高中数学 第一章 导数及其应用 1.1.2 瞬时变化率——导数(二)习题 苏教版选修2-2

合集下载

高中数学第一章导数及其应用1.1.2瞬时变化率--导数学案苏教版选修2

高中数学第一章导数及其应用1.1.2瞬时变化率--导数学案苏教版选修2

1.1.2 瞬时变化率——导数导数定义求函数的导函数.1.瞬时速度(1)在物理学中,运动物体的位移与所用时间的比称为__________.(2)一般地,如果当Δt __________0时,运动物体位移s (t )的平均变化率s (t 0+Δt )-s (t 0)Δt无限趋近于一个______,那么这个______称为物体在t =t 0时的__________,也就是位移对于时间的____________.预习交流1做一做:如果质点A 按规律s =3t 2运动,则在t =3 s 时的瞬时速度为__________. 2.瞬时加速度一般地,如果当Δt __________时,运动物体速度v (t )的平均变化率v (t 0+Δt )-v (t 0)Δt无限趋近于一个_______,那么这个________称为物体在t =t 0时的_________,也就是速度对于时间的____________.3.导数(1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个______A ,则称f (x )在x =x 0处______,并称该______A 为函数f (x )在x =x 0处的______,记为______.(2)导数f ′(x 0)的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处切线的________. (3)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的________,记作________.预习交流2做一做:设函数f (x )可导,则当Δx →0时,f (1+Δx )-f (1)3Δx等于__________.预习交流3做一做:函数y =x +1x在x =1处的导数是__________.预习交流4利用导数求曲线切线方程的步骤有哪些?预习导引1.(1)平均速度 (2)无限趋近于 常数 常数 瞬时速度 瞬时变化率预习交流1:提示:s (3+Δt )=3(3+Δt )2=3[9+6Δt +(Δt )2]=27+18Δt +3(Δt )2.s (3)=3×32=27.Δs =s (3+Δt )-s (3)=18Δt +3(Δt )2, ∴Δs Δt =18+3Δt ,当Δt →0时,ΔsΔt→18. 2.无限趋近于0 常数 常数 瞬时加速度 瞬时变化率3.(1)常数 可导 常数 导数 f ′(x 0) (2)斜率 (3)导函数 f ′(x )预习交流2:提示:f (1+Δx )-f (1)3Δx =13·f (1+Δx )-f (1)Δx,当Δx →0时,f (1+Δx )-f (1)Δx =f ′(1),∴原式=13f ′(1).预习交流3:提示:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=(Δx )21+Δx.∴Δy Δx =Δx 1+Δx ,当Δx →0时,Δy Δx →0,即y =x +1x在x =1处的导数为0. 预习交流4:提示:利用导数的几何意义求曲线的切线方程的步骤: (1)求出函数y =f (x )在点x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0); (3)将所得切线方程化为一般式.一、求瞬时速度一辆汽车按规律s =at 2+1做直线运动,当汽车在t =2 s 时的瞬时速度为12 m/s ,求a .思路分析:先根据瞬时速度的求法得到汽车在t =2 s 时的瞬时速度的表达式,再代入求出a 的值.1.一个物体的运动方程为s =1-t +t 2.其中s 的单位是m ,t 的单位是s ,那么物体在3 s 末的瞬时速度是__________.2.子弹在枪筒中运动可以看作是匀变速运动,如果它的加速度是a =5×105 m/s 2,子弹从枪口射出时所用的时间为t 0=1.6×10-3s .求子弹射出枪口时的瞬时速度.根据条件求瞬时速度的步骤:(1)探究非匀速直线运动的规律s =s (t );(2)由时间改变量Δt 确定路程改变量Δs =s (t 0+Δt )-s (t 0);(3)求平均速度v =ΔsΔt;(4)运用逼近思想求瞬时速度,当Δt →0时,ΔsΔt→v (常数).二、利用导数的定义求函数的导数已知f (x )=x 2-3.(1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.思路分析:根据导数的定义进行求解.深刻理解概念是正确解题的关键.1.若函数f (x )=ax -2在x =3处的导数等于4,则a =__________.2.(1)求函数f (x )=1x +1在x =1处的导数;(2)求函数f (x )=2x 的导数.结合函数,先求出Δy =f (x 0+Δx )-f (x 0),再求ΔyΔx=f (x 0+Δx )-f (x 0)Δx ,当Δx →0时,求ΔyΔx 的值,即f ′(x 0).三、导数的几何意义已知y =2x 3上一点A (1,2),求点A 处的切线斜率.思路分析:为求得过点(1,2)的切线斜率,可以从经过点(1,2)的任意一条直线(割线)入手.1.抛物线y =14x 2在点Q (2,1)处的切线方程为__________.2.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程.1.导数的几何意义是指:曲线y =f (x )在(x 0,y 0)点处的切线的斜率就是函数y =f (x )在x =x 0处的导数,而切线的斜率就是切线倾斜角的正切值.2.运用导数的几何意义解决曲线的切线问题时,一定要注意所给的点是否是在曲线上,若点在曲线上,则该点的导数值就是该点处的曲线的切线的斜率;若点不在曲线上,则该点的导数值不是切线的斜率.3.若所给的点不在曲线上,应另设切点,然后利用导数的几何意义建立关于所设切点横坐标的关系式进行求解.1.若一物体的运动方程为s =2-12t 2,则该物体在t =6时的瞬时速度为__________.2.已知曲线y =12x 2-2上一点P ⎝⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为__________. 3.函数f (x )=1-3x 在x =2处的导数为__________.4.一质点按规律s =2t 3运动,则t =2时的瞬时速度为__________.5.如图,函数y =f (x )的图象在点P 处的切线是l ,则f (2)+f ′(2)=__________.答案:活动与探究1:解:∵s =at 2+1,∴s (2+Δt )=a (2+Δt )2+1=4a +4a ·Δt +a ·(Δt )2+1.于是Δs =s (2+Δt )-s (2)=4a +4a ·Δt +a ·(Δt )2+1-(4a +1)=4a ·Δt +a ·(Δt )2,∴Δs Δt =4a ·Δt +a ·(Δt )2Δt=4a +a ·Δt . 当Δt →0时,ΔsΔt→4a ,依题意有4a =12,∴a =3. 迁移与应用:1.5 m/s 解析:s (3+Δt )=1-(3+Δt )+(3+Δt )2=(Δt )2+5Δt +7,所以s (3+Δt )-s (3)=(Δt )2+5Δt , 故s (3+Δt )-s (3)Δt=Δt +5,于是物体在3 s 末的瞬时速度,即Δt →0时,ΔsΔt→5(m/s).2.解:运动方程为s =12at 2.∵Δs =12a (t 0+Δt )2-12at 20=at 0·Δt +12a ·(Δt )2,∴Δs Δt =at 0+12a ·Δt ,∴Δt →0时,ΔsΔt→at 0. 由题意知a =5×105(m/s 2),t 0=1.6×10-3(s),故at 0=8×102=800(m/s).即子弹射出枪口时的瞬时速度为800 m/s.活动与探究2:解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2-3-(22-3)Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2-3-(a 2-3)Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .迁移与应用:1.4 解析:由题意知f ′(3)=4,而f ′(3)=Δy Δx =a (3+Δx )-2-(3a -2)Δx=a ,当Δx →0时,ΔyΔx→a ,故a =4.2.解:(1)(导数定义法)∵Δy =f (1+Δx )-f (1)=12+Δx -12=-Δx 2(2+Δx ),∴ΔyΔx=-12(2+Δx ),从而Δx →0时,2+Δx →2,∴f (x )在x =1处的导数等于-14.(导函数的函数值法)∵Δy =1x +Δx +1-1x +1=-Δx (x +Δx +1)(x +1),∴ΔyΔx=-1(x +Δx +1)(x +1),从而Δx →0时,Δy Δx →-1(x +1)2,于是f ′(1)=-1(1+1)2=-14.(2)∵Δy =f (x +Δx )-f (x )=2x +Δx -2x ,∴Δy Δx =2x +Δx -2x Δx =(2x +Δx -2x )(x +Δx +x )Δx (x +Δx +x )=2x +Δx +x,从而Δx →0时,Δy Δx →1x.活动与探究3:解:设A (1,2),B (1+Δx,2(1+Δx )3),则割线AB 的斜率为k AB =2(1+Δx )3-2Δx =6+6Δx +2(Δx )2,当Δx 无限趋近于0时,k AB 无限趋近于常数6,从而曲线y =2x 3在点A (1,2)处的切线斜率为6.迁移与应用:1.x -y -1=0 解析:∵y =14x 2,Δy =14(2+Δx )2-14×22=Δx +14(Δx )2,Δy Δx=1+14Δx , ∴当Δx →0时,Δy Δx →1,即f ′(2)=1,由导数的几何意义得抛物线y =14x 2在点Q (2,1)处的切线的斜率为1.∴切线方程为y -1=x -2,即x -y -1=0.2.解:因为Δy Δx =3(1+Δx )2-(1+Δx )-(3×12-1)Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0. 当堂检测1.-6 解析:Δs Δt =s (6+Δt )-s (6)Δt =2-12(6+Δt )2-(-16)Δt =-12Δt -6,∴当Δt →0时,ΔsΔt→-6.2.45° 解析:∵Δy Δx =12(1+Δx )2-2-12×1+2Δx =Δx +12(Δx )2Δx =1+12Δx ,当Δx无限趋近于0时,1+12Δx 无限趋近于1,∴曲线y =12x 2-2在点P ⎝⎛⎭⎪⎫1,-32处的切线斜率为1,∴倾斜角为45°.3.-3 解析:Δy =f (2+Δx )-f (2)=-3Δx ,Δy Δx =-3,则Δx 趋于0时,ΔyΔx=-3.∴f (x )在x =2处的导数为-3.4.24 解析:Δs =s (2+Δt )-s (2)=2(2+Δt )3-2×23=2×[8+6(Δt )2+12Δt +(Δt )3]-16=24Δt +12(Δt )2+2(Δt )3, ∴Δs Δt =24+12Δt +2(Δt )2,则当Δt →0时,Δs Δt →24. 5.98解析:由题图可知,直线l 的方程为9x +8y -36=0. 当x =2时,y =94,即f (2)=94.又切线斜率为-98,即f ′(2)=-98,∴f (2)+f ′(2)=98.欢迎您的下载,资料仅供参考!。

2017 2018版高中数学 第1章 导数及其应用 112 瞬时变化率导数 苏教版选修2 21

2017 2018版高中数学 第1章 导数及其应用 112 瞬时变化率导数 苏教版选修2 21

跟踪训练 2 一质点M按运动方程 s(t)=at2+1做直线运动 (位移单位: m, 时间单位: s),若质点M在t=2 s时的瞬时速度为 8 m/s,求常数a的值. 解 质点M在t=2 s时的瞬时速度即为函数在 t=2 s处的瞬时变化率 . ∵质点M在t=2 s附近的平均变化率为 ΔΔst =s?2+ΔΔt?t-s?2?=a?2+ΔΔtt?2-4a=4a+aΔt, ∴当 Δt→0 时,ΔΔst→4a=8,即 a=2.
第1章 1.1 导数的概念
1.1.2 瞬时变化率 ——导数
学习目标
1.理解切线的含义 . 2.理解瞬时速度与瞬时加速度 . 3.掌握瞬时变化率 ——导数的概念,会根据定义求一些简单函数在某 点处的导数 .
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 曲线上某一点处的切线 如图, Pn的坐标为 (xn,f(xn))(n=1,2,3,4 ,…),点 P的坐标为 (x0,y0).
题型探究
类型一 求曲线上某一点处的切线 例 1 已知曲线 y=x+1x上的一点 A(2,52),用切线斜率定义求: (1)点A处的切线的斜率;
解答
(2)点A处的切线方程 . 解 切线方程为 y-52=34(x-2), 即3x-4y+4=0.
解答
反思与感悟
根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求 出切线的斜率,即在该点处, Δx无限趋近于0时,Δy 无限趋近的常数 .
1.导数
设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),若Δx 无限趋近时于,0 比 值
= Δy f?x0+Δ无x?-限f趋?x近0? 于一个
Δx
Δx
,常则数称Af(x)在x=x0处

高中数学 第1章 导数及其应用 1.2.1 常见函数的导数知识导航 苏教版选修2-2-苏教版高二选修

高中数学 第1章 导数及其应用 1.2.1 常见函数的导数知识导航 苏教版选修2-2-苏教版高二选修

1.2 导数的运算1.2.1 常见函数的导数知识梳理(1)C′=_____________(C 为常数); (2)(x n )′=_____________;(3)(sinx)′=_____________;(4)(cosx)′=_____________;(5)(e x )′=_____________;(6)(a x )′=_____________;(7)(lnx)′=_____________;(8)(log a x)=_____________;(9)(x α)′=_____________.知识导学由导数定义给出了求导数的最基本方法,因为导数是由极限来定义的,所以求导数总是归结到求极限运算.这显然比较麻烦,甚至困难,但是找到一些常用函数的导数将使求导工作大大简便,因此要熟记常见函数的导数.疑难突破通过几个实例归纳出y=x n 的导数的形式;熟记基本初等函数的求导公式.剖析:通过对函数y=kx+b,y=x 2,y=x 3,y=x1及y=x 几种函数导数的推导过程,总结出y=x n 的导数的形式,这是培养学生善于思考及善于归纳的好习惯.正确记忆基本初等函数的求导公式是本节课的重点和难点,只有熟练记忆才能用起来方便.常用函数的导数公式是求导的基础,高考中经常涉及,但单独考查利用导数公式求导数的题目并不多,常与其他知识联系起来考查.典题精讲【例1】 (1)求曲线y=sinx 在点P(23,3π)处切线的斜率k; (2)物体运动方程为s=3414-t ,求当t=5时瞬时物体运动的速度v. 思路分析:本题是一道导数应用题,必须从导数的公式入手.解:(1)(sinx)′=cosx,当x=3π时,k=213cos =π. (2)s′=(3414-t )′=t 3,当t=5时,v=125. 变式训练:已知点P(-1,1),点Q(2,4)是曲线y=x 2上的两点,求与直线PQ 平行的曲线y=x2的切线方程.思路分析:本题是已知斜率求点的坐标的问题.可先设出点的坐标,再代入方程求得切线方程.解:y′=(x 2)′=2x,设切点坐标为M(x 0,y 0),则当x=x 0时,切线斜率k=2x 0,因为PQ 的斜率为1214+-=1.又切线平行于直线PQ,所以k=2x 0=1,即x 0=21. 所以切点M(41,21).所求切线方程为2141-=-x y ,即4x-4y-1=0. 【例2】 求曲线y=2x 2-1的斜率为4的切线方程.思路分析:导数反映了函数在某一点处的变化率,它的几何意义就是相应曲线在该点处的切线的斜率.由于切线的斜率已知,只要确定切点的坐标,先利用导数求出切点的横坐标,再根据切点在曲线上确定切点的纵坐标,从而可求出切线方程.解:设切点为P(x 0,y 0),则y′=(2x 2-1)′=4x.当x=x 0时,4=4x 0,∴x 0=1;当x 0=1时,y 0=1,∴切点P 的坐标为(1,1).故所求切线方程为y-1=4(x-1),即4x-y-3=0.绿色通道:联系实际,深刻理解导数的意义,在不同的区域代表的具体意义不一样,但本质上都是指事物在某过程中的变化率的极值.变式训练:求过曲线y=cosx 上点P(21,3π),且与过这点的切线垂直的直线方程. 思路分析:首先要求切线的斜率. 解:因为y=cosx,所以y′=(cosx)′=-sinx.曲线在点P(21,3π)处的切线斜率是233sin -=-π, 所以过点P 且与切线垂直的直线的斜率为33232=. 所以所求直线方程为)3(33221π-=-x y , 即233232+--πy x =0. 【例3】 已知直线x+2y-4=0与抛物线y 2=4x 相交于A 、B 两点.O 是坐标原点,试在抛物线的上求一点P,使△ABP 面积最大.思路分析:依题意|AB|为定值,只要P 点到AB 的距离最大,S △ABP 就最大,问题转化为在抛物线的上求一点P 到直线AB 的距离最大.由导数的几何意义,知P 为抛物线上与AB 平行的切线的切点,求出P 点坐标即可,也可用解析几何知识求解.解法一:如图1-2-1所示,|AB|是定值,△PAB 的面积最大.只需P 到AB 的距离最大,即只需点P 是抛物线上平行于AB 的切线的切点.设P(x,y),由图知点P 在x 轴下方的图象上,所以x y 2-=.所以y′=x1-.图1-2-1 因为k AB =21-,所以211-=-x ,x=4. 又y 2=4x(y <0)时,y=-4,所以P(4,-4). 解法二:设P(020,4y y ).因为|AB|为定值,要使△PAB 的面积最大,只需P 到直线AB:x+2y-4=0的距离最大.设距离为d,则 d=|8)4(41|515|4241|20020-+=-+y y y , y 0∈(424,244---).当y 0=-4时,d 最大.此时△PAB 的面积最大,所以P(4,-4).绿色通道:解法一是利用导数的几何意义解题,注意数形结合思想的运用;解法二是用函数的方法求P 点的坐标,注意配方法的运用.变式训练:已知抛物线c 1:y=x 2+2x 和c 2:y=-x 2+a.如果直线l 同时是c 1和c 2的切线,称l是c 1和c 2的公切线.公切线上两个切点之间的线段,称为公切线段.(1)a 取什么值时,c 1和c 2有且仅有一条公切线?写出此公切线方程.(2)若c 1和c 2有两条公切线,证明相应的两条公切线段互相平分.(1)解:函数y=x 2+2x 的导数y′=2x+2,曲线c 1在点P(x 1,x 12+2x 1)的切线方程是y-(x 12+2x 1)=(2x 1+2) (x-x 1),即y=(2x 1+2)x-x 12.①函数y=-x 2+a 的导数为y′=-2x,曲线c 2在点Q(x 2,-x 22+a)处的切线方程是y-(-x 22+a)=-2x 2(x-x 2),即y=-2x 2x+x 22+a.②如果直线l 是过P 和Q 的公切线,则①式和②式都是l 的方程,所以⎩⎨⎧+=--=+.,1222121a x x x x 消去x 2得方程2x 12+2x 1+1+a=0. 若判别式Δ=4-4×2(1+a)=0,即a=21-,解得x 1=21-.此时点P 与Q 重合,即当a=21-时,c 1和c 2有且仅有一条公切线,由①得公切线方程为41-=x y . (2)证明:由(1)知,当a <21-时,c 1和c 2有两条公切线.设一条公切线上的切点为P(x 1,y 1), Q(x 2,y 2),其中P 在c 1上,Q 在c 2上,则有x 1+x 2=-1,y 1+y 2=x 12+2x 1+(-x 22+a)=x 12+2x 1-(x 1+1)2+a=-1+a,线段PQ 的中点坐标为(21,21a +--). 同理,另一条公切线段P′Q′的中点坐标也是(21,21a +--),所以公切线段PQ 和P′Q′互相平分.问题探究问题:函数y=f(x)在x 0处的导数是如何定义的?若x 0∈(a,b),y=f(x)在x 0处可导,则y=f(x)在(a,b)内处处可导吗?导思:函数y=f(x)在x 0处可导即当x 0∈(a,b )时,y=f(x)在x 0处可导.与y=f(x)在(a,b)内处处可导是两码事.函数y=f(x)在(a,b)内处处可导,必须满足对任意的x 0∈(a,b)时,y=f(x)在x 0处可导.探究:自变量x 在x 0处有增量Δx,那么相应地函数y 也有增量Δy=f(x 0+Δx)-f(x 0).若Δx 趋近于0时,xy ∆∆存在,则这个值就是y=f(x)在x=x 0处的导数,x 0∈(a,b)时,y=f(x)在x 0处可导,只能说明在(a,b)内某一点x 0处可导,而不能说明在(a,b)内处处可导.。

高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.2 导数的概念同步课件 新人教A版选

高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.2 导数的概念同步课件 新人教A版选

(3)求极限,得导数 f′(x0)=
Δy Δx.
[变式训练] (1)设 f(x)=ax3+2,若 f′(-1)=3,则 a =( )
A.-1 B.12 C.1 D.13 (2)求函数 y=x42在 x=2 处的导数. (1)解析: 因为 f′(-1)= f(-1+ΔxΔ)x-f(-1)=
a(ΔxΔ-x1)3+a=3a,所以 3a=3,解得 a=1. 答案:C
两个自变量的差,即(x0+Δx)-x0.在求解此类问题时要
严格按照定义,注意分子与分母相应的符号的一致性.
[正确解答] 因为
f(x0-3ΔΔx)x -f(x0)=
[f(x0-3-Δx3) Δ- x f(x0)·(-3)]=-3f′(x0)=1,
所以 f′(x0)=-13.
归纳升华 根据已知条件,利用导数定义求函数 y=f(x)在某一 点 x0 处的导数,关键是牢记导数定义利用已知条件拼凑 出导数定义的形式,从而得到 f′(x0).
所以
ΔΔst=
12Δt+2=2.
答案:A
类型 2 利用导数的定义求导数
[典例 2] (1)求函数 y=3x2 在 x=1 处的导数; (2)求函数 f(x)=x-1x在 x=1 处的导数. 解:(1)因为Δy=f(1+Δx)-f(1)=3(1+Δx)2-3=6 Δx+3(Δx)2, 所以ΔΔxy=6+3Δx,
1.瞬时速度 物体在某一时刻的速度称为瞬时速度.若物体运动的 路程与时间的关系式是 s=f(t),当Δt 趋近于 0 时,函数 f(t)在 t0 到 t0+Δt 之间的平均变化率f(t0+ΔtΔ)t-f(t0) 趋近于常数,
我们就把这个常数叫做 t0 时刻的瞬时速度.即 v=
.故瞬时速度就是位移函数对时 间的瞬时变化率.

高中数学第1章导数及其应用1_1_2瞬时变化率——导数互动课堂苏教版选修2-2

高中数学第1章导数及其应用1_1_2瞬时变化率——导数互动课堂苏教版选修2-2

高中数学 第1章 导数及其应用 1.1.2 瞬时变化率——导数互动课堂 苏教版选修2-2疏导引导本节课重点是导数的定义和导数的几何意义,难点是利用定义求函数在某点处的导数和在开区间内的导数.一、函数y=f(x)在点x 0处的导数(变化率)是f′(x 0)或y′0|x x =,即 f′(x 0)=0lim→∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00,它是函数的平均变化率当自变量的改变量趋向于零时的极限值,如果极限不存在,我们就说函数在点x 0处不可导.疑难疏引 (1)函数应在点x 0的附近有定义,否则导数不存在.(2)在定义导数的极限式中,Δx 趋近于0可正、可负,但不为0,而Δy 可能为0. (3)xy∆∆是函数y=f(x)对自变量x 在Δx 范围内的平均变化率,它的几何意义是过曲线y=f(x)上点(x 0,f(x 0))及点(x 0+Δx,f(x 0+Δx))的割线斜率. (4)导数f′(x 0)= 0lim→∆x xx f x x f ∆-∆+)()(00是函数y=f(x)在点x 0处的瞬时变化率,它反映的函数y=f(x)在点x 0处变化的快慢程度,它的几何意义是曲线y=f(x)上点(x 0,f(x 0))处的切线的斜率.因此,如果y=f(x)在点x 0可导,则曲线y=f(x)在点(x 0,f(x 0))处的切线方程为y-f(x 0)=f′(x 0)(x-x 0).(5)导数是一个局部概念,它只与函数y=f(x)在x 0及其附近的函数值有关,与Δx 无关. (6)在定义式中,设x=x 0+Δx,则Δx=x -x 0,当Δx 趋近于0时,x 趋近于x 0,因此,导数的定义式可写成f′(x 0)=0lim→∆x xx f x x f ∆-∆+)()(00=0lim x x →∆00)()(x x x f x f --. (7)若极限0lim→∆x xx f x x f ∆-∆+)()(00不存在,则称函数y=f(x)在点x 0处不可导.(8)若f(x)在x 0可导,则曲线y=f(x)在点(x 0,f(x 0))有切线存在.反之不然,若曲线y=f(x)在点(x 0,f(x 0)有切线,函数y=f(x)在x 0不一定可导,并且,若函数y=f(x)在x o 不可导,曲线在点(x 0,f(x 0))也可能有切线,如切线平行与y 轴时. 一般地,0lim →∆x (a+bΔx)=a,其中a ,b 为常数.特别地,0lim →∆x a=a.如果函数y=f(x)在开区间(a ,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f′(x),从而构成了一个新的函数f′(x).称这个函数f′(x)为函数y=f(x)在开区间内的导函数,简称导数,也可记作y′,即 f′(x)=y′=0lim→∆x xx f x x f ∆-∆+)()(.函数y=f(x)在x 0处的导数y′0|x x =就是函数y=f(x)在开区间(a ,b)上导函数f′(x)在x 0处的函数值,即y′0|x x ==f′(x 0).所以函数y=f(x)在x 0处的导数也记作f′(x 0). 二、注意导数与导函数的区别与联系1.如果函数y=f(x)在开区间(a ,b)内每一点都有导数则称函数y=f(x)在开区间(a ,b)内可导.2.导数与导函数都可称为导数,这要加以区分:求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值.它们之间的关系是函数y=f(x)在点x 0处的导数就是导函数f′(x)在点x 0的函数值.3.求导函数时,只需将求导数式中的x 0换成x 即可,即f′(x)=0lim →∆x xx f x x f ∆-∆+)()(.4.由导数的定义可知,求函数y=f(x)的导数的一般方法是: (1)求函数的改变量Δy=f(x+Δx)-f(x).(2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(. (3)取极限,得导数y′=0lim →∆x xy∆∆.三、导数与切线的理解 导数集数与形于一身,新教材在介绍导数几何意义时,利用割线的极限位置来定义了曲线的切线.从代数角度看,平均变化率是由函数上的一点(x 0,f(x 0))到另一点(x 0+Δx,f(x 0+Δx))函数值增量与自变量增量的比值,当Δx 无限趋近于零时,曲线上某点的平均变化率无限趋近于唯一的一个常数,这个常数称为在该点的导数;从几何角度看过曲线上任一定点引曲线的割线,当动点无限趋近于该定点时,割线的斜率无限趋近于唯一的一个常数,割线就变为切线,因此导数的几何意义即为曲线上过该点的切线的斜率.用运动变化的观念分析曲线C:y=f(x)上某点(x 0,y 0)的切线,从点(x 0,y 0)引割线,当另一交点无限趋近某点(x 0,y 0)时,割线就变为切线,割线的斜率趋近于唯一的一个常数,这个常数就是曲线上的某点(x 0,y 0)的导数,其几何意义为切线的斜率,计算方法为Δx→0时,k=x y∆∆=f′(x 0),或x→x 0时,k=00x x y y --=f′(x 0).特别地,如果曲线y=f(x)在点P(x 0,f(x 0))处的切线平行于y 轴,这时导数不存在,根据切线定义,可得切线方程为x=x 0.四、导数的物理意义瞬时速度是路程对时间的变化率,某时刻的瞬时速度就是路程在某时刻的导数,加速度是速度的导数,动量是动能的导数. 活学巧用1.如果一个质点从定点A 开始沿直线运动的位移函数为y=f(t)=t 3+3. (1)当t 0=4且Δt=0.01时,求Δy 和ty ∆∆; (2)当t 0=4时,求0lim →∆t ty∆∆的值; (3)说明0lim →∆t ty∆∆的几何意义. 解析:(1)Δy=f(4+Δt)-f(4)=(4+Δt)3+3-43-3=(Δt)3+48Δt+12(Δt)2=(0.01)3+48(0.01)+12(0.01)2=0.481 201, ∴t y ∆∆=01.0481201.0=48.120 1. (2)当Δt=0.001时,ty∆∆=48.012 01, 当Δt=0.000 1时,t y∆∆=48.001 201. 所以当Δt→0时,0lim →∆t ty∆∆=48.(3)Δy 是质点由固定点A 开始在Δt 这段时间内的位移,所以ty∆∆是质点A 在Δt 这段时间内的平均速度,而0lim →∆t ty∆∆是质点A 在时间t 0的瞬时速度. 2.已知y=f(x)=x2,求y′及y′|x=1.解析:∵Δy=f(x+Δx)-f(x)=xx ∆+2-x2=xx x x x x •∆+∆+-)(2,∴y′=0lim→∆x x y ∆∆=0lim →∆x x x x x x x x ∆••∆+∆+-)(2=0lim →∆x )()(2x x x x x x x x x x ∆++•∆••∆+∆--=0lim→∆x xx x x x x x x x 22)(2••-=∆++••∆+-=23--x.y′|x =1=f′(1)=23)1(--=-1.点评:函数的导数与在点x 0处的导数不是同一概念,在点x 0处的导数是函数的导数在x=x 0处的函数值.求函数的导数分三个步骤:(1)求函数增量Δy=f(x+Δx)-f(x); (2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(; (3)取极限并求极限值,得导数f′(x)=0lim→∆x xx f x x f ∆-∆+)()(.3.如果曲线y=x 2+x-3的某一条切线与直线y=3x+4平行,求切点坐标与切线方程. 解析:∵切线与直线y=3x+4平行,∴斜率为3. 设切点坐标为(x 0,y 0),则y′0|x x ==3. 又y′0|x x ==0lim→∆x xx f x x f ∆-∆+)()(00=0lim →∆x xx x x x x x ∆+---∆++∆+33)()(020020 =0lim →∆x (Δx+2x 0+1)=2x 0+1,∴2x 0+1=3,从而得⎩⎨⎧-==.1,100y x∴切点坐标为(1,-1),切线方程为3x-y-4=0.4.在曲线y=x 2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)xy∆∆;(2)Δx→0时,求xy∆∆的值;(3)在点P(1,4)的切线方程. 解析:(1)x y ∆∆=xf x f ∆-∆+)1()1(=xx ∆+-+∆+)31(3)1(22=2+Δx.(2)Δx→0时,xy∆∆=2+Δx→2, 即0lim→∆x x y∆∆=0lim →∆x (2+Δx)=2. (3)由(2)知过点P(1,4)的切线的斜率为2,故在点P(1,4)的切线方程为y-4=2(x-1),即2x-y+2=0.5.(1)已知质点运动方程是s(t)=221gt +2t-1,求质点在t=4时的瞬时速度,其中s 的单位是m ,t 的单位是s.(2)已知某质点的运动方程是s(t)=3t 2-2t+1,求质点在t=10时的瞬时速度和动能.(设物体的质量为m)分析:瞬时速度是路程对时间的变化率,而动能U=221mv . 解:(1)质点在t=4时的瞬时速度为v (t=4)=0lim →∆t tt s t s ∆-∆+)()4(=0lim →∆t tg t t g ∆+⨯-•--∆++∆+1424211)4(2)4(2122=0lim →∆t ttt g t g ∆∆+∆+∆24212=0lim →∆t (21gΔt+4g+2)=4g+2, 所以质点在t=4时的瞬时速度为4g+2 (m/s). (2)质点在t=10时的瞬时速度为v (t=10)=0lim→∆t ts t s ∆-∆+)10()10(=0lim →∆t t t t ∆-⨯+⨯-+∆+-∆+11021031)10(2)10(322 =0lim →∆t tt t ∆∆+∆5832=0lim →∆t (3Δt+58)=58, 所以质点在t=10时的瞬时速度为v=58 m/s ;质点在t=10时的动能为 U=m mv 21212=×(58)2=1 682m J.。

第一章导数及其应用练习题

第一章导数及其应用练习题

第一章导数及其应用1.1变化率与导数1.1.1变化率问题1.1.2导数的概念1.已知函数f(x)=2x2-4的图象上一点(1,-2)及邻近一点(1+Δx,-2+Δy),则ΔyΔx等于().A.4 B.4x C.4+2Δx D.4+2(Δx)22.如果质点M按规律s=3+t2运动,则在一小段时间[2,2.1]中相应的平均速度是().A.4 B.4.1 C.0.41 D.33.如果某物体的运动方程为s=2(1-t2)(s的单位为m,t的单位为s),那么其在1.2 s末的瞬时速度为().A.-4.8 m/s B.-0.88 m/s C.0.88 m/s D.4.8 m/s4.已知函数y=2+1x,当x由1变到2时,函数的增量Δy=________.5.已知函数y=2x,当x由2变到1.5时,函数的增量Δy=________.6.利用导数的定义,求函数y=1x2+2在点x=1处的导数.7.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为().A.0.40 B.0.41 C.0.43 D.0.448.设函数f(x)可导,则limΔx→0f(1+Δx)-f(1)3Δx等于().A.f′(1) B.3f′(1) C.13f′(1) D.f′(3)9.一做直线运动的物体,其位移s与时间t的关系是s=3t-t2,则物体的初速度是________.10.某物体作匀速运动,其运动方程是s=v t,则该物体在运动过程中其平均速度与任何时刻的瞬时速度的关系是________.11.子弹在枪筒中的运动可以看作是匀变速运动,如果它的加速度是a=5×105 m/s2,子弹从枪口射出时所用的时间为t0=1.6×10-3s,求子弹射出枪口时的瞬时速度.12.(创新拓展)已知f(x)=x2,g(x)=x3,求满足f′(x)+2=g′(x)的x的值.导数练习题 2015年春第 3 页 共 16 页1.1.3 导数的几何意义1.已知曲线y =12x 2-2上一点P ⎝ ⎛⎭⎪⎫1,-32,则过点P 的切线的倾斜角为( ).A .30°B .45°C .135°D .165°2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ). A .2 B .4 C .6+6Δx +2(Δx )2 D .63.设y =f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx=-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为( ). A .2 B .-1 C .1 D .-24.曲线y =2x -x 3在点(1,1)处的切线方程为________. 5.设y =f (x )为可导函数,且满足条件 lim x →0f (1)-f (1-x )2x=-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________.6.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.7.设函数f (x )在x =x 0处的导数不存在,则曲线y =f (x )( ).A .在点(x 0,f (x 0))处的切线不存在B .在点(x 0,f (x 0))处的切线可能存在C .在点x 0处不连续D .在x =x 0处极限不存在 8.函数y =-1x 在⎝ ⎛⎭⎪⎫12,-2处的切线方程是( ).A .y =4xB .y =4x -4C .y =4x +4D .y =2x -49.若曲线y=2x2-4x+p与直线y=1相切,则p的值为________.10.已知曲线y=1x-1上两点A⎝⎛⎭⎪⎫2,-12、B(2+Δx,-12+Δy),当Δx=1时割线AB的斜率为________.11.曲线y=x2-3x上的点P处的切线平行于x轴,求点P的坐标.12.(创新拓展)已知抛物线y=ax2+bx+c通过点P(1,1),Q(2,-1),且在点Q 处与直线y=x-3相切,求实数a、b、c的值.导数练习题2015年春1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则第1课时基本初等函数的导数公式1.已知f(x)=x2,则f′(3)().A.0 B.2x C.6 D.92.f(x)=0的导数为().A.0 B.1 C.不存在D.不确定3.曲线y=x n在x=2处的导数为12,则n等于().A.1 B.2 C.3 D.44.设函数y=f(x)是一次函数,已知f(0)=1,f(1)=-3,则f′(x)=________. 5.函数f(x)=x x x的导数是________.6.在曲线y=x3+x-1上求一点P,使过P点的切线与直线y=4x-7平行.7.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2010(x)=().A.sin x B.-sin x C.cos x D.-cos x第 5 页共16 页8.下列结论①(sin x )′=-cos x ;②⎝ ⎛⎭⎪⎫1x ′=1x 2;③(log 3x )′=13ln x ;④(ln x )′=1x .其中正确的有( ).A .0个B .1个C .2个D .3个 9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________. 10.曲线y =9x 在点M (3,3)处的切线方程是________.11.已知f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值.12.(创新拓展)求下列函数的导数:(1)y =log 4x 3-log 4x 2;(2)y =2x 2+1x -2x ;(3)y =-2sin x 2(2sin 2x4-1).导数练习题 2015年春第 7 页 共 16 页第2课时 导数的运算法则及复合函数的导数1.函数y =cos x1-x的导数是( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ). A.193 B.103 C.133 D.163 3.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x ,则f ′(x )等于( ).A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )24.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为________. 5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y=(x-a)(x-b)在x=a处的导数为().A.ab B.-a(a-b) C.0 D.a-b8.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=().A.a B.±a C.-a D.a29.若f(x)=(2x+a)2,且f′(2)=20,则a=________.10.函数f(x)=x3+4x+5的图象在x=1处的切线在x轴上的截距为________.11.曲线y=e2x·cos 3x在(0,1)处的切线与直线L的距离为5,求直线L的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.导数练习题 2015年春第 9 页 共 16 页1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数1.在下列结论中,正确的有( ). (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数;(4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个 D .4个 2.函数y =12x 2-ln x 的单调减区间是( ).A .(0,1)B .(0,1)∪(-∞,-1)C .(-∞,1)D .(-∞,+∞)3.若函数f (x )=x 3-ax 2-x +6在(0,1)内单调递减,则实数a 的取值范围是( ). A .a ≥1 B .a =1 C .a ≤1 D .0<a <1 4.函数y =ln(x 2-x -2)的递减区间为________.5.若三次函数f (x )=ax 3+x 在区间(-∞,+∞)内是增函数,则a 的取值范围是________.6.已知x >1,证明:x >ln(1+x ).7.当x >0时,f (x )=x +2x 的单调递减区间是( ).A .(2,+∞)B .(0,2)C .(2,+∞)D .(0,2) 8.已知函数y =f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则y =f (x )的图象可能是( ).9.使y =sin x +ax 为R 上的增函数的a 的范围是________. 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.已知函数f (x )=x 3+ax +8的单调递减区间为(-5,5),求函数y =f (x )的递增区间.12.(创新拓展)求下列函数的单调区间,并画出大致图象: (1)y =x +9x ; (2)y =ln(2x +3)+x 2.导数练习题 2015年春第 11 页 共 16 页1.3.2 函数的极值与导数1.下列函数存在极值的是( ).A .y =1xB .y =x -e xC .y =x 3+x 2+2x -3D .y =x 32.函数y =1+3x -x 3有( ).A .极小值-1,极大值1B .极小值-2,极大值3C .极小值-2,极大值2D .极小值-1,极大值33.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ).A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点4.设方程x 3-3x =k 有3个不等的实根,则常数k 的取值范围是________.5.已知函数y =x 2x -1,当x =________时取得极大值________;当x =________时取得极小值________.6.求函数f (x )=x 2e -x 的极值.7.函数f (x )=2x 3-6x 2-18x +7( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C.在x=-1处取得极小值-17,在x=3处取得极大值47D.以上都不对8.三次函数当x=1时有极大值4,当x=3时有极小值0,且函数过原点,则此函数是().A.y=x3+6x2+9x B.y=x3-6x2+9xC.y=x3-6x2-9x D.y=x3+6x2-9x9.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,则实数a的取值范围是________.10.函数y=x3-6x+a的极大值为________,极小值为________.11.已知函数y=ax3+bx2,当x=1时函数有极大值3,(1)求a,b的值;(2)求函数y的极小值.12.(创新拓展)设函数f(x)=a3x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.导数练习题 2015年春第 13 页 共 16 页1.3.3 函数的最大(小)值与导数1.函数y =x e -x ,x ∈[0,4]的最大值是( ).A .0 B.1e C.4e 4 D.2e 22.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为( ).A .0≤a <1B .0<a <1C .-1<a <1D .0<a <123.设f (x )=x (ax 2+bx +c )(a ≠0)在x =1和x =-1处均有极值,则下列点中一定在x 轴上的是( ).A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )4.函数y =x +2cos x 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是________. 5.函数f (x )=sin x +cos x 在x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大、最小值分别是________. 6.求函数f (x )=x 5+5x 4+5x 3+1在区间[-1,4]上的最大值与最小值.7.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ).A .-173B .-103C .-4D .-6438.已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为().A.-37 B.-29 C.-5 D.-119.函数f(x)=4xx2+1,x∈[-2,2]的最大值是________,最小值是________.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最大值是2,那么f(x)在[-1,1]上的最小值是________.11.已知函数f(x)=-x3+3x2+9x+a.(1)求f(x)的单调递减区间;(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.12.(创新拓展)已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.导数练习题 2015年春第 15 页 共 16 页1.4 生活中的优化问题举例1.如果圆柱截面的周长l 为定值,则体积的最大值为( ).A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43πD.14⎝ ⎛⎭⎪⎫l 43π 2.若一球的半径为r ,作内接于球的圆柱,则其侧面积最大为( ).A .2πr 2B .πr 2C .4πr D.12πr 2 3.某公司生产一种产品, 固定成本为20000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧ -x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润最大时,每年生产产品的单位数是( ). A .150 B .200 C .250 D .3004.有矩形铁板,其长为6,宽为4,现从四个角上剪掉边长为x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则x =________.5.如图所示,某厂需要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,当砌壁所用的材料最省时,堆料场的长和宽分别为________.6.如图所示,已知矩形的两个顶点位于x 轴上,另两个顶点位于抛物线y =4-x 2在x 轴上方的曲线上,求这个矩形面积最大时的边长.7.设底为正三角形的直棱柱的体积为V,那么其表面积最小时,底面边长为().A.3V B.32V C.34V D.23V8.把长为12 cm的细铁丝截成两段,各自摆成一个正三角形,那么这两个正三角形的面积之和的最小值是().A.32 3 cm2B.4 cm2 C.3 2 cm2D.2 3 cm29.在半径为r的圆内,作内接等腰三角形,当底边上的高为________时它的面积最大.10.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为________.11.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?12.(创新拓展)如图所示,在边长为60 cm的正方形铁片的四角上切去相等的正方形,再把它沿虚线折起,做成一个无盖的长方体箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?。

高中数学第一章1.1导数的概念1.1.2瞬时变化率导数教学案苏教版选修

高中数学第一章1.1导数的概念1.1.2瞬时变化率导数教学案苏教版选修

1.1.2 瞬时变化率——导数曲线上一点处的切线如图P n 的坐标为(x n ,f (x n ))(n =1,2,3,4…),P 的坐标为(x 0,y 0).问题1:当点P n →点P 时,试想割线PP n 如何变化? 提示:当点P n 趋近于点P 时,割线PP n 趋近于确定的位置. 问题2:割线PP n 斜率是什么? 提示:割线PP n 的斜率是k n =f x n -f x 0x n -x 0.问题3:割线PP n 的斜率与过点P 的切线PT 的斜率k 有什么关系呢? 提示:当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率. 问题4:能否求得过点P 的切线PT 的斜率? 提示:能.1.割线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线. 2.切线随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C .当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 也称为曲线在点P 处的切线.瞬时速度与瞬时加速度一质点的运动方程为S =8-3t 2,其中S 表示位移,t 表示时间. 问题1:该质点在[1,1+Δt ]这段时间内的平均速度是多少?提示:该质点在[1,1+Δt ]这段时间内的平均速度为8-31+Δt 2-8+3×12Δt=-6-3Δt .问题2:Δt 的变化对所求平均速度有何影响? 提示:Δt 越小,平均速度越接近常数-6.1.平均速度运动物体的位移与所用时间的比称为平均速度. 2.瞬时速度一般地,如果当Δt 无限趋近于0时,运动物体位移S (t )的平均变化率S t 0+Δt -S t 0Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,也就是位移对于时间的瞬时变化率.3.瞬时加速度一般地,如果当Δt 无限趋近于0时,运动物体速度v (t )的平均变化率v t 0+Δt -v t 0Δt无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,也就是速度对于时间的瞬时变化率.导 数1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率. 3.导函数(1)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ),在不引起混淆时,导函数f ′(x )也简称f (x )的导数.(2)f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.1.利用导数的几何意义,可求曲线上在某点处的切线的斜率,然后由点斜式写出直线方程.2.函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值,所以求函数在一点处的导数,一般先求出函数的导函数,再计算这点的导函数值.[对应学生用书P5]求曲线上某一点处的切线[例1] 已知曲线y =x +1x 上的一点A ⎝ ⎛⎭⎪⎫2,52,用切线斜率定义求:(1)点A 处的切线的斜率; (2)点A 处的切线方程. [思路点拨] 先计算f 2+Δx -f 2Δx,再求其在Δx 趋近于0时无限逼近的值.[精解详析] (1)∵Δy =f (2+Δx )-f (2)=2+Δx +12+Δx -⎝ ⎛⎭⎪⎫2+12=-Δx 22+Δx +Δx ,∴Δy Δx =-Δx 2Δx 2+Δx +Δx Δx =-122+Δx +1. 当Δx 无限趋近于零时,Δy Δx 无限趋近于34,即点A 处的切线的斜率是34.(2)切线方程为y -52=34(x -2),即3x -4y +4=0.[一点通] 根据曲线上一点处的切线的定义,要求曲线过某点的切线方程,只需求出切线的斜率,即在该点处,Δx 无限趋近于0时,ΔyΔx无限趋近的常数.1.曲线y =-12x 2-2在点P ⎝ ⎛⎭⎪⎫1,-52处的切线的斜率为________.解析:设P ⎝ ⎛⎭⎪⎫1,-52,Q ⎝ ⎛⎭⎪⎫1+Δx ,-121+Δx2-2,则割线PQ 的斜率为k PQ =-121+Δx 2-2+52Δx=-12Δx -1.当Δx 无限趋近于0时,k PQ 无限趋近于-1,所以曲线y =-12x 2-2在点P ⎝ ⎛⎭⎪⎫1,-52处的切线的斜率为-1.答案:-12.已知曲线y =2x 2+4x 在点P 处的切线的斜率为16,则P 点坐标为________.解析:设P 点坐标为(x 0,y 0),则f x 0+Δx -f x 0x 0+Δx -x 0=2Δx2+4x 0Δx +4ΔxΔx=4x 0+4+2Δx .当Δx 无限趋近于0时,4x 0+4+2Δx 无限趋近于4x 0+4, 因此4x 0+4=16,即x 0=3, 所以y 0=2×32+4×3=18+12=30. 即P 点坐标为(3,30). 答案:(3,30)3.已知曲线y =3x 2-x ,求曲线上一点A (1,2)处的切线的斜率及切线方程. 解:设A (1,2),B (1+Δx,3(1+Δx )2-(1+Δx )), 则k AB =31+Δx2-1+Δx -3×12-1Δx=5+3Δx ,当Δx 无限趋近于0时,5+3Δx 无限趋近于5,所以曲线y =3x 2-x 在点A (1,2)处的切线斜率是5.切线方程为y -2=5(x -1),即5x -y -3=0.瞬时速度[例2] 一质点按规律S (t )=at 2+1做直线运动(位移单位:m ,时间单位:s),若该质点在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值.[思路点拨] 先求出质点在t =2s 时的平均速度,再根据瞬时速度的概念列方程求解. [精解详析] 因为ΔS =S (2+Δt )-S (2)=a (2+Δt )2+1-a ·22-1=4a Δt +a (Δt )2,所以ΔSΔt =4a +a Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于4a .所以t =2 s 时的瞬时速度为4a m/s. 故4a =8,即a =2.[一点通] 要计算物体的瞬时速度,只要给时间一个改变量Δt ,求出相应的位移的改变量ΔS ,再求出平均速度v =ΔS Δt ,最后计算当Δt 无限趋近于0时,ΔSΔt无限趋近常数,就是该物体在该时刻的瞬时速度.4.一做直线运动的物体,其位移S 与时间t 的关系是S =3t -t 2,则此物体在t =2时的瞬时速度为________.解析:由于ΔS =3(2+Δt )-(2+Δt )2-(3×2-22)=3Δt -4Δt -(Δt )2=-Δt -(Δt )2, 所以ΔS Δt =-Δt -Δt 2Δt=-1-Δt .当Δt 无限趋近于0时,ΔSΔt 无限趋近于常数-1.故物体在t =2时的瞬时速度为-1. 答案:-15.如果一个物体的运动方程S (t )=⎩⎨⎧t 2+2,0≤t <3,29+3t -32,t ≥3,试求该物体在t =1和t =4时的瞬时速度.解:当t =1时,S (t )=t 2+2, 则ΔS Δt =S 1+Δt -S 1Δt=1+Δt 2+2-3Δt=2+Δt ,当Δt 无限趋近于0时,2+Δt 无限趋近于2, 所以v (1)=2; ∵t =4∈[3,+∞),∴S (t )=29+3(t -3)2=3t 2-18t +56, ∴ΔS Δt=34+Δt 2-184+Δt +56-3×42+18×4-56Δt=3Δt 2+6·Δt Δt=3·Δt +6,∴当Δt 无限趋近于0时,3·Δt +6→6,即ΔSΔt →6,所以v (4)=6.导数及其应用[例3] 已知f (x )=x 2-3. (1)求f (x )在x =2处的导数; (2)求f (x )在x =a 处的导数.[思路点拨] 根据导数的定义进行求解.深刻理解概念是正确解题的关键. [精解详析] (1)因为Δy Δx =f 2+Δx -f 2Δx=2+Δx2-3-22-3Δx=4+Δx ,当Δx 无限趋近于0时,4+Δx 无限趋近于4, 所以f (x )在x =2处的导数等于4.(2)因为Δy Δx =f a +Δx -f aΔx=a +Δx2-3-a 2-3Δx=2a +Δx ,当Δx 无限趋近于0时,2a +Δx 无限趋近于2a , 所以f (x )在x =a 处的导数等于2a .[一点通] 由导数的定义知,求一个函数y =f (x )在x =x 0处的导数的步骤如下: (1)求函数值的改变量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f x 0+Δx -f x 0Δx ;(3)令Δx 无限趋近于0,求得导数.6.函数y =x +1x在x =1处的导数是________.解析:∵函数y =f (x )=x +1x,∴Δy =f (1+Δx )-f (1)=1+Δx +11+Δx -1-1=Δx 21+Δx ,∴Δy Δx =Δx 1+Δx ,当Δx →0时,ΔyΔx →0, 即y =x +1x在x =1处的导数为0.答案:07.设f (x )=ax +4,若f ′(1)=2,则a =________. 解析:∵f 1+Δx -f 1Δx =a 1+Δx +4-a -4Δx=a ,∴f ′(1)=a ,即a =2. 答案:28.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第x h 时,原油的温度(单位:℃)为f (x )=x 2-7x +15(0≤x ≤8).求函数y =f (x )在x =6处的导数f ′(6),并解释它的实际意义.解:当x 从6变到6+Δx 时,函数值从f (6)变到f (6+Δx ),函数值y 关于x 的平均变化率为:f 6+Δx -f 6Δx=6+Δx2-76+Δx +15-62-7×6+15Δx=5Δx +Δx 2Δx=5+Δx .当x →6时,即Δx →0,平均变化率趋近于5,所以f ′(6)=5,导数f ′(6)=5表示当x =6 h 时原油温度的瞬时变化率即原油温度的瞬时变化速度.也就是说,如果保持6 h 时温度的变化速度,每经过1 h 时间,原油温度将升高5℃.1.利用导数的几何意义求过某点的切线方程(1)若已知点(x 0,y 0)在已知曲线上,则先求出函数y =f (x )在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f ′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不在曲线上,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.2.f ′(x 0)与f ′(x )的异同区别 联系f ′(x 0) f ′(x 0)是具体的值,是数值在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值f ′(x )f ′(x )是f (x )在某区间I 上每一点都存在导数而定义的一个新函数,是函数[对应课时跟踪训练(二)]一、填空题1.一质点运动的方程为S =5-3t 2,若该质点在时间段[1,1+Δt ]内相应的平均速度为-3Δt -6,则该质点在t =1时的瞬时速度为________.解析:∵当Δt 无限趋近于0时,-3Δt -6无限趋近于常数-6,∴该质点在t =1时的瞬时速度为-6.答案:-62.函数f (x )=1-3x 在x =2处的导数为________. 解析:Δy =f (2+Δx )-f (2)=-3Δx ,ΔyΔx =-3,则Δx 趋于0时,ΔyΔx =- 3.故f (x )在x =2处的导数为-3. 答案:-33.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________.解析:由题意知f ′(1)=12,f (1)=12+2=52,所以f (1)+f ′(1)=52+12=3.答案:34.曲线f (x )=12x 2-2在点⎝⎛⎭⎪⎫1,-32处的切线的倾斜角为________.解析:∵f 1+Δx -f 1Δx=121+Δx 2-2-⎝ ⎛⎭⎪⎫12-2Δx=12Δx 2+ΔxΔx=12Δx +1. ∴当Δx 无限趋近于0时,f 1+Δx -f 1Δx无限趋近于常数1,即切线的斜率为1.∴切线的倾斜角为π4.答案:π45.已知曲线y =2ax 2+1过点P (a ,3),则该曲线在P 点处的切线方程为________. 解析:∵y =2ax 2+1过点P (a ,3), ∴3=2a 2+1,即a 2=1.又∵a ≥0,∴a =1,即y =2x 2+1. ∴P (1,3).又Δy Δx =f 1+Δx -f 1Δx=21+Δx 2+1-2×12-1Δx=4+2Δx .∴当Δx 无限趋近于0时,ΔyΔx 无限趋近于常数4,∴f ′(1)=4,即切线的斜率为4.由点斜式可得切线方程为y -3=4(x -1), 即4x -y -1=0. 答案:4x -y -1=0 二、 解答题6.已知质点运动方程是S (t )=12gt 2+2t -1(g 是重力加速度,常量),求质点在t =4 s 时的瞬时速度(其中s 的单位是m ,t 的单位是s).解:ΔS Δt =S 4+Δt -S 4Δt=⎣⎢⎡⎦⎥⎤12g 4+Δt 2+24+Δt -1-⎝ ⎛⎭⎪⎫12g ·42+2×4-1Δt=12g Δt 2+4g ·Δt +2·Δt Δt=12g Δt +4g +2.∵当Δt →0时,ΔS Δt→4g +2, ∴S ′(4)=4g +2,即v (4)=4g +2,所以,质点在t =4 s 时的瞬时速度为(4g +2) m/s.7.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程.解:∵31+Δx 2-41+Δx +2-3×12-4×1+2Δx =2Δx +3Δx 2Δx =2+3·Δx ,∴当Δx →0时,2+3·Δx →2,∴f ′(1)=2, 所以直线的斜率为2,所以直线方程为y -2=2(x +1),即2x -y +4=0. 8.已知直线l :y =4x +a 和曲线C :y =x 3-2x 2+3相切.求a 的值及切点的坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0),∵Δy Δx =x 0+Δx 3-2x 0+Δx 2+3-x 30-2x 20+3Δx=(Δx )2+(3x 0-2)Δx +3x 20-4x 0.∴当Δx →0时,Δy Δx→3x 20-4x 0, 即f ′(x 0)=3x 20-4x 0,由导数的几何意义,得3x 20-4x 0=4,解得x 0=-23或x 0=2. ∴切点的坐标为⎝ ⎛⎭⎪⎫-23,4927或(2,3), 当切点为⎝ ⎛⎭⎪⎫-23,4927时, 有4927=4×⎝ ⎛⎭⎪⎫-23+a ,∴a =12127, 当切点为(2,3)时,有3=4×2+a ,∴a =-5,当a =12127时,切点为⎝ ⎛⎭⎪⎫-23,4927; a =-5时,切点为(2,3).。

高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)

高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)

江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2的全部内容。

导数的概念本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。

2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段]4965,0[里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 瞬时变化率——导数(二)明目标、知重点 1.理解导数的定义,并掌握导数的几何意义.2.理解导函数的概念,了解导数的物理意义和实际意义.1.导数设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值ΔyΔx=f x 0+Δx -f x 0Δx无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数,记作f ′(x 0). 2.导函数若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ).f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.[情境导学]如果一个函数是路程关于时间的函数,那么函数在某点处的导数就是瞬时速度,这是函数的实际意义,那么从函数的图象上来考察函数在某点处的导数,它具有怎样的几何意义呢?这就是本节我们要研究的主要内容. 探究点一 函数的导数思考1 函数的导数和函数的平均变化率有什么关系? 答 函数f (x )在点x 0附近的平均变化率Δy Δx=fx 0+Δx -f x 0Δx,当Δx →0时,f x 0+Δx -f x 0Δx→A ,A 就是f (x )在点x =x 0处的导数,记作f ′(x 0).思考2 导数f ′(x 0)有什么几何意义?答 f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率. 例1 利用定义求函数f (x )=-x 2+3x 在x =2处的导数.解 ∵Δy =f (2+Δx )-f (2)=-(2+Δx )2+3(2+Δx )-2=-(Δx )2-Δx . ∴ΔyΔx=-Δx -1,当Δx →0时,ΔyΔx →-1,∴f ′(2)=-1.反思与感悟 求函数y =f (x )在x =x 0处的导数步骤如下:①求函数值的改变量Δy =f (x 0+Δx )-f (x 0);②求平均变化率Δy Δx =f x 0+Δx -fx 0Δx ;③求导数,当Δx →0时,ΔyΔx→A ,则f ′(x 0)=A .跟踪训练1 求函数f (x )=3x 2-2x 在x =1处的导数.解 Δy =3(1+Δx )2-2(1+Δx )-(3×12-2×1)=3(Δx )2+4Δx , ∴ΔyΔx=Δx 2+4ΔxΔx=3Δx +4,当Δx →0时,ΔyΔx →4,∴f ′(1)=4.探究点二 导数概念的应用思考1 导函数f ′(x )和f (x )在一点处的导数f ′(x 0)有何关系?答 函数f (x )在一点处的导数f ′(x 0)是f (x )的导函数f ′(x )在x =x 0处的函数值. 思考2 f ′(x 0)与f ′(x )的区别是什么?答 f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关. 思考3 导数有哪些主要应用?答 在物理上,导数可以解决一些瞬时速度、瞬时加速度问题;在函数图象上,利用导数可求曲线在某点处切线的斜率;在实际问题中,导数可以表示事物变化的快慢,解决膨胀率,降雨强度,边际函数等问题.例2 已知曲线y =4x在点(1,4)处的切线与直线l 平行,且与l 的距离等于17,求直线l的方程.解 ∵Δy =41+Δx -41=-4Δx1+Δx ,∴Δy Δx =-41+Δx . 当Δx 无限趋近于0时, ΔyΔx无限趋近于-4. ∴曲线在点(1,4)处的切线的斜率为-4.故切线方程为y -4=-4(x -1),即4x +y -8=0. 设直线l 的方程为4x +y +c =0, 由题意有|c +8|17=17.∴c 1=9,c 2=-25,所以直线l 的方程为4x +y +9=0或4x +y -25=0.反思与感悟 利用导数的几何意义来求曲线切线的斜率,注意给出的点必须是切点才能直接根据导数求切线斜率,否则要先求切点.跟踪训练 2 已知函数y =f (x )在点(2,3)处的切线方程为y =kx -1,则f ′(2)=________. 答案 2 2解析 由点(2,3)在直线y =kx -1上得3=k ×2-1, ∴k =2 2.根据导数的几何意义f ′(2)=2 2.思考4 曲线的切线是不是一定和曲线只有一个交点? 答 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.思考5 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同? 答 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线方程即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.例3 试求过点P (3,5)且与曲线y =x 2相切的直线方程. 解 Δy Δx=x +Δx 2-x 2Δx=2x +Δx ,当Δx 无限趋近于0时,ΔyΔx 无限趋近于2x ,所以f ′(x )=2x .设所求切线的切点为A (x 0,y 0), 因为A 在曲线y =x 2上,所以y 0=x 20,又因为A 是切点,所以过点A 的切线的斜率k =2x 0.因为所求切线过P (3,5)和A (x 0,y 0)两点,所以斜率可以表示为y 0-5x 0-3=x 20-5x 0-3.故x 20-5x 0-3=2x 0,解得x 0=1或5. 从而切点的坐标为A (1,1)或A (5,25). 当切点的坐标为A (1,1)时, 切线的斜率为k =2x 0=2; 当切点的坐标为A (5,25)时, 切线的斜率为k =2x 0=10. 所以所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5), 即2x -y -1=0和10x -y -25=0.反思与感悟 (1)求曲线上某点处的切线方程,可以直接利用导数求出曲线上此点处的斜率,然后利用点斜式写出切线方程;(2)求曲线过某点的切线方程,要先求出切点坐标,再按(1)完成解答.跟踪训练3 已知曲线y =2x 2-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程. 解 ΔyΔx =x +Δx2-7]-x 2-Δx=4x +2Δx .∴Δx →0时,ΔyΔx →4x .(1)设切点为(x 0,y 0), 则4x 0=4,x 0=1,y 0=-5, ∴切点坐标为(1,-5). (2)由于点P (3,9)不在曲线上.设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求的切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式, 得9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0和16x -y -39=0.1.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率为________.答案 -3 解析 ∵Δy Δx=f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32Δx=-Δx -3,当Δx 无限趋近于0时,ΔyΔx 无限趋近于-3.2.函数y =x +1x在x =1处的导数为________.答案 0解析 Δy Δx=+Δx +11+Δx-2Δx=+Δx 2+1-+ΔxΔx +Δx=Δx 2Δx +Δx =Δx1+Δx, 当Δx 无限趋近于0时,ΔyΔx无限趋近于0.3.质点按S (t )=3t -t 2作直线运动,当其瞬时速度为0时,t =______. 答案 32解析 根据导数的定义可求得S ′(t )=3-2t . 令S ′(t )=3-2t =0,得t =32.4.求函数f (x )=x -1x的导函数.解 ∵Δy =(x +Δx )-1x +Δx -(x -1x) =Δx +Δxxx +Δx,∴ΔyΔx =1+1x x +Δx,∴当Δx →0时,1+1xx +Δx →1+1x2,∴函数f (x )的导函数为1+1x2.[呈重点、现规律]1.导数就是瞬时变化率,是平均变化率ΔyΔx 当Δx →0时的无限趋近值.2.函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值. 3.利用导数的几何意义求曲线的切线方程的步骤 (1)求出函数y =f (x )在x =x 0处的导数f ′(x 0);(2)根据直线的点斜式方程,得切线为y -y 0=f ′(x 0)(x -x 0).一、基础过关1.下列说法正确的是________(填序号).①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在; ④若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在. 答案 ③解析 k =f ′(x 0),所以f ′(x 0)不存在只说明曲线在该点的切线斜率不存在,而当斜率不存在时,切线方程也可能存在,其切线方程为x =x 0.2.已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是________.答案 f ′(x A )<f ′(x B )解析 由导数的几何意义,f ′(x A ),f ′(x B )分别是切线在点A 、B 处切线的斜率,由图象可知f ′(x A )<f ′(x B ). 3.已知f (x )=1x,则当Δx →0时,f+Δx -fΔx无限趋近于________.答案 -14解析 ∵f (2+Δx )-f (2)=12+Δx -12=-Δx+Δx,∴f+Δx -fΔx=-1+Δx .当Δx →0时,f+Δx -fΔx→-14.4.曲线y =x 3+x -2在点P 处的切线平行于直线y =4x -1,则此切线方程为____________. 答案 4x -y -4=0或4x -y =0解析 设P (x 0,y 0),由导数定义可得y =x 3+x -2在点x =x 0处的导数为3x 20+1,令3x 20+1=4,∴x 0=±1,∴切点P 的坐标为(1,0)或(-1,-4),故切线方程为4x -y -4=0或4x -y =0.5.设函数f (x )=ax 3+2,若f ′(-1)=3,则a =________.(已知(a +b )3=a 3+3a 2b +3ab 2+b 3) 答案 1 解析 ∵f -1+Δx -f -Δx=a -1+Δx3-a -3Δx=[a (Δx )2-3a Δx +3a ]. ∴当Δx 无限趋近于0时,ΔyΔx无限趋近于3a , 即3a =3,∴a =1.6.设一汽车在公路上做加速直线运动,且t s 时速度为v (t )=8t 2+1,若在t =t 0时的加速度为6 m/s 2,则t 0=________ s. 答案 387.用导数的定义,求函数y =f (x )=1x在x =1处的导数. 解 ∵Δy =f (1+Δx )-f (x )=11+Δx-11=1-1+Δx 1+Δx=-Δx1+Δx+1+Δx ,∴Δy Δx =-11+Δx+1+Δx, ∴当Δx 无限趋近于0时,-11+Δx+1+Δx无限趋近于-12,∴f ′(1)=-12.二、能力提升8.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 答案 3解析 由在M 点的切线方程y =12x +2得f (1)=12×1+2=52,f ′(1)=12.∴f (1)+f ′(1)=52+12=3.9.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是________.(填序号)答案 ①解析 依题意,y =f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个图象,只有①满足. 10.若曲线y =2x 2-4x +P 与直线y =1相切,则P =________. 答案 3解析 设切点坐标为(x 0,1),则f ′(x 0)=4x 0-4=0, ∴x 0=1,即切点坐标为(1,1). ∴2-4+P =1,即P =3.11.已知抛物线y =x 2+4与直线y =x +10.求: (1)它们的交点;(2)抛物线在交点处的切线方程.解 (1)由⎩⎪⎨⎪⎧ y =x 2+4,y =x +10,解得⎩⎪⎨⎪⎧x =-2y =8或⎩⎪⎨⎪⎧x =3y =13.∴抛物线与直线的交点坐标为(-2,8)或(3,13). (2)∵y =x 2+4, ΔyΔx =x +Δx 2+4-x 2+Δx=Δx2+2x ·ΔxΔx=Δx +2x ,∴Δx →0时,ΔyΔx →2x .∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0; 在点(3,13)处的切线方程为6x -y -5=0.12.航天飞机升空后一段时间内,第t s 时的高度h (t )=5t 3+30t 2+45t +4,其中h 的单位为m ,t 的单位为s.(1)h (0),h (1),h (2)分别表示什么? (2)求第2 s 内的平均速度; (3)求第2 s 末的瞬时速度;(4)经过多长时间,航天飞机的速度达到75 m/s?解 (1)h (0)表示航天飞机发射前的高度;h (1)表示航天飞机发射后1 s 的高度;h (2)表示航天飞机发射后2 s 的高度; (2)第2 s 内的平均速度v =h-h 2-1=170 (m/s);(3)v =h+Δt -hΔt=5Δt 2+60Δt +225,当Δt 趋向于0时,v 趋向于225, 因此,第2 s 末的瞬时速度为225 m/s ; (4)设经过时间t ,飞机的速度达到75 m/s. Δh Δt=h t +Δt -h tΔt=15t 2+60t +45+(15t +30)Δt +5(Δt )2, ∴当Δt →0时,Δh Δt→15t 2+60t +45,故经过时间t ,飞机的瞬时速度为15t 2+60t +45. 令15t 2+60t +45=75,∴t ≈0.449 s. 即经过0.449 s ,航天飞机的速度达到75 m/s. 三、探究与拓展13.将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热.如果在第x h 时,原油的温度(单位:℃)为y =f (x )=x 2-7x +15(0≤x ≤8).计算第2 h 和第6 h 时,原油温度的瞬时变化率,并说明它们的意义.解 在第2 h 和第6 h 时,原油温度的瞬时变化率就是f ′(2)和f ′(6). 根据导数的定义,Δy Δx =f+Δx -fΔx=+Δx2-+Δx +15-2-7×2+Δx=4Δx +Δx 2-7ΔxΔx=Δx -3,当Δx →0时,Δx -3→-3,即f ′(2)=-3. 同理可得,f ′(6)=5.在第2 h 和第6 h 时,原油温度的瞬时变化率分别为-3与5.它说明在第2 h 附近,原油温度大约以3 ℃/h 的速率下降;在第6 h 附近,原油温度大约以5 ℃/h 的速率上升.。

相关文档
最新文档