非线性回归模型的线性化讲解23页PPT
合集下载
《非线性回归分析》课件

• 常用的过滤方法包括皮 尔逊相关系数、方差分 析和卡方检验等。
封装式
• 基于模型的错误率和复 杂性进行特征选择。
• 常用的封装方法包括递 归特征消除法和遗传算 法等。
嵌入式
• 特征选择和模型训练同 时进行。
• 与算法结合在一起的特 征选择方法,例如正则 化(Lasso、Ridge)。
数据处理方法:缺失值填充、异常值 处理等
1
网格搜索
通过预定义的参数空间中的方格进行搜
随机搜索
2
索。
在预定义的参数空间中进行随机搜索。
3
贝叶斯调参
使用贝叶斯优化方法对超参数进行优化。
集成学习在非线性回归中的应用
集成学习是一种将若干个基学习器集成在一起以获得更好分类效果的方法,也可以用于非线性回归建模中。
1 堆叠
使用多层模型来组成一个 超级学习器,每个模型继 承前一模型的输出做为自 己的输入。
不可避免地存在数据缺失、异常值等问题,需要使用相应的方法对其进行处理。这是非线性回归 分析中至关重要的一环。
1 缺失值填充
常见的方法包括插值法、代入法和主成分分析等。
2 异常值处理
常见的方法包括删除、截尾、平滑等。
3 特征缩放和标准化
为了提高模型的计算速度和准确性,需要对特征进行缩放和标准化。
偏差-方差平衡与模型复杂度
一种广泛用于图像识别和计算机 视觉领域的神经网络。
循环神经网络
一种用于处理序列数据的神经网 络,如自然语言处理。
sklearn库在非线性回归中的应用
scikit-learn是Python中最受欢迎的机器学习库之一,可以用于非线性回归的建模、评估和调参。
1 模型建立
scikit-learn提供各种非线 性回归算法的实现,如 KNN回归、决策树回归和 支持向量机回归等。
封装式
• 基于模型的错误率和复 杂性进行特征选择。
• 常用的封装方法包括递 归特征消除法和遗传算 法等。
嵌入式
• 特征选择和模型训练同 时进行。
• 与算法结合在一起的特 征选择方法,例如正则 化(Lasso、Ridge)。
数据处理方法:缺失值填充、异常值 处理等
1
网格搜索
通过预定义的参数空间中的方格进行搜
随机搜索
2
索。
在预定义的参数空间中进行随机搜索。
3
贝叶斯调参
使用贝叶斯优化方法对超参数进行优化。
集成学习在非线性回归中的应用
集成学习是一种将若干个基学习器集成在一起以获得更好分类效果的方法,也可以用于非线性回归建模中。
1 堆叠
使用多层模型来组成一个 超级学习器,每个模型继 承前一模型的输出做为自 己的输入。
不可避免地存在数据缺失、异常值等问题,需要使用相应的方法对其进行处理。这是非线性回归 分析中至关重要的一环。
1 缺失值填充
常见的方法包括插值法、代入法和主成分分析等。
2 异常值处理
常见的方法包括删除、截尾、平滑等。
3 特征缩放和标准化
为了提高模型的计算速度和准确性,需要对特征进行缩放和标准化。
偏差-方差平衡与模型复杂度
一种广泛用于图像识别和计算机 视觉领域的神经网络。
循环神经网络
一种用于处理序列数据的神经网 络,如自然语言处理。
sklearn库在非线性回归中的应用
scikit-learn是Python中最受欢迎的机器学习库之一,可以用于非线性回归的建模、评估和调参。
1 模型建立
scikit-learn提供各种非线 性回归算法的实现,如 KNN回归、决策树回归和 支持向量机回归等。
非线性回归模型的线性化PPT

令则可将Yi*原 模Y1i 型, X化i* 为e标Xi 准的线性回归模型
Yi*
X
* i
ui
第23页,共23页。
15
第十五页,共23页。
2 可线性化的非线性回归模型的线性化方法
下面几种在研究经济问题时经常遇到的可线性化的非线性回归模型
(1)指数函数模型
yt aebxt ut ,
(b 0)
第23页,共23页。
yt aebxt ut ,
(b 0)
第十六页,共23页。
(1)指数函数模型
指数函数模型的一般形式为
Y 对上式两边取对数得到 i AebXi ui
令
ln Yi ln A bXi ui
Yi* ln Yi , ln A
则可将原模型化为标准的线性回归模型;
2021//1122//2266
Yi* bX i ui
令xt* = 1/xt,得 yt = a + b xt* + ut 上式已变换成线性回
归模型。
第23页,共23页。
12
第十二页,共23页。
(2) 双曲函数模型
1/yt = a + b/xt + ut
第23页,共23页。
yt = a + b/xt + ut
第十三页,共23页。
(3) 对数函数模型
对数函数模型的一般形式为:
在线性关系,但与未知参数
0 , 1之, 间, 存p 在着
线性关系,这种类型的非线性回归模型被称为非标
准线性回归模型。
其一般形式为:
Y 0 1 f1( X1, X 2 , , X k ) 2 f2 ( X1, X 2 , , X k )
非线性回归模型的线性化 (2)

Linearation Method)
可编辑ppt
16
第三节 案例分析
• 一、两要素不变替代弹性(CES)生产函 数的参数估计
可编辑ppt
17
1、CES函数的参数估计
Q A (1K 2L ) 1e (1+2=1)
Q:产出量,K:资本投入,L:劳动投入
:替代参数, 1、2:分配参数 方程两边取对数后,得到:
则原模型化为标准的线性回归模型:
Y i 0 1 Z 1 i 2 Z 2 i ... k Z k i
可编辑ppt
9
(2)双曲函数模型
• 双曲函数模型的一般形式:1
令:
Yi*
1
Yi
, Xi*
1 Xi
Yi
1 Xi
i
则双曲函数模型即可化为标准的线性回归模型:
Yi*Xi*i
可编辑ppt
10
(3)对数函数模型
• 令:Y i* ln Y i,0 ln A ,X * ji ln X ji,j 1 ,2 ...k
• 则幂函数模型即可变为标准的线性回归 模型:
Y i* 0 1 X 1 * i 2 X 2 * i ... k X k * i i
可编辑ppt
15
3、不可线性化的非线性回归模型的线性化估计方法
可编辑ppt
19
1、CES函数的参数估计
• 其中: Aˆ e ˆ 0
ˆ
ˆ 1 ˆ1 ˆ 2
ˆ
2 ˆ 3 ( ˆ1 ˆ1 ˆ 2
ˆ 2 )
mˆ ˆ 1 ˆ 2
可编辑ppt
20
2、倒数模型、多项式模型与变量的直接置换法
描述税收与税率关系的拉弗曲线:抛物线
s = a + b r + c r2
可编辑ppt
16
第三节 案例分析
• 一、两要素不变替代弹性(CES)生产函 数的参数估计
可编辑ppt
17
1、CES函数的参数估计
Q A (1K 2L ) 1e (1+2=1)
Q:产出量,K:资本投入,L:劳动投入
:替代参数, 1、2:分配参数 方程两边取对数后,得到:
则原模型化为标准的线性回归模型:
Y i 0 1 Z 1 i 2 Z 2 i ... k Z k i
可编辑ppt
9
(2)双曲函数模型
• 双曲函数模型的一般形式:1
令:
Yi*
1
Yi
, Xi*
1 Xi
Yi
1 Xi
i
则双曲函数模型即可化为标准的线性回归模型:
Yi*Xi*i
可编辑ppt
10
(3)对数函数模型
• 令:Y i* ln Y i,0 ln A ,X * ji ln X ji,j 1 ,2 ...k
• 则幂函数模型即可变为标准的线性回归 模型:
Y i* 0 1 X 1 * i 2 X 2 * i ... k X k * i i
可编辑ppt
15
3、不可线性化的非线性回归模型的线性化估计方法
可编辑ppt
19
1、CES函数的参数估计
• 其中: Aˆ e ˆ 0
ˆ
ˆ 1 ˆ1 ˆ 2
ˆ
2 ˆ 3 ( ˆ1 ˆ1 ˆ 2
ˆ 2 )
mˆ ˆ 1 ˆ 2
可编辑ppt
20
2、倒数模型、多项式模型与变量的直接置换法
描述税收与税率关系的拉弗曲线:抛物线
s = a + b r + c r2
第三章非线性回归分析-PPT文档资料

图 3.9
y t = b 0 + b 1 x t + b 2 x t2 + b 3 x t3 + u t
图 3.10
y t = b 0 + b 1 x t + b 2 x t2 + b 3 x t3 + u t
另一种多项式方程的表达形式是 y t = b 0 + b 1 x t + b 2 x t2 + u t (3.14) 其中 b1>0, b2>0 和 b1<0, b2<0 情形的图形分别见图 3.11 和 3.12。令 xt 1 = xt, x t 2 = xt 2,上 式线性化为, y t = b 0 + b 1 x t1 + b 2 x t2 + u t (3.15) 如经济学中的边际成本曲线、平均成本曲线与图 3.11 相似。
t t
k Lnb 估参数。曲线有拐点,坐标为( a 2 ,
) ,曲线的上下两部分对称于拐点。
be
图 3 .1 3 y t = k / (1 +
at u t
)
图 3 .1 4
b >0 情 形 的 图 形 见 图 3.7 。 x t 和 y t 的 关 系 是 非 线 性 的 。 令 y t* = 1/ y t, x t* = 1/ x t, 得
图 3.7
y t = 1/ ( a + b / x t ),
( b > 0)
图 3.8
y t = a + b /x t ,
(xt b 图 3 .6
e ut
yt = a xt b
⑷ 双曲线函数模型 1/ y t = a + b / x t + u t 也可写成, y t = 1/ ( a + b / x t + u t) y t* = a + b x t* + u t 已 变 换 为 线 性 回 归 模 型 。 其 中 ut 表 示 随 机 误 差 项 。 (3.9) (3.10)
06非线性回归模型-PPT课件

9
例6.2.1:设某商店1991—2000年的商品流通费用率和商 品零售额资料如表6.2.2所示。根据表中资料,配合适当 的回归模型分析商品零售额与流通费用率的关系,若 2019年该商店商品零售额为36.33万元,试预测2019年的 商品流通费用额。
解:
第一步,绘制散点图(见图6.2.1)。从图中可以清楚地看到:随着商品零
►由于这类模型的因变量没有变形,所以可以直接采用最小二
乘法估计回归系数并进行检验和预测。
– 第二类,间接代换型
►这类非线性回归模型经常通过对数变形代换间接地化为线性 回归模型。如式(6.1.5)、式(6.1.6)和式(6.1.7)。
6
►由于这类模型在对数变形代换过程中改变了因变量的形态, 使得变形后模型的最小二乘估计失去了原模型的残差平方和为
2
曲线的形式也因实际情况不同而有多种形式。配曲线问题 主要包括:
– 1、选配拟合曲线(即确定变量间函数的类型): ►可以根据理论分析或过去的实际经验事先确定; ►不能根据理论或过去积累的经验确定时,根据实际资 料作散点图,从其分布形状选择适当的曲线来配合。 – 2、确定相关函数中的未知参数
►最小二乘法是确定未知参数最常用的方法。
– (3)对数模型,其方程式为
y l n x u i 1 2 i i
– (4)三角函数模型,其方程式为
( 6 . 1 . 3 )
y s i n xu ( 6 . 1 . 4 ) i 1 2方程式为
x x u 0 1 1 i 2 2 i i y e i
– (6)幂函数模型,其方程式为
b y a x u i i i
i y = a b u i
04-非线性回归模型的线性化

t
i l
2 t
2
2016/3/29
6
4.2、线性化方法
1、 被解释变量与解释变量之间不存在线性关系,与
未知参数之间存在线性关系的模型,其线性化的方法 为:变量替换法;然后利用OLS估计参数。 2、被解释变量与解释变量、未知参数之间不存在线性 关系,但可线性化的模型的线性化方法为:对数法和 变量替换法;然后利用OLS估计参数。 3、真正意义上的非线性模型,需要进行线性化处理。
2016/3/29 5
4.1.3、非线性回归模型的基本假定
1.扰动项零均值: E(u ) 0, t 1, 2,..., n 2.无自相关性: E(u u ) 0; i, l 1, 2,..., n; i l 3.同方差性: E(u ) , t 1, 2,..., n ,其中为有限常 数。 4.解释变量为非随机变量 5.函数性质:一般情况下,假设 f (xt , β)为二阶连 续可微函数。 6.模型参数可识别 7.分布假定:零均值、同方差。在极大似然估 计中,需要对扰动项的分布做出假设,一般假 设其服从正态分布。
ˆ ˆ) log(a 1 ˆ ˆ b
2
ˆ e ) (a
ˆ 1
应当指出,在这种情况下,线性模型估计量
的性质(如 BLUE, 正态性等)只适用于变换后的参 ˆ 和 ˆ ,而不一定适用于原模型参数的估 数估计量 1 2 计量 a ˆ 。 ˆ和 b
2016/3/29 16
CES生产函数模型的线性化回归
最小二乘法
t
ˆ ) min S (β) S (β
min (Yt f (xt , β))2
t
2016/3/29 21
非线性最小二乘法的正规方程组
i l
2 t
2
2016/3/29
6
4.2、线性化方法
1、 被解释变量与解释变量之间不存在线性关系,与
未知参数之间存在线性关系的模型,其线性化的方法 为:变量替换法;然后利用OLS估计参数。 2、被解释变量与解释变量、未知参数之间不存在线性 关系,但可线性化的模型的线性化方法为:对数法和 变量替换法;然后利用OLS估计参数。 3、真正意义上的非线性模型,需要进行线性化处理。
2016/3/29 5
4.1.3、非线性回归模型的基本假定
1.扰动项零均值: E(u ) 0, t 1, 2,..., n 2.无自相关性: E(u u ) 0; i, l 1, 2,..., n; i l 3.同方差性: E(u ) , t 1, 2,..., n ,其中为有限常 数。 4.解释变量为非随机变量 5.函数性质:一般情况下,假设 f (xt , β)为二阶连 续可微函数。 6.模型参数可识别 7.分布假定:零均值、同方差。在极大似然估 计中,需要对扰动项的分布做出假设,一般假 设其服从正态分布。
ˆ ˆ) log(a 1 ˆ ˆ b
2
ˆ e ) (a
ˆ 1
应当指出,在这种情况下,线性模型估计量
的性质(如 BLUE, 正态性等)只适用于变换后的参 ˆ 和 ˆ ,而不一定适用于原模型参数的估 数估计量 1 2 计量 a ˆ 。 ˆ和 b
2016/3/29 16
CES生产函数模型的线性化回归
最小二乘法
t
ˆ ) min S (β) S (β
min (Yt f (xt , β))2
t
2016/3/29 21
非线性最小二乘法的正规方程组
非线性回归模型的线性化讲解

( b1>0, b2>0)
(b1<0, b2 <0
(2) 双曲函数模型
1 1 ui 双曲函数模型的一般形式为: Yi Xi 1 1 令 * * Yi , Xi Yi Xi
则可将原模型化为标准的线性回归模型
Yi X ui
* * i
双曲线函数还有另一种表达方式,
ln GDP i ln A ln Ki ln Li ui
Yi ln GDP i , X 1i ln Ki , X 2i ln Li
0 ln A, 1 , 2 则可将C-D生产函数模型转换成标准的二元线性回归模型
Yi 0 1 X1i 2 X 2i ui
Z p f p ( X1, X 2 ,, X k )
Y 0 1Z1 2 Z2 p Z p u
7
下面介绍在经济问题时经常遇到的几种非标准线性 回归模型 (1)多项式函数模型
多项式函数模型的一般形式为:
Yi 0 1 X i 2 X i2 k X ik ui
首先对上式做倒数变换得:
1 e X i ui Yi
令
1 Yi , X i* e X i Yi
*
则可将原模型化为标准的线性回归模型
Yi* X i* ui
15
2 可线性化的非线性回归模型的线性化方法
下面几种在研究经济问题时经常遇到的可线性化的非线性 回归模型 (1)指数函数模型
yt = b0 +b1 x 1t + b2 x 2t + b3 x 3t + ut 这是一个三元线性回归模型。如经济学中的总成本与产 品产量曲线与左图相似。
04-非线性回归模型的线性化.

对此方程采用对数变换 logM=loga+blog(r-2)
令Y=logM, X=log(r-2), β1= loga, β2=b
则变换后的模型为:
β β Y = + X + u 2020/10/1
t 1 2t t
15
将OLS法应用于此模型,可求得β1和β2的估计
值 ˆ1, ˆ2,从而可通过下列两式求出a和b估计值:
log(aˆ) ˆ1 (aˆ eˆ1 ) bˆ ˆ2
应当指出,在这种情况下,线性模型估计量 的性质(如BLUE,正态性等)只适用于变换后的参 数估计量 ˆ1和ˆ2 ,而不一定适用于原模型参数的估
计量 aˆ 和 bˆ 。
是重要的,因为变量的非线性可通过适当的重新
定义来解决。例如,对于
Y 1X12 2
X2
3
X3 X4
...
只需定义
Z1
X
2 1
,
Z2
X2 ,
Z3
X3 X4
...
该关系即可以重写为:
Y 1Z1 2Z2 3Z3 ... 此方程的变量和参数都是线性的。
2020/10/1
13
参数的非线性是一个严重得多的问题,因为它不
(2)参数的线性
因变量Y是各参数的线性函数。
2020/10/1
3
4.1.2. 非线性模型中变量间的关系
非线性模型的一般形式是 Yt f ( X1t , X 2t ,..., X kt ; 1, 2 ,..., m ) ut
其中f是关于解释变量和未知参数的一个非线性函
数。
上式中解释变量的个数k与参数个数m不一定相 等,
模型形式:
2表020示/10什/1 么意义呢?(思考)