江苏省启东市2014届高三上学期第一次检测数学试题_Word版含答案-复兰高考名师在线精编解析版

合集下载

0172高三启东市2014届高三上学期第一次检测数学试题

0172高三启东市2014届高三上学期第一次检测数学试题

启东市2014届第一次测试数学试题注 意 事 项1.本试卷包含填空题(第1题~第14题,共14题)、解答题(第15题~第20题,共6题),总分160分,考试时间为120分钟.2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题纸上.3.请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符. 4.请用书写黑色字迹的0.5毫米签字笔在答题卡纸的指定位置答题,在其它位置作答一律无效.一、填空题:本大题共14小题,每小题5分,共70分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上。

1.已知集合(]2 1A =-,,[)1 2B =-,,则A B = ▲ .2.命题“若a b >,则22ac bc >(∈b a ,R )”否命题的真假性为 ▲ (从真、假中选一个)3.已知扇形的周长是8cm ,圆心角为2 rad ,则扇形的弧长为 ▲ cm .4.已知α为钝角,且21sin =α,则与角α终边相同的角β的集合为 ▲ . 5.集合},3,2,0,1,2{--=A ,集合},1|||{R x x x B ∈>=,集合B A 的真子集有 ▲ 个.6.化简)23cos()2sin()sin()cos(αππααππα-⋅-⋅--的结果是 ▲ .7.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空) 8.已知01a <<,则满足xx acos sin >1的角x 所在的象限为 ▲ .9.定义在R 上的函数()f x ,对任意x ∈R 都有)()3(x f x f =+,当)0,3(-∈x 时,x x f 3)(=,则=)2014(f ▲ .10.若函数k x x x f -+=2log )((k ∈Z *)在区间(2,3)上有零点,则k = ▲ . 11.设f (x )是定义在R 上的奇函数,且y = f (x )的图像关于直线x =12对称,则f (1)+ f (2)+f (3)+ f (4) +f (5)=__ ▲___.12.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 13.正实数21,x x 及)(x f 满足1414)(+-=x x x f ,且1)()(21=+x f x f ,则)(21x x f +的最小值等于 ▲ .14.已知平面上的线段l 及点P ,任取l 上的一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记为d (P ,l ).设A (-3,1),B (0,1),C (-3,-1),D (2,-1),AB l =1,CD l =2, 若),(y x P 满足),(),(21l P d l P d =,则y 关于x 的函数解析式为 ▲ .二、解答题:本大题共6小题,共90分。

江苏省启东中学2014届高三上学期第一次月考试卷 英语 Word版含答案

江苏省启东中学2014届高三上学期第一次月考试卷 英语 Word版含答案

江苏省启东中学2013-2014学年度第一学期第一次质量检测高三英语试卷命题人:鲁娟娟说明:1.本卷分第Ⅰ卷和第Ⅱ卷两部分,满分120分,考试时间120分钟。

2.所有答案必须填写到答题卡和答卷纸上,否则无效。

第Ⅰ卷(选择题部分共85分)第一部分:听力(共两节,满分20分)略第二部分英语知识运用(共两节,满分35分)第一节:语法和词汇知识(共15小题;每小题1分,满分15分)从A. B. C. D四个选项中,选出可以填入空白处的最佳选项, 并在答题卡上将该项涂黑。

21. Everybody has ______ responsibility to save water, if future generations are to enjoy _____similar standard of living to the one we enjoy now.A. the; /B. a; aC. /; theD. a; the22. Scientists say human activity contributes to climate change, but they do not agree on the rate_______ climate change may be developing.A. with whichB. with thatC. at whichD. at that23. Mary ______ all the housework, she dropped herself into the sofa, sighing with relief.A. finishedB. had finishedC. having finishedD. finishing24. Each member country WTO must ___________ its laws and regulations and compete on theprinciple of fairness and cooperation.A. submit toB. cater toC. correspond toD. relate to25. The detective, ______ to be reading a newspaper, glanced at the man_____ next to a woman.A. pretending, seatedB. pretended, seatedC. pretending, seatD. pretended, seating26. It is wise to put milk on a shelf close to the bottom because it is especially _______ totemperature changesA. flexibleB. fundamentalC. sensitiveD. positive27. —I can’t manage this Sunday. Another time , but not Sunday.—Why_______ me earlier ? I’ve been looking forward to it.A. hadn’t you toldB. don’t you tellC. not to tellD. didn’t you tell28. Everyone doesn’t agree to the plan. Some support it while I’m one of ______ opposed to it.A. those whoB. whoC. thoseD. that29. No one in the department but Tom and I_________ that the director is going to resign.A. knowB. am to knowC. knowsD. have known30. ______ intelligence, you are no worse than others. It is your attitude that makes the greatestdifference.A. Regardless ofB. In terms ofC. In case ofD. On top of31. Fully ________ in looking after three children at home, she no longer has time to enjoyvarious activities in the club.A. attachedB. occupiedC. contributedD. devoted32. The newly built cafe, the walls of ______ painted light green, is really a peaceful place for us,especially after hard work.A. whoseB. itC. whatD. which33. He was _________of looking down upon the disabled person in public, but he turned a deafear to it.A. condemnedB. chargedC. accusedD. blamed34. ________ some teenagers don’t realize is ________ difficult life can be after they get addictedto drugs.A. What; howB. That; howC. What; what aD. That; what35. ---He is a very hard-working student.---________. As far as I know, he often burns the midnight oil.A. You can say that againB. Absolutely notC. Heaven knows.D. No way第二节完形填空(共20小题;每小题1分,满分20分)请认真阅读下面短文,从短文后各题所给的A. B. C. D四个选项中,选出最佳选项,并在答题卡上将该项涂黑。

江苏省启东中学高三数学上学期第一次月考试题 理(含解析)

江苏省启东中学高三数学上学期第一次月考试题 理(含解析)

江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(理)试卷【试卷综析】本试卷是高三文科理试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本能力为载体突出考查考纲要求的基本能力,重视学生科学素养的考查.试题重点考查:集合、命题,函数模型不等式、复数、向量、导数函数的应用、三角函数的性质、三角恒等变换与解三角形等,是一份非常好的试卷。

一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应 位置上.【题文】1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .【知识点】集合及其运算A1【答案解析】{2,4,5} ∵全集U={1,2,3,4,5,6.7},B={1,3,5,7},∴∁UB={2,4,6},又A={2,4,5},则A ∩(∁UB )={2,4,5}.故答案为:{2,4,5}【思路点拨】找出全集U 中不属于B 的元素,确定出B 的补集,找出A 与B 补集的公共元素,即可确定出所求的集合.【题文】2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .【知识点】命题及其关系A2【答案解析】[-4,0] ∵命题“∃x ∈R ,有x2-mx-m <0”是假命题,⇔“∀x ∈R ,有x2-mx-m ≥0”是真命题.令f (x )=x2-mx-m ,则必有△=m2-4m ≤0,解得-4≤m ≤0.故答案为:[-4,0].【思路点拨】令f (x )=x2-mx-m ,利用“∃x ∈R ,有x2-mx-m <0”是假命题⇔△=m2-4m ≤0,解出即可.【题文】3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.【知识点】充分条件、必要条件A2【答案解析】既不必要也不充分条件 ∵角α,β的终边在第一象限, ∴当α= 3π+2π,β= 3π,满足α>β,但sin α=sin β,则sin α>sin β不成立,即充分性不成立,若当α= 3π,β= 56π+2π,满足sin α>sin β,但α>β不成立,即必要性不成立,故“α>β”是“sin α>sin β”的既不必要也不充分条件,故答案为:既不必要也不充分条件.【思路点拨】根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.【题文】4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .【知识点】函数及其表示B1【答案解析】[1,3] ∵f (x )的定义域是[0,4],∴f (x+1)+f (x-1)的定义域为不等式组014014x x ≤+≤⎧⎨≤-≤⎩的解集,解得:1≤x ≤3. 故答案为:[1,3].【思路点拨】由题意可列不等式组014014x x ≤+≤⎧⎨≤-≤⎩,解之即可. 【题文】5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .【知识点】角的概念及任意角的三角函数C1【答案解析】-cos3 ∵角α终边上一点P 的坐标是(2sin3,-2cos3),∴2=,∴sin α= 2cos32-=-cos3.故答案为:-cos3. 【思路点拨】由题意,先求出点P 到原点的距离,再由定义求出即可.【题文】6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有▲ 条.【知识点】导数的应用B12【答案解析】3 ∵y=3x-x3,∴y'=f'(x )=3-3x2,∵P (2,2)不在曲线S 上,∴设切点为M (a ,b ),则b=3a-a3,f'(a )=3-3a2则切线方程为y-(3a-a3)=(3-3a2)(x-a ),∵P (2,2)在切线上,∴2-(3a-a3)=(3-3a2)(2-a ),即2a3-6a2+4=0,∴a3-3a2+2=0,即a3-a2-2a2+2=0,∴(a-1)(a2-2a-2)=0,解得a=1或a=1∴切线的条数为3条,故答案为3.【思路点拨】求函数的导数,设切点为M (a ,b ),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.【题文】7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .【知识点】同角三角函数的基本关系式与诱导公式C2 【答案解析】=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπtan cos cos (cos )sin ∂∂∂-∂∂=-1【思路点拨】利用三角函数诱导公式同角三角函数基本关系。

2014届高三数学区一检理科试题(带答案)

2014届高三数学区一检理科试题(带答案)

2014届高三数学区一检理科试题(带答案)高三理科数学质量检测试题(卷)2013.10本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案写在答题卡上,在本试卷上答题无效,本试卷满分150分,考试时间为120分钟.注意事项:1.考生答题前,先将条形码贴在条形码区,并将本人姓名、学校、准考证号填写在相应位置.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚,将答案书写在答题卡规定的位置上.3.所有题目必须在答题卡上作答,在试题卷上答题无效.参考公式:,,,,,.第Ⅰ卷(选择题)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知,函数的定义域为集合,则A.B.C.D.3.在一次投掷链球比赛中,甲、乙两位运动员各投掷一次,设命题是“甲投掷在80米之外”,是“乙投掷在80米之外”,则命题“至少有一位运动员没有投掷在80米之外”可表示为A.非或非B.或非C.非且非D.或4.设,,,则A.B.C.D.5.的内角的对边分别是,若,,,则A.B.C.D.6.已知,则的值等于A.B.C.D.7.函数的零点个数为A.B.C.D.8.已知函数,下列结论中错误的是A.存在,B.若是的极小值点,则在区间上单调递减C.若是的极值点,则D.函数无最大值9.已知函数为奇函数,且当时,,则A.B.C.D.10.若函数的图像关于直线对称,则的最大值是A.B.C.或D.不存在第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.11.计算:;12.若直线与幂函数的图像相切于点,则直线的方程为;13.已知函数,其导函数的部分图像如图所示,则函数的解析式为;14.观察下列不等式:①;②;③;…则第个不等式为;15.给出下列三个命题中,其中所有正确命题的序号是.①函数在上的最小值是.②命题“函数,当,且时,有”是真命题.③函数,若,且,则动点到直线的最小距离是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)叙述并证明余弦定理.17.(本小题满分12分)已知向量,,,设函数.(1)求的最小正周期;(2)求在上的最大值和最小值.18.(本小题满分12分)已知关于的不等式的解集为.(1)当时,求集合;(2)当且时,求实数的范围.19.(本小题满分12分)甲厂以千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是元.(1)求证:生产千克该产品所获得的利润为元;(2)要使生产千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.20.(本小题满分13分)设函数且是定义域为的奇函数.(1)求的值;(2)若,且在上的最小值为,求的值.21.(本小题满分14分)已知为函数图像上一点,为坐标原点,记直线的斜率.(1)若函数在区间上存在极值,求实数的取值范围;(2)当时,不等式恒成立,求实数的取值范围.高三理科数学质量检测试题答案2013.10一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.A2.D3.A4.C5.B6.D7.B8.B9.C10.B二、填空题:本大题共5小题,每小题5分,共25分.11.2912.13.14.15.②三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)解:余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC中,为A,B,C的对边,有,,.(5分)证明:在△ABC中,(8分)∴(10分)∴同理可证:,.(12分)注:此题还有其它证法,酌情按步骤给分.17.(本小题满分12分)解:(1)(4分)的最小正周期.即函数的最小正周期为.(6分)(2),,(8分)由正弦函数的性质,当,即时,取得最大值1.(10分)当,即时,取得最小值.(12分)18.(本小题满分12分)解:解:(1)当时,……5分(2),①……8分,②……11分由①②知……12分19.(本小题满分12分)解:(1)每小时生产千克产品,获利,生产千克该产品用时间为,………3分所获利润为元.………6分(2)生产900千克该产品,所获利润为………9分所以,最大利润为元.………12分20.(本小题满分13分)解:(1)(法一)由题意,对任意,,即,………2分即,,………4分因为为任意实数,所以.………5分(法二)因为且是定义域为的奇函数.………2分所以,即,………4分解得………5分(2)由(1),因为,所以,解得.………7分故,,………8分令,则,………10分由,得,所以,………11分当时,在上是增函数,则,,解得(舍去).………12分当时,则,,解得,或(舍去).(13分)21.(本题满分14分)解:(1)由题意,……………2分所以………………4分当时,;当时,.所以在上单调递增,在上单调递减,故在处取得极大值.………………5分因为函数在区间(其中)上存在极值,所以,得.即实数的取值范围是.……………7分(2)由得,……………8分令,则.……………10分令,则,……………………11分因为所以,故在上单调递增.所以,从而……………………12分在上单调递增,所以实数的取值范围是.…………………………………………14分。

江苏省启东市2014届高三上学期第一次检测数学试题

江苏省启东市2014届高三上学期第一次检测数学试题

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

遗憾,每个遗憾都有它的青春美。

4.方茴说:“可能人总有点什么事,是想忘也忘不了的。

”5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

启东市2014届第一次测试数学试题1.已知集合(]2 1A =-,,[)1 2B =-,,则A B = ▲ .2.命题“若a b >,则22ac bc >(∈b a ,R )”否命题的真假性为 ▲ (从真、假中选一个)3.已知扇形的周长是8cm ,圆心角为2 rad ,则扇形的弧长为 ▲ cm .4.已知α为钝角,且21sin =α,则与角α终边相同的角β的集合为 ▲ . 5.集合},3,2,0,1,2{--=A ,集合},1|||{R x x x B ∈>=,集合B A 的真子集有 ▲ 个.6.化简)23cos()2sin()sin()cos(αππααππα-⋅-⋅--的结果是 ▲ . 7.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空)8.已知01a <<,则满足x x a cos sin >1的角x 所在的象限为 ▲ .9.定义在R 上的函数()f x ,对任意x ∈R 都有)()3(x f x f =+,当)0,3(-∈x 时,x x f 3)(=,则=)2014(f ▲ .10.若函数k x x x f -+=2log )((k ∈Z *)在区间(2,3)上有零点,则k = ▲ .11.设f (x )是定义在R 上的奇函数,且y = f (x )的图像关于直线x =12对称,则f (1)+ f (2)+f (3)+ f (4) +f (5)=__ ▲___.12.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 13.正实数21,x x 及)(x f 满足1414)(+-=x x x f ,且1)()(21=+x f x f ,则)(21x x f +的最小值等于 ▲ .14.已知平面上的线段l 及点P ,任取l 上的一点Q ,线段PQ 长度的最小值称为点P 到线5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

江苏省启东中学高三数学上学期第一次月考试题 文(含解析)

江苏省启东中学高三数学上学期第一次月考试题 文(含解析)

江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(文)试卷【试卷综析】本试卷是高三文科试卷,考查学生解决实际问题的综合能力,是份较好的试卷. 以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、复数、向量、三视图、导数函数的应用、三角函数的性质、三角恒等变换与解三角形、命题等;一、填空题:(本大题共14小题,每小题5分,共70分)【题文】1.函数y =1log2x -2的定义域是 【知识点】对数与对数函数B7【答案解析】(1,+∞) ∵y=log2(x-1),∴x-1>0,x >1,函数y=log2(x-1)的定义域是(1,+∞)故答案为(1,+∞)【思路点拨】由函数的解析式知,令真数x-1>0即可解出函数的定义域.【题文】2.设函数f(x)=log2x ,则“a>b”是“f(a)>f (b)”的 条件【知识点】对数与对数函数B7【答案解析】充要 ∵函数f (x )=log2x ,在x ∈(0,+∞)上单调递增.∴“a >b ”⇔“f (a )>f (b )”.∴“a >b ”是“f (a )>f (b )”的 充要条件.故答案为:充要.【思路点拨】根据函数f (x )=log2x ,在x ∈(0,+∞)上单调递增.可得“a >b ”⇔“f (a )>f (b )”.【题文】3.若函数f(x) (x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f(x)=⎩⎪⎨⎪⎧x (1-x ),0≤x≤1,sin πx ,1<x≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=_____ _. 【知识点】周期性B4 【答案解析】516 函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )= (1)sin x x x π-≤≤⎧⎨⎩ 0x1 1<x<2, 则f (294)+f (416)=f (8- 34)+f (8- 76)=f (-34)+f (-76)=-f (34)-f (76) =−34(1−34)−sin 76π=−316+12=516.故答案为:516.【思路点拨】通过函数的奇偶性以及函数的周期性,化简所求表达式,通过分段函数求解即可.【题文】4. 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像【知识点】三角函数的图象与性质C3 【答案解析】向右平移12π个单位函数(3x- 4π),故只需将函数cos3x 的图象向右平移12π个单位,得到cos[3(x-12π)]=cos (3x-4π)的图象. 故答案为:向右平移12π个单位.【思路点拨】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【题文】5.已知集合A ={(0,1),(1,1),(-1,2)},B ={(x ,y)|x +y -1=0,x ,y ∈Z},则A∩B =_______ _.【知识点】集合及其运算A1【答案解析】{}0,11,2-(),()把集合A 中的(0,1)(-1,2)代入B 中成立(1,1)代入不成立,所以答案为{}0,11,2-(),()。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。

启东市启东中学届高三高考模拟考试数学试题及答案(5月)

启东市启东中学届高三高考模拟考试数学试题及答案(5月)

2.答题前请您务必将自己的姓名、准考证号用 规定位置.
0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的
3.请在答题卡上按照顺序在对应的答题区域内作答在其他位置作答一律无效.作答必须用 米黑色墨水的签字笔.请注意字体工整笔迹清楚.
0.5 毫
一. 填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题.卡.相.应.位.置.. 上.
▲.
4. 某学校为了解该校 600 名男生的百米成绩(单位: s),随机选择了 50 名学生进行调查,
下图是这 50 名学生百米成绩的频率分布直方图。根据样本的频率分布,估计这
600 名学
生中成绩在 [13,15] (单位: s)内的人数大约是
▲.
5. 阅读下列程序:输出的结果是
▲.
Read S 1
N,使 NO= , 其中 A( 0, 3),则圆心 M横坐标的取值范围 ▲ .
13. 设函数 f ( x) 在 R上存在导数 f ' (x) , 对任意的 x R 有 f ( x) f ( x) x2 , 且在
(0, ) 上 f ' (x) x . 若 f (2 a) f (a) 2 2a , 则实数 a 的取值范围 ▲
绝密★启用前
江苏省启东中学 2014 届高考模拟考试 2014.5.24 数学Ⅰ试题 启中数学教研组制卷
注 意事项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共 4 页,包含填空题(第 1 题~第 14 题)、解答题(第 15 题——第 20 题).本卷满分 160 分,考试时间为 120 分钟.考试结束后请将答题卡交回.
(2)在( 1)的条件下,过点 P 0,t t 0 作直线 l 与椭圆 C只有一个交点,且截椭圆 C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

启东市2014届第一次测试数学试题注 意 事 项1.本试卷包含填空题(第1题~第14题,共14题)、解答题(第15题~第20题,共6题),总分160分,考试时间为120分钟.2.答题前,请您务必将自己的姓名、考试证号用书写黑色字迹的0.5毫米签字笔填写在答题纸上.3.请认真核对监考员所粘贴的条形码上的姓名、考试证号是否与您本人的相符. 4.请用书写黑色字迹的0.5毫米签字笔在答题卡纸的指定位置答题,在其它位置作答一律无效.在做试卷之前,给大家推荐一个视频学习网站,我之前很长时间一直是做试卷之后,再到这上面去找一些相关的学习视频再复习一遍,效果要比只做试题要好很多,真不是打广告。

如果你有上网的条件,建议你也去学习一下,全站所有的视频都是免费的。

◆高考语文类在线听课地址:/yuwen◆高考数学类在线听课地址:/shuxue◆高考英语类在线听课地址:/yingyu◆高考化学类在线听课地址:/huaxue◆高考物理类在线听课地址:/wuli 其他学科的大家自己去找吧!◆高考在线题库:/exams一、填空题:本大题共14小题,每小题5分,共70分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上。

1.已知集合(]2 1A =-,,[)1 2B =-,,则A B = ▲ .2.命题“若a b >,则22ac bc >(∈b a ,R )”否命题的真假性为 ▲ (从真、假中选一个)3.已知扇形的周长是8cm ,圆心角为2 rad ,则扇形的弧长为 ▲ cm .4.已知α为钝角,且21sin =α,则与角α终边相同的角β的集合为 ▲ .5.集合},3,2,0,1,2{--=A ,集合},1|||{R x x x B ∈>=,集合B A 的真子集有 ▲ 个. 6.化简)23cos()2sin()sin()cos(αππααππα-⋅-⋅--的结果是 ▲ .7.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”, 则p 是q 的 ▲ .(从“逆命题、否命题、逆否命题、否定”中选一个填空) 8.已知01a <<,则满足xx acos sin >1的角x 所在的象限为 ▲ .9.定义在R 上的函数()f x ,对任意x ∈R 都有)()3(x f x f =+,当)0,3(-∈x 时,x x f 3)(=,则=)2014(f ▲ .10.若函数k x x x f -+=2log )((k ∈Z *)在区间(2,3)上有零点,则k = ▲ . 11.设f (x )是定义在R 上的奇函数,且y = f (x )的图像关于直线x =12对称,则f (1)+ f (2)+f (3)+ f (4) +f (5)=__ ▲___. 12.曲线2(1)1()e (0)e 2x f f x f x x '=-+在点(1,f (1))处的切线方程为 ▲ . 13.正实数21,x x 及)(x f 满足1414)(+-=x x x f ,且1)()(21=+x f x f ,则)(21x x f +的最小值等于 ▲ .14.已知平面上的线段l 及点P ,任取l 上的一点Q ,线段PQ 长度的最小值称为点P 到线段l 的距离,记为d (P ,l ).设A (-3,1),B (0,1),C (-3,-1),D (2,-1),AB l =1,CD l =2, 若),(y x P 满足),(),(21l P d l P d =,则y 关于x 的函数解析式为 ▲ .二、解答题:本大题共6小题,共90分。

请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤。

15.(本题满分14分)(1)设21tan -=α,求αααα22cos 2cos sin sin 1--的值; (2)已知cos(75°+α)=31,且-180°<α<-90°,求cos(15°-α)的值.16.(本题满分14分)已知集合{}032|2>--=x x x A ,{}R a a x x x B ∈=+-=,04|2. (1)存在B x ∈,使得φ≠B A ,求a 的取值范围; (2)若B B A = ,求a 的取值范围.17.(本题满分14分)已知定义域为R的函数12()2x x bf x a+-+=+是奇函数.(1)求,a b 的值;(2)判断函数)(x f 的单调性,并证明;18.(本题满分16分)(1)设扇形的周长是定值为(0)c c >,中心角α.求证:当2=α时该扇形面积最大; (2)设x x a a a y 22sin 2cos 221--+-=(-2≤a ≤2,x ∈R ).求证:y ≥-3.19.(本题满分16分)设A 是同时符合以下性质的函数)(x f 组成的集合:①),0[+∞∈∀x ,都有]4,1()(∈x f ;②)(x f 在),0[+∞上是减函数.(1)判断函数x x f -=2)(1和x x f )21(31)(2⋅+=(x ≥0)是否属于集合A ,并简要说明理由;(2)把(1)中你认为是集合A 中的一个函数记为)(x g ,若不等式)2()(++x g x g ≤k 对任意的x ≥0总成立,求实数k 的取值范围.20.(本题满分16分)已知函数d cx bx x x f +++=2331)(,设曲线)(x f y =在与x 轴交点处的切线为124-=x y ,)(x f y '=为)(x f 的导函数,满足)()2(x f x f '=-'.(1)求)(x f ;(2)设)()(x f x x g '=,m >0,求函数)(x g 在[0,m ]上的最大值;(3)设)(ln )(x f x h '=,若对于一切]1,0[∈x ,不等式)22()1(+<-+x h t x h 恒成立,求实数t 的取值范围.启东市2014届第一次测试数学答案一、填空题:1.答案:(2 2)-,;2.答案:真.分析 :否命题“若a ≤b ,则2ac ≤2bc ”;3.答案:4; 4.答案:⎭⎬⎫⎩⎨⎧∈+=Z k k ,652|ππββ,{}Z k k ∈+⋅=,150360| ββ;(制度不统一不给分) 5.答案:7;6.答案:α2cos -;7.答案:否命题;8.答案:二或四(少1个不给分) 9.答案:91,分析:周期为3,)2()23672()2014(-=-⨯=f f f 10.答案:4;11.答案:0;分析:)()()1(n f n f n f -=-=+; 12.答案:1e 2y x =-,分析:可得1)0(=f ,21)1(-=e f ,e f =')1(; 13.答案:54;由1)()(21=+x f x f 得14344221-+=x x x,144211414)(21212121+-=+-=+++xx x x x x x x f 6144)14(2122+-+--=x x ≥6144)14(22122+---x x 54511=-=, 当且仅当1441422-=-x x ,即342=x ,3log 42=x 时取得最小值. 14.答案:⎪⎩⎪⎨⎧>-≤<≤=)2(1)20(41)0(02x x x x x y 二、解答题:15.(1)原式αααααα2222cos 2cos sin sin cos sin --+=--------------------------3分 2t a n t a n 1t a n 22--+=ααα122141141-=-++=--------------------------------7分 (2)由-180°<α<-90°,得-105°<α+75°<-15°,故sin(75°+α)=322)75(cos 12-=+--α ,-------------10分 而cos(15°-α)=cos[90°-(75°+α)]= sin(75°+α)所以cos(15°-α)=322----------------------------------------------14分16.(1)由题意得φ≠B ,故a 4-16=∆≥0,解得a ≤4----①--------2分令4)2(4)(22-+-=+-=a x a x x x f ,对称轴为x =2, ∵φ≠B A ,又A =()()+∞-∞-,31, ,∴0)3(<f ,解得a <3-------------------------------------------②---------5分 由上①②得a 的取值范围为(-∞,3)--------------------------------------7分 (2)∵B B A = ,∴A B ⊆当0416<-=∆a ,即a >4时,B 是空集,--------------------------9分 这时满足B B A = ,当a 416-=∆≥0,即a ≤4--------③- 令a x x x f +-=4)(2,对称轴为x =2,∵()()φ≠+∞-∞-=,31, A , ∴0)1(<-f ,解得a <-5-------------④由③④得a <-5, ----------------------------------------------------------------12分 综上得a 的取值范围为(-∞,-5)∪(4,+∞)-----------------------------------14分 17.(1)因为()f x 是奇函数,且定义域为R ,所以0)0(=f ,-----2分∴111201()22xx b b f x a a +--=⇒=∴=++---------------------------4分又)1()1(f f -=-,知11122 2.41a a a --=-⇒=++当2,1a b ==时,()f x 是奇函数-------------------------------------------7分 (2)函数)(x f 在R 上为减函数----------------------------------------------9分证明:法一:由(Ⅰ)知11211()22221x x xf x +-==-+++, 令21x x <,则21220x x <<,02212>-x x -------------------------12分2112212222121)()(21x x x x x x x f x f +-=-=->0, 即)()(21x f x f >,∴函数)(x f 在R 上为减函数--------------------14分法二:由(1)知11211()22221x x xf x +-==-+++, 2)12(2ln 2)(+⋅-='∴xx x f ,-------------------------------------------------------12分 0)12(2ln 2,02ln ,02,2<+⋅-∴>>∴∈x x xR x , 即0)(<'∴x f ∴函数)(x f 在R 上为减函数.---------------------------14分18.(1)证明:设弧长为l ,半径为R ,则2R +l =c ,2l c R -=(l c >)----2分2221111()()22244216c l c c S Rl l cl l l -∴==⋅=-=--+2max ,216c c l S ∴==当时-------------------------------------------------------5分此时4c R =,而2==Rlα 所以当2=α时该扇形面积最大---------------------------------------7分(2)证明:)cos 1(2cos 22122x x a a a y ---+-=122)2(cos 222--+-=a a a x -----------------------------------------9分∵-2≤a ≤2,∴-1≤2a≤1,--------------------------------------------11分 ∴当2cos a x =时,min y ]6)2[(2112222--=--=a a a ---------14分又∵-2≤a ≤2,∴]6)2[(212min --=a y ≥-3,当a = 2时取等号,即y ≥-3.-------------------------------------------------------------------16分 法二:1cos 2)cos 1(222-++-=x x a a y2cos 2cos )]cos 1([22--++-=x x x a ----------------------------9分∵0≤x cos 1+≤2,-2≤a ≤2,-------------------------------------------11分 ∴当a =x cos 1+时,3)1(cos 2cos 2cos 22min --=--=x x x y ,--------------------14分又∵-1≤x cos ≤1,∴3)1(cos 2min --=x y ≥-3当x cos =1时取等号即y ≥-3.-------------------------------------------------------------------16分 19.(1)∵x x f -=2)(1在时是减函数,]2,()(1-∞∈x f ,∴)(1x f 不在集合A 中,-------------------------------------3分又∵x ≥0时,x )21(0<≤1,x)21(311⋅+<≤4,∴]4,1()(2∈x f ,--5分且xx f )21(31)(2⋅+=在),0[+∞上是减函数,∴x x f )21(31)(2⋅+=在集合A 中---------------------------------------------7分 (2))(x g =x x f )21(31)(2⋅+=,x x x x g x g )21(4152])21(31[])21(31[)2()(2+=⋅++⋅+=+++,---9分在[0,+∞)上是减函数,423)]2()([max =++x g x g ,---------------11分又由已知)2()(++x g x g ≤k 对任意的x ≥0总成立, ∴k ≥423,因此所求的实数k 的取值范围是),423[+∞-------------------16分 20.(1)c bx x x f ++='2)(2,∵)()2(x f x f '=-',∴函数)(x f 的图象关于直线x =1对称b =-1,-----2分 ∵曲线)(x f y =在与x 轴交点处的切线为124-=x y ,∴切点为(3,0),∴⎩⎨⎧='=4)3(0)3(f f ,解得c =1,d =-3,则331)(23-+-=x x x x f ----------------5分(2)∵22)1(12)(-=+-='x bx x x f ,∴⎩⎨⎧<-≥-=-=11|1|)(22x x x x x x x x x g --------------------------7分 当0<m ≤21时,2)(max )(m m m g x g -== 当21<m ≤221+时,41)21(max )(==g x g , 当m >221+时,m m m g x g -==2)(max )(, 综上⎪⎪⎪⎩⎪⎪⎪⎨⎧+>-+≤<≤<-=)221()22121(41)210(max )(22m m m m m m m x g ----------------------------------10分 (3)|1|ln 2)(-=x x h ,||ln 2)1(t x t x h -=-+,|12|ln 2)22(+=+x x h 当]1,0[∈x 时,|2x +1|=2x +1,所以不等式等价于12||0+<-<x t x 恒成立,2解得131+<<--x t x ,且x ≠t ,--------------------------------------------13分 由]1,0[∈x ,得]1,2[1--∈--x ,]4,1[13∈+x ,所以11<<-t , 又x ≠t ,∵ ]1,0[∉t ,∴所求的实数t 的的取值范围是01<<-t -------16分。

相关文档
最新文档