=(22+2)﹣(22)2=综上BD的长为2或22.故答案为:2或22.训练题09【2022·福建泉州·九年级联考】【答案】916【分析】利用等腰直角三角形的性质先证明AED BEA ∽ 可得34BE AE AB AD ==,设3BE x = 则4AB x AC ==,再证明ADE CDA △∽△ 可得34AC AE CD AD == 可得163CD x = 从而可得结论. 【详解】解:∵ABC 和AGF 是等腰直角三角形 ∴45,B F FAG AB AC ∠=∠=∠=︒=∵AEB AED ∠=∠∴AED BEA ∽∴AD AE DE AB BE AE ==,而4=AD 3AE = ∴34BE AE AB AD == 设3BE x = 则4AB x AC ==同理可得:ADE CDA △∽△∴AD AE DE CD AC AD == ∴34AC AE CD AD == ∴BE AC AB CD = ∴344x x x CD =,即163CD x = ∴3916163BE x CD x ==.训练题10【2021·宁夏固元·联考一模】【答案】D【详解】解:如图 延长AD 过点C 作CE ⊥AD 垂足为E∵ 即∴设AD =5x 则AB =3x∵∠CDE =∠BDA ∠CED =∠BAD∴△CDE ∽△BDA∴∴CE = DE =∴AE = ∴tan ∠CAD =.5tanB 3=53AD AB =12CE DE CD AB AD BD ===32x 52x 152x 15CE AE =。
大连中考2015带答案解析

2015辽宁省大连市中考数学试卷(解析版)(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015辽宁大连,1,3分)﹣2的绝对值是( ) A . 2 B .-2 C .21 D .-21 【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A .2. (2015辽宁大连,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2015辽宁大连,3,3分)下列长度的三条线段能组成三角形的是( ) A . 1,2,3 B .,1,2,3 C .3,4,8 D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015辽宁大连,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D. 5. (2015辽宁大连,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C.6. (2015辽宁大连,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2015辽宁大连,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( )A. 16B.14C.4D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B. 8. (2015辽宁大连,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9.(2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。
2015年中考真题精品解析 数学(辽宁锦州卷)精编word版(原卷版)

一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2015的相反数是( ) A .2015 B .﹣2015 C .12015 D .12015- 2.(3分)下列事件中,属于必然事件的是( ) A .明天我市下雨 B .抛一枚硬币,正面朝下C .购买一张福利彩票中奖了D .掷一枚骰子,向上一面的数字一定大于零 3.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为( ) 4.(3分)下列二次根式中属于最简二次根式的是( ) A .24 B .36 C .abD .4a + 5.(3分)在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) 6.(3分)如图,不等式组2020x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .7.(3分)一元二次方程2210x x -+=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根8.(3分)如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( ) A .(2,2),(3,2) B .(2,4),(3,1) C .(2,2),(3,1) D .(3,1),(2,2)二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为.10.(3分)数据4,7,7,8,9的众数是 .11.(3分)如图,已知l 1∥l 2,∠A =40°,∠1=60°,∠2= . 12.(3分)分解因式:22m n mn n -+=.13.(3分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到). 投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n ) 0.560.600.520.520.490.510.5014.(3分)如图,点A 在双曲线ky x=上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 . 15.(3分)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为 .16.(3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数12y x =的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则第4个正方形的边长是 ,S 3的值为 .三、解答题(本大题共2小题,每小题8分,共16分)17.(8分)先化简,再求值:21(1)11xx x +÷--,其中:323x =-. 18.(8分)如图,在平面直角坐标系中,线段AB 的两个端点是A (﹣5,1),B (﹣2,3),线段CD 的两个端点是C (﹣5,﹣1),D (﹣2,﹣3).(1)线段AB 与线段CD 关于直线对称,则对称轴是 ;(2)平移线段AB 得到线段A 1B 1,若点A 的对应点A 1的坐标为(1,2),画出平移后的线段A 1B 1,并写出点B 1的坐标为 .四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图: 根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?20.(10分)育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.五、解答题(本大题共2小题,每小题10分,共20分)21.(10分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=12AB,连接EF,判断四边形ADEF的形状,并加以证明.22.(10分)如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:2≈,结果精确到)六、解答题(本大题共2小题,每小题10分,共20分)23.(10分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.24.(10分)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.(1)图中线段AB所表示的实际意义是;(2)请直接写出y与x之间的函数关系式;(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?七、解答题(本题12分)25.(12分)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P 旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=12AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN 的边PQ 与射线AD 交于点E ,其他条件不变,探究在整个运动变化过程中,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,抛物线22y ax bx =++经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值.一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)2015的相反数是( ) A .2015 B .﹣2015 C .12015 D .12015- 【答案】B . 考点:相反数.2.(3分)下列事件中,属于必然事件的是( ) A .明天我市下雨 B .抛一枚硬币,正面朝下C .购买一张福利彩票中奖了D .掷一枚骰子,向上一面的数字一定大于零 【答案】D .考点:随机事件.3.(3分)如图是由四个相同的小正方体组成的立体图形,它的左视图为( ) 【答案】A .考点:简单组合体的三视图.4.(3分)下列二次根式中属于最简二次根式的是( ) A .24 B .36 C .abD .4a + 【答案】D .考点:最简二次根式.5.(3分)在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) 【答案】C .考点:1.二次函数的图象;2.一次函数的图象. 6.(3分)如图,不等式组2020x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .【答案】B . 【解析】试题分析:由①得,x >﹣2,由②得,x ≤2,故此不等式组的解集为:﹣2<x ≤2.故选B . 考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组. 7.(3分)一元二次方程2210x x -+=的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 【答案】A .考点:根的判别式.8.(3分)如图,线段AB 两个端点的坐标分别为A (4,4),B (6,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 和D 的坐标分别为( ) A .(2,2),(3,2) B .(2,4),(3,1) C .(2,2),(3,1) D .(3,1),(2,2) 【答案】C .考点:1.位似变换;2.坐标与图形性质.二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)已知地球上海洋面积约为316000000km 2,316000000这个数用科学记数法可表示为. 【答案】×108.考点:科学记数法—表示较大的数.10.(3分)数据4,7,7,8,9的众数是 . 【答案】7. 考点:众数.11.(3分)如图,已知l 1∥l 2,∠A =40°,∠1=60°,∠2= . 【答案】100°.考点:平行线的性质.12.(3分)分解因式:22m n mn n -+=.【答案】2(1)n m -.考点:提公因式法与公式法的综合运用.13.(3分)如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为 (精确到).投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n ) 0.560.600.520.520.490.510.50【答案】.考点:1.利用频率估计概率;2.图表型. 14.(3分)如图,点A 在双曲线ky x=上,AB ⊥x 轴于点B ,且△AOB 的面积是2,则k 的值是 . 【答案】﹣4.考点:反比例函数系数k 的几何意义.15.(3分)制作某种机器零件,小明做220个零件与小芳做180个零件所用的时间相同,已知小明每小时比小芳多做20个零件.设小芳每小时做x 个零件,则可列方程为 . 【答案】22018020x x=+. 考点:由实际问题抽象出分式方程.16.(3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数12y x =的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则第4个正方形的边长是 ,S 3的值为 . 【答案】272、656132.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.三、解答题(本大题共2小题,每小题8分,共16分)17.(8分)先化简,再求值:21(1)11xx x +÷--,其中:323x =-. 【答案】1x +,322-.考点:分式的化简求值.18.(8分)如图,在平面直角坐标系中,线段AB 的两个端点是A (﹣5,1),B (﹣2,3),线段CD 的两个端点是C (﹣5,﹣1),D (﹣2,﹣3).(1)线段AB 与线段CD 关于直线对称,则对称轴是 ;(2)平移线段AB 得到线段A 1B 1,若点A 的对应点A 1的坐标为(1,2),画出平移后的线段A 1B 1,并写出点B 1的坐标为 .【答案】(1)x 轴;(2)作图见试题解析,(4,4).考点:1.作图-平移变换;2.作图-轴对称变换.四、解答题(本大题共2小题,每小题10分,共20分)19.(10分)2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?【答案】(1)120,作图见试题解析;(2)360.【解析】试题分析:(1)用70分的人数除以占的百分比,得出抽取的总份数,补全统计图即可;(2)用优秀作品份数占的百分比,乘以900即可得到结果.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.20.(10分)育才中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.(1)小明认为,如果从3名候选主持人中随机选拔1名主持人,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?(2)如果从3名候选主持人中随机选拔2名主持人,请通过列表或树状图求选拔出的2名主持人恰好是1名男生和1名女生的概率.【答案】(1)不同意;(2)23.考点:1.列表法与树状图法;2.可能性的大小.五、解答题(本大题共2小题,每小题10分,共20分)21.(10分)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=12AB,连接EF,判断四边形ADEF的形状,并加以证明.【答案】四边形ADEF是平行四边形.考点:1.平行四边形的判定;2.三角形中位线定理;3.探究型.22.(10分)如图,三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(参考数据:2≈,结果精确到)【答案】.考点:解直角三角形的应用-方向角问题.六、解答题(本大题共2小题,每小题10分,共20分)23.(10分)如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.【答案】(1)证明见试题解析;(2)9.【解析】试题分析:(1)由圆内接四边形性质以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;(2)由相似三角形的判定与性质得出△FED∽△F AC,进而可求出直径.考点:1.切线的判定;2.相似三角形的判定与性质;3.综合题.24.(10分)开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y (元/本)与购买数量x (本)之间的函数关系如图所示.(1)图中线段AB 所表示的实际意义是 ;(2)请直接写出y 与x 之间的函数关系式;(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W (元)最大?最大利润是多少?【答案】(1)购买不超过10本此种笔记本时售价为5元/本;(2) 5 (010)0.1 6 (1020)4 (20)x y x x x <≤⎧⎪=-+<≤⎨⎪>⎩;(3)当小明购买15本时,该文具批发部在这次买卖中所获的利润最大,最大利润是元.所以y 与x 之间的函数关系式0.16y x =-+;考点:1.一次函数的应用;2.二次函数的最值;3.最值问题;4.分段函数;5.分类讨论;6.综合题.七、解答题(本题12分)25.(12分)如图①,∠QPN 的顶点P 在正方形ABCD 两条对角线的交点处,∠QPN =α,将∠QPN 绕点P 旋转,旋转过程中∠QPN 的两边分别与正方形ABCD 的边AD 和CD 交于点E 和点F (点F 与点C ,D 不重合).(1)如图①,当α=90°时,DE ,DF ,AD 之间满足的数量关系是 ; (2)如图②,将图①中的正方形ABCD 改为∠ADC =120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE +DF =12AD ,请给出证明; (3)在(2)的条件下,若旋转过程中∠QPN 的边PQ 与射线AD 交于点E ,其他条件不变,探究在整个运动变化过程中,DE ,DF ,AD 之间满足的数量关系,直接写出结论,不用加以证明.【答案】(1)DE +DF =AD ;(2)证明见试题解析;(3)①当点E 落在AD 上时,DE +DF =12AD ,②当点E 落在AD 的延长线上时,即12AD <DE +DF ≤32A D . 【解析】试题分析:(1)证明△APE ≌△DPF ,得到AE =DF ,即可得出结论DE +DF =AD ,(2)取AD 的中点M ,连接PM ,可证明△MDP 是等边三角形,△MPE ≌△FPD ,得到ME =DF ,由DE +ME =12AD ,即可得出DE +DF =12AD , 考点:1.四边形综合题;2.分类讨论;3.和差倍分;4.探究型;5.压轴题.八、解答题(本题14分)26.(14分)如图,在平面直角坐标系中,抛物线22y ax bx =++经过点A (﹣1,0)和点B (4,0),且与y 轴交于点C ,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点,连接CA ,CD ,PD ,PB .(1)求该抛物线的解析式;(2)当△PDB 的面积等于△CAD 的面积时,求点P 的坐标;(3)当m >0,n >0时,过点P 作直线PE ⊥y 轴于点E 交直线BC 于点F ,过点F 作FG ⊥x 轴于点G ,连接EG ,请直接写出随着点P 的运动,线段EG 的最小值.【答案】(1)20.5 1.52y x x =-++;(2)点P 的坐标是(1,3)或(2,3)或(-2,﹣3)或(5,﹣3);(345. 考点:1.二次函数综合题;2.分类讨论;3.二次函数的最值;4.最值问题;5.压轴题.。
2015年辽宁省沈阳市中考数学试题及解析

2015年辽宁省沈阳市中考数学试卷一.选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2015•沈阳)比0大的数是()C.﹣0.5 D.1A.﹣2 B.﹣2.(3分)(2015•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.3.(3分)(2015•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数4.(3分)(2015•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°5.(3分)(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2 6.(3分)(2015•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,47.(3分)(2015•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形8.(3分)(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.二.填空题(每小题4分,共32分)9.(4分)(2015•沈阳)分解因式:ma2﹣mb2=.10.(4分)(2015•沈阳)不等式组的解集是.11.(4分)(2015•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=cm时,BC与⊙A相切.12.(4分)(2015•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是.(填“甲”或“乙”)13.(4分)(2015•沈阳)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有个.14.(4分)(2015•沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.15.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要s能把小水杯注满.16.(4分)(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=.三.解答题17.(8分)(2015•沈阳)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.18.(8分)(2015•沈阳)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.19.(10分)(2015•沈阳)我国是世界上严重缺失的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息2008年全国总水量为亿;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.20.(10分)(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.21.(10分)(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)22.(10分)(2015•沈阳)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.23.(12分)(2015•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.24.(12分)(2015•沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF 的面积.25.(14分)(2015•沈阳)如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D 的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R 不与点A、C重合),请直接写出△PQR周长的最小值.2015年辽宁省沈阳市中考数学试卷参考答案与试题解析一.选择题(每小题3分,共24分,只有一个答案是正确的)1.(3分)(2015•沈阳)比0大的数是()C.﹣0.5 D.1A.﹣2 B.﹣考点:有理数大小比较.分析:正实数都大于0,负实数都小于0,据此判断即可.解答:解:A、B、C都是负数,故A 、B、C 错误;D、1是正数,故D正确;故选D .点评:本题考查了有理数比较大小,正数大于0是解题关键.2.(3分)(2015•沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一层有4个正方形,第二层最左边有一个正方形.故选A.点评:本题考查了三视图的知识.注意左视图是指从物体的左边看物体.3.(3分)(2015•沈阳)下列事件为必然事件的是()A.经过有交通信号灯的路口,遇到红灯B.明天一定会下雨C.抛出的篮球会下落D.任意买一张电影票,座位号是2的倍数考点:随机事件.分析:根据事件的分类对各选项进行逐一分析即可.解答:解:A、经过某一有交通信号灯的路口遇到红灯是随机事件,故本选项错误;B、明天可能是晴天,也可能是雨天,属于不确定性事件中的可能性事件,故本选项错误;C、在操场上抛出的篮球会下落,是必然事件,故本选项正确;D、任意买一张电影票,座位号是2的倍数为不确定事件,即随机事件,故本选项错误;故选:C.点评:本题考查的是事件的分类,即事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,熟知以上知识是解答此题的关键.4.(3分)(2015•沈阳)如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100°B.90°C.80°D.70°考点:平行线的性质;三角形内角和定理.分析:先根据平行线的性质求出∠C的度数,再根据三角形内角和定理求出∠A的度数即可.解答:解:∵DE∥BC,∠AED=40°,∴∠C=∠AED=60°,∵∠B=40°,∴∠A=180°﹣∠C﹣∠B=180°﹣40°﹣60°=80°.点评:本题考查的是平行线的性质及三角形内角和定理,先根据平行线的性质求出∠C的度数是解答此题的关键.5.(3分)(2015•沈阳)下列计算结果正确的是()A.a4•a2=a8B.(a5)2=a7C.(a﹣b)2=a2﹣b2D.(ab)2=a2b2考点:幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.分析:运用同底数幂的乘法,幂的乘方,积的乘方,完全平方公式运算即可.解答:解:A.a4•a2=a6,故A错误;B.(a5)2=a10,故B错误;C.(a﹣b)2=a2﹣2ab+b2,故C错误;D.(ab)2=a2b2,故D正确,故选D.点评:本题考查了完全平方公式,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.6.(3分)(2015•沈阳)一组数据2、3、4、4、5、5、5的中位数和众数分别是()A.3.5,5 B.4,4 C.4,5 D.4.5,4考点:众数;中位数.分析:先把数据按大小排列,然后根据中位数和众数的定义可得到答案.解答:解:数据按从小到大排列:2、3、4、4、5、5、5,中位数是4;数据5出现3次,次数最多,所以众数是5.故选C.点评:本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7.(3分)(2015•沈阳)顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形C.矩形D.正方形考点:中点四边形.专题:计算题.分析:菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.解答:解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B点评:此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8.(3分)(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.分析:根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.解答:解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.点评:本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.二.填空题(每小题4分,共32分)9.(4分)(2015•沈阳)分解因式:ma2﹣mb2=m(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:应先提取公因式m,再对余下的多项式利用平方差公式继续分解.解答:解:ma2﹣mb2,=m(a2﹣b2),=m(a+b)(a﹣b).点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.10.(4分)(2015•沈阳)不等式组的解集是﹣2≤x<3.考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分即可.解答:解:,由①得:x<3,由②得:x≥﹣2,则不等式组的解集为﹣2≤x<3,故答案为:﹣2≤x<3点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.(4分)(2015•沈阳)如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm 为半径作⊙A,当AB=6cm时,BC与⊙A相切.考点:切线的判定.分析:当BC与⊙A相切,点A到BC的距离等于半径即可.解答:解:如图,过点A作AD⊥BC于点D.∵AB=AC,∠B=30°,∴AD=AB,即AB=2AD.又∵BC与⊙A相切,∴AD就是圆A的半径,∴AD=3cm,则AB=2AD=6cm.故答案是:6.点评:本题考查了切线的判定.此题利用了切线的定义和含30度角的直角三角形的性质得到AB的长度的.12.(4分)(2015•沈阳)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为S甲2=65.84,乙跳远成绩的方差为S乙2=285.21,则成绩比较稳定的是甲.(填“甲”或“乙”)考点:方差.分析:根据方差的意义进行判断.解答:解:∵S甲2=65.84,S乙2=285.21,∴S甲2<S乙2,∴甲的成绩比乙稳定.故答案为甲.点评:本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.13.(4分)(2015•沈阳)在一个不透明的袋中装有12个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为,那么袋中的黑球有4个.考点:概率公式.分析:首先设袋中的黑球有x个,根据题意得:=,解此分式方程即可求得答案.解答:解:设袋中的黑球有x个,根据题意得:=,解得:x=4,经检验:x=4是原分式方程的解.即袋中的黑球有4个.故答案为:4.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2015•沈阳)如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=2:3.考点:位似变换.分析:由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.解答:解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.点评:此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.15.(4分)(2015•沈阳)如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要5s能把小水杯注满.考点:一次函数的应用.分析:一次函数的首先设解析式为:y=kx+b,然后利用待定系数法即可求得其解析式,再由y=11,即可求得答案.解答:解:设一次函数的首先设解析式为:y=kx+b,将(0,1),(2,5)代入得:,解得:,∴解析式为:y=2x+1,当y=11时,2x+1=11,解得:x=5,∴至少需要5s能把小水杯注满.故答案为:5.点评:此题考查了一次函数的实际应用问题.注意求得一次函数的解析式是关键.16.(4分)(2015•沈阳)如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=2﹣3.考点:旋转的性质.分析:连接BH,由正方形的性质得出∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,得出∠ABE=60°,由HL证明Rt△ABH≌Rt△EBH,得出∠ABH=∠EBH=∠ABE=30°,AH=EH,由三角函数求出AH,得出EH、FH,再求出KH=2FH,即可求出AK.解答:解:连接BH,如图所示:∵四边形ABCD和四边形BEFG是正方形,∴∠BAH=∠ABC=∠BEH=∠F=90°,由旋转的性质得:AB=EB,∠CBE=30°,∴∠ABE=60°,在Rt△ABH和Rt△EBH中,,∴Rt△ABH≌△Rt△EBH(HL),∴∠ABH=∠EBH=∠ABE=30°,AH=EH,∴AH=AB•tan∠ABH=×=1,∴EH=1,∴FH=﹣1,在Rt△FKH中,∠FKH=30°,∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2(﹣1)﹣1=2﹣3;故答案为:2﹣3.点评:本题考查了旋转的性质、正方形的性质、全等三角形的判定与性质、三角函数;熟练掌握旋转的性质和正方形的性质,并能进行推理计算是解决问题的关键.三.解答题17.(8分)(2015•沈阳)计算:+|﹣2|﹣()﹣2+(tan60°﹣1)0.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:先算立方根,绝对值,负整数指数幂和0指数幂,再算加减,由此顺序计算即可.解答:解:原式=3+﹣2﹣9+1=﹣7.点评:此题考查实数的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.(8分)(2015•沈阳)如图,点E为矩形ABCD外一点,AE=DE,连接EB、EC分别与AD相交于点F、G.求证:(1)△EAB≌△EDC;(2)∠EFG=∠EGF.考点:全等三角形的判定与性质;矩形的性质.专题:证明题.分析:(1)先由四边形ABCD是矩形,得出AB=DC,∠BAD=∠CDA=90°.由EA=ED,得出∠EAD=∠EDA,根据等式的性质得到∠EAB=∠EDC.然后利用SAS即可证明△EAB≌△EDC;(2)由△EAB≌△EDC,得出∠AEF=∠DEG,根据三角形外角的性质得出∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,即可证明∠EFG=∠EGF.解答:证明:(1)∵四边形ABCD是矩形,∴AB=DC,∠BAD=∠CDA=90°.∵EA=ED,∴∠EAD=∠EDA,∴∠EAB=∠EDC.在△EAB与△EDC中,,∴△EAB≌△EDC(SAS);(2)∵△EAB≌△EDC,∴∠AEF=∠DEG,∵∠EFG=∠EAF+∠AEF,∠EGF=∠EDG+∠DEG,∴∠EFG=∠EGF.点评:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形的性质,三角形外角的性质以及等式的性质,证明出△EAB≌△EDC是解题的关键.19.(10分)(2015•沈阳)我国是世界上严重缺失的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下:(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为625亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为750亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息2008年全国总水量为5000亿;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.考点:折线统计图;扇形统计图.专题:计算题.分析:(1)设2004年全国生活用水量为x亿m3,利用增长率公式得到x•(1+16%)=725,解得x=625,然后计算用(1+20%)乘以2004的全国生活用水量得到2008年全国生活用水量;(2)补全折线统计图即可;(3)用2008年全国生活用水量除以2008年全国生活用水量所占的百分比即可得到2008年全国总水量;(4)通过计算得到2.75×104×20%=5500>5000,根据题意可判断2008年我国不属于可能发生“水危机”的行列.解答:解:(1)设2004年全国生活用水量为x亿m3,根据题意得x•(1+16%)=725,解得x=625,即2004年全国生活用水量为625亿m3,则2008年全国生活用水量=625×(1+20%)=750(亿m3);(2)如图:(3)2008年全国总水量=750÷15%=5000(亿);(4)不属于.理由如下:2.75×104×20%=5500>5000,所以2008年我国不属于可能发生“水危机”的行列.故答案为625,750,5000.点评:本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了扇形统计图.20.(10分)(2015•沈阳)高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.考点:分式方程的应用.分析:设高速铁路列车的平均速度为xkm/h,根据高速铁路列车比普通铁路列车少运行了4.6h列出分式方程,解分式方程即可,注意检验.解答:解:设高速铁路列车的平均速度为xkm/h,根据题意,得:,去分母,得:690×3=690+4.6x,解这个方程,得:x=300,经检验,x=300是所列方程的解,因此高速铁路列车的平均速度为300km/h.点评:本题考查了分式方程的应用;根据时间关系列出分式方程时解决问题的关键,注意解分式方程必须检验.21.(10分)(2015•沈阳)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)考点:扇形面积的计算;圆内接四边形的性质;解直角三角形.分析:(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.解答:解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.点评:本题考查了扇形面积的计算,院内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.22.(10分)(2015•沈阳)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为3,k的值为12;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数y=的图象,当y≥﹣2时,请直接写出自变量x的取值范围.考点:反比例函数综合题.分析:(1)把点A(4,n)代入一次函数y=x﹣3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为8;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS 可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比函数的性质即可得到当y≥﹣2时,自变量x的取值范围.解答:解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.故答案为:3,12.点评:本题考查了反比例函数综合题,利用了待定系数法求函数解析式,菱形的性质和全等三角形的判定和性质,勾股定理,反比例函数的性质等知识,综合性较强,有一定的难度.23.(12分)(2015•沈阳)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B的坐标为(60,0),OA=AB,∠OAB=90°,OC=50.点P是线段OB上的一个动点(点P不与点O、B重合),过点P与y轴平行的直线l交边OA或边AB于点Q,交边OC或边BC于点R,设点P横坐标为t,线段QR的长度为m.已知t=40时,直线l恰好经过点C.(1)求点A和点C的坐标;(2)当0<t<30时,求m关于t的函数关系式;(3)当m=35时,请直接写出t的值;(4)直线l上有一点M,当∠PMB+∠POC=90°,且△PMB的周长为60时,请直接写出满足条件的点M的坐标.考点:一次函数综合题.分析:(1)利用等腰三角形的性质以及勾股定理结合B点坐标得出A,C点坐标;(2)利用锐角三角函数关系结合(1)中所求得出PR,QP的长,进而求出即可;(3)利用(2)中所求,利用当0<t<30时,当30≤t≤60时,分别利用m与t的关系式求出即可;(4)利用相似三角形的性质,得出M点坐标即可.解答:解:(1)如图1,过点A作AD⊥OB,垂足为D,过点C作CE⊥OB,垂足为E,∵OA=AB,∴OD=DB=OB,∵∠OAB=90°,∴AD=OB,∵点B的坐标为:(60,0),∴OB=60,∴OD=OB=×60=30,∴点A的坐标为:(30,30),∵直线l平行于y轴且当t=40时,直线l恰好过点C,∴OE=40,在Rt△OCE中,OC=50,由勾股定理得:CE===30,∴点C的坐标为:(40,﹣30);(2)如图2,∵∠OAB=90°,OA=AB,∴∠AOB=45°,∵直线l平行于y轴,∴∠OPQ=90°,∴∠OQP=45°,∴OP=QP,∵点P的横坐标为t,∴OP=QP=t,在Rt△OCE中,OE=40,CE=30,∴tan∠EOC=,∴tan∠POR==,∴PR=OP•tan∠POR=t,∴QR=QP+PR=t+t=t,∴当0<t<30时,m关于t的函数关系式为:m=t;(3)由(2)得:当0<t<30时,m=35=t,解得:t=20;如图3,当30≤t≤60时,∵OP=t,则BP=QP=60﹣t,∵PR∥CE,∴△BPR∽△BEC,∴=,∴=,解得:PR=90﹣t,则m=60﹣t+90﹣t=35,解得:t=46,综上所述:t的值为20或46;(4)如图4,当∠PMB+∠POC=90°且△PMB的周长为60时,此时t=40,直线l恰好经过点C,则∠MBP=∠COP,故此时△BMP∽△OCP,则=,即=,解得:x=15,故M1(40,15),同理可得:M2(40,﹣15),综上所述:符合题意的点的坐标为:M1(40,15),M2(40,﹣15).点评:此题主要考查了一次函数综合以及相似三角形的判定与性质和勾股定理等知识,利用分类讨论以及数形结合得出是解题关键.24.(12分)(2015•沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)当点H与点C重合时.①填空:点E到CD的距离是2;②求证:△BCE≌△GCF;③求△CEF的面积;(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF 的面积.考点:四边形综合题.分析:(1)①解直角三角形即可;②根据平行四边形的性质和折叠的性质得出∠B=∠G,∠BCE=∠GCF,BC=GC,然后根据AAS即可证明;③过E点作EP⊥BC于P,设BP=m,则BE=2m,通过解直角三角形求得EP=m,然后根据折叠的性质和勾股定理求得EC,进而根据三角形的面积就可求得;(2)过E点作EQ⊥BC于Q,通过解直角三角形求得EP=n,根据折叠的性质和勾股定理求得EH,然后根据三角形相似对应边成比例求得MH,从而求得CM,然后根据三角形面积公式即可求得.解答:解:(1)如图1,①作CK⊥AB于K,∵∠B=60°,∴CK=BC•sin60°=4×=2,∵C到AB的距离和E到CD的距离都是平行线AB、CD间的距离,∴点E到CD的距离是2,故答案为2;②∵四边形ABCD是平行四边形,∴AD=BC,∠D=∠B,∠A=∠BCD,由折叠可知,AD=CG,∠D=∠G,∠A=∠ECG,∴BC=GC,∠B=∠G,∠BCD=∠ECG,∴∠BCE=∠GCF,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS);③过E点作EP⊥BC于P,∵∠B=60°,∠EPB=90°,∴∠BEP=30°,∴BE=2BP,设BP=m,则BE=2m,∴EP=BE•sin60°=2m×=m,由折叠可知,AE=CE,∵AB=6,∴AE=CE=6﹣2m,∵BC=4,∴PC=4﹣m,在RT△ECP中,由勾股定理得(4﹣m)2+(m)2=(6﹣2m)2,解得m=,∴EC=6﹣2m=6﹣2×=,∵△BCE≌△GCF,∴CF=EC=,∴S△CEF=××2=;(2)①当H在BC的延长线上时,如图2,过E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=5,∴QH=5﹣n,在RT△EHQ中,由勾股定理得(5﹣n)2+(n)2=(6﹣2n)2,解得n=,∴AE=HE=6﹣2n=,∵AB∥CD,∴△CMH∽△BEH,∴=,即=,∴MH=,∴EM=﹣=∴S△EMF=××2=.②如图3,当H在BC的延长线上时,过E点作EQ⊥BC于Q,∵∠B=60°,∠EQB=90°,∴∠BEQ=30°,∴BE=2BQ,设BQ=n,则BE=2n,∴QE=BE•sin60°=2n×=n,由折叠可知,AE=HE,∵AB=6,∴AE=HE=6﹣2n,∵BC=4,CH=1,∴BH=3∴QH=3﹣n在RT△EHQ中,由勾股定理得(3﹣n)2+(n)2=(6﹣2n)2,解得n=∴BE=2n=3,AE=HE=6﹣2n=3,∴BE=BH,∴∠B=60°,∴△BHE是等边三角形,∴∠BEH=60°,∵∠AEF=∠HEF,∴∠FEH=∠AEF=60°,∴EF∥BC,∴DF=CF=3,∵AB∥CD,∴△CMH∽△BEH,∴=,即=,∴CM=1∴EM=CF+CM=4∴S△EMF=×4×2=4.综上,△MEF的面积为或4.点评:本题是四边形综合题,考查了解直角三角形,平行四边形的性质,折叠的性质勾股定理的应用,三角形相似的判定和性质,三角形面积等,熟练掌握性质定理是解题的关键.25.(14分)(2015•沈阳)如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(0,2),点B的坐标为(﹣3,0),点C的坐标为(1,0),点D的坐标为(﹣1,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R 不与点A、C重合),请直接写出△PQR周长的最小值.考点:二次函数综合题.分析:(1)令x=0,求得A(0,2),令y=0,求得B(﹣3,0),C(1,0),由y=﹣x2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(12分)(2015•鞍山)如图1所示,在菱形ABCD和菱形AEFG中,点A,B,E在同一条直线上,P是线段CF的中点,连接PD,PG.
(1)若∠BAD=∠AEF=120°,请直接写出∠DPG的度数及的值.
(2)若∠BAD=∠AEF=120°,将菱形ABCD绕点A顺时针旋转,使菱形ABCD的对角线AC恰好与菱形AEFG的边AE在同一直线上,如图2,此时,(1)中的两个结论是否发生改变?写出你的猜想并加以说明.
(3)若∠BAD=∠AEF=180°﹣2α(0°<α<90°),将菱形ABCD绕点A顺时针旋转到图3
的位置,求出的值.
2.(12分)(2015•本溪)如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)
(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD ∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是;(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明).
3.(12分)(2015•抚顺)在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC 边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)
4.(12分)(2015•葫芦岛)在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.
(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.
5.(12分)(2015•锦州)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD 和CD交于点E和点F(点F与点C,D不重
合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
6.(2015辽阳)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.(1)如图1,当∠ABC=90°时,△OEF的形状是;
(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当
BC=4,且=时,直接写出线段CE的长.
7.(2015沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F 是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.
(1)当点H与点C重合时.
①填空:点E到CD的距离是;
②求证:△BCE≌△GCF;
③求△CEF的面积;
(2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF
的面积.
8.(14分)(2015•营口)【问题探究】
(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】
(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD 的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
9.(2015朝阳)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根据“边角边”,可证△CEH≌,得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是.
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.
10.(2015辽宁大连,25,12分)如图,在△ABC中,点D、E、F分别在AB、BC、AC上,
且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如图1,当DE=DF时,图1中是否存在于AB相等的线段?若存在,请找出并加以证明。
若不存在说明理由。
(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示)。
11.(2015辽宁大连,24,11分)如图1,在△ABC 中,∠C=90°,点D 在AC 上,且CD>DA,DA=2.点P 、Q 同时从D 点出发,以相同的速度分别沿射线DC 、射线DA 运动。
过点Q 作AC 的垂线段QR,使QR=PQ,联接PR.当点Q 到达A 时,点P 、Q 同时停止运动。
设PQ=x.△PQR 和△ABC 重合部分的面积为S.S 关于x 的函数图像如图2所示(其中0<x ≤
78,7
8<x ≤m 时,函数的解析式不同)
(1)填空:n 的值为___________;
(2)求S 关于x 的函数关系式,并写出x 的取值范围。
图1
图2 (第
24题)
12.(2015丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.
(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;
(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).
○1如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;
○2如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;
○3如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP时,猜想此时PE与PF的数量关系,并给出证明;当BD=m·BP时,请直接写出PE与PF的数量关系.
13.(2015盘锦).如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.
(1)请直接写出线段BE与线段CD的关系:;
(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),
①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;
②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D
四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.
14.(2015铁岭)已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B 重合),连接AD.
(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE.
(2)如图2,当点D在线段BC延长线上时,探究AD、BD、CD三条线段之间的数量关系,写出结论并说明理由;(3)若BD=CD,直接写出∠BAD的度数.。