输入花键轴和花键设计校核
渐开线花键强度校核

渐开线花键强度校核
渐开线花键是一种用于连接轴与套筒的紧固件,其形状为一个渐开线
的花键沟槽。
渐开线花键具有一定的承载能力和连接刚度,因此在工程领
域中得到广泛应用。
为了保证渐开线花键的强度和可靠性,在设计时需要
进行强度校核。
1.确定工作参数:首先需要确定渐开线花键的工作参数,包括轴和套
筒的材料特性、温度等环境因素,以及花键的尺寸和几何形状。
2.计算受力情况:根据花键的几何形状和工作参数,可计算花键在受
力情况下的应力分布情况。
花键的主要受力方式包括拉伸、剪切和弯曲。
3.弹性应力校核:在弹性范围内,花键的应力应小于材料的屈服强度。
根据受力情况和材料特性,计算花键在拉伸、剪切和弯曲等情况下的最大
应力。
4.强度校核:根据花键的尺寸和几何形状,计算花键在最不利受力情
况下的最大应力,并与花键的材料特性进行比较。
如果应力小于材料的屈
服强度,则花键强度合格;否则,需要进行强度优化设计。
5.可靠性校核:在弹性应力校核的基础上,考虑实际工作环境的不确
定性和安全系数,进行可靠性校核。
根据可靠性理论,计算花键的安全系数,并与设计要求进行比较。
在实际工程中,渐开线花键的强度校核需要考虑多个因素,如花键的
几何形状、材料特性、受力情况、工作环境等。
其中,材料的强度和可靠
性是关键因素,需要根据材料的力学性能和可靠性参数进行校核。
总结起来,渐开线花键的强度校核是一个复杂的过程,需要综合考虑多个因素。
通过合理的计算和分析,可以确保渐开线花键的安全可靠性,提高工程的品质和可靠性。
Masta_花键设计与强度校核模块

花键设计与强度校核分析1、花键设计:打开某一包含花键(Spline/Interferance fit)的模型,在树型框中选择该花键,点击其属性,如下图示:点击“Type”栏,选择“Detailed Spline”:在“Spline Design”栏中即可根据花键的类型输入花键的详细设计参数,目前MASTA提供两种花键形式:GBT和ISO。
输入的设计参数中英文对照表如下:在设置花键详细参数的同时,点击图形显示区上部的报告命令“Report”,即可观察所设计花键的齿形和相应参数,如下图:内外花键的详细参数如下:在属性栏中输入设计参数,右边的图表和参数报告也会随之相应变化,以花键的齿根类型为例:平齿根花键齿形图(Flat Root)圆齿根花键齿形图(Fillet Root)2、花键的强度校核分析MASTA的花键设计与强度校核模块提供两种校核标准:GBT和SAE。
在花键设计的属性栏中的“Spline Rating Type”项下选择GBT或SAE,即可用相应的标准对所选花键进行强度校核,如下图:运行系统变形分析,在树形框中选择相应的花键并选择相应的工况,在“Report”栏中可以查看花键在该工况下的校核结果。
2.1、国标(GBT)的校核结果:对于齿面接触应力、齿根弯曲应力、齿根最大剪切应力和当量应力MASTA会给出计算值(Calculated)和许用值(Allowable),如果要保证花键工作安全,应满足计算值小于等于许用值。
上表中给出内外花键受力和位移的具体计算结果。
Inner代表内花键,Outer代表外花键。
2.2、SAE的校核结果:)和许用值(Allowable),如果要保证花键工作安全,应满足计算值小于等于许用值。
上表中给出内外花键受力和位移的具体计算结果。
Inner代表内花键,Outer代表外花键。
花键校核

3.3.5花键的连接强度计算花键连接的强度计算与键连接相似,首先根据连接的结构特点、使用要求和工作条件选定花键类型和尺寸,然后进行必要的强度校核计算。
花键的主要失效形式是工作面被压溃(静连接)或工作面过度磨损(动连接)。
因此静连接通常按工作面上的挤压应力进行强度计算,动连接则按工作面上的压力进行条件性的强度计算。
计算时,假定载荷在键的工作面上均匀分布,每个齿工作面上的压力的合力F 作用在平均直径d m 处,即传递的转矩T=zFd m /2,并引入系数Ψ来考虑实际载荷在各花键齿上分配不均的影响,则花键连接的强度条件为静连接 σp =m 3zhld10·2ΨT ≤[σp ]动连接 p=m 3zhld 10·2ΨT ≤[p]式中: Ψ——载荷分配不均系数,与齿数多少有关,一般去Ψ=0.7~0.8,齿数多时取偏小值;z ——花键的齿数;l ——齿的工作长度;mmh ——花键齿侧面的工作高度,矩形花键,h=(D-d )/2-2C,此处D 为外花键的大径,d 为内花键的小径,C 为倒角尺寸,单位均为mm ;渐开线花键,a=30°,h=m ,a=45°,h=0.8m ,m 为模数;d m ——花键的平均直径,矩形花键,d m =(D+d )/2;渐开线花键,d m =d i ,d i 为分度圆直径,mm ;[σp ]——花键连接的许用挤压应力,MPa ;[p]——花键连接的许用压力,,MPa ;花键传递的转矩T=zFd m /2T=64×23518×0.32÷2=240824N ·mσp =m 3zhld10·2ΨT =65≤[σp ]。
矩形花键校核

参数 花键输入扭矩T 外花键大径D 内花键小径d 结合长度L 最小键宽Sfn 键数N 材料屈服强度σ0.2 材料抗拉强度σb
间接参数
平均圆直径dm 全齿高h 工作齿高hw
名义切向力Ft 载荷计算 单位载荷W
单位 N.m mm mm mm mm
Mpa Mpa
mm mm mm
N
值 22000.00
M(p1.a25~1.5 )
MPa
合格ቤተ መጻሕፍቲ ባይዱ
35.81 1.40 1.25 1.20 1.30 1.40
252.49
齿根弯曲应力σF
齿根抗弯强度 校核
抗弯强度的计算安全系数SF
齿根许用弯曲应力[σF]
比较σF/[σF]
Mpa (1.25~2.0 0) Mpa
合格
23.13
1.50 263.74
转换系数K 作用直径dh
103.00 90.50
254.00 19.05 8.00
965.00 1080.00
96.75 6.25 6.25
454780.36 223.81
齿面压应力σH
齿面接触强度的计算安全系数SH
齿面接触强度 校核
使用系数K1 齿侧间隙系数K2
分配系数K3
轴向偏载系数K4
齿面许用压应力[σH]
比较σH/[σH]
0.45
mm
95.44
齿根抗剪强度
切应力τtn 齿根圆角半径ρ 齿根抗剪强度 h/ρ 应力集中悉数atn 齿根最大切应力τFmx 许用切应力[τF] 比较τFmx/[τF]
Mpa mm
MPa MPa
128.88 0.50
12.50 3.80
489.96 131.87
键、花键结合的精度设计与检测

内花键
外花键
小径d定心
14
二. 矩形花键结合的精度设计
1. 尺寸公差带与装配型式 ( 见表8.4 )
(1)基准制 — 基孔制(H)
(2)标准公差等级
(3)基本偏差
(4)公差带
15
2. 几何公差 (1)小径采用包容要求 ;
内花键
外花键
16
(2)一般规定位置度,并采用最大实体要求 位置度公差用于控制对称度和等分度误差。
11
例 8.1: 某轴孔配合为φ25H8/h7,采用正常普通平键联结,试 确定轴槽和轮毂槽的公差,并将它们标注在零件图上。(8级)
轴槽标注示例图
轮毂槽标注示例图 12
轴结构示例图
13
8.2 矩形花键结合的精度设计
一. 矩形花键的几何参数和定心方式 其表示方法为:N×d×D×B=6×23×26×6
6×23H7/h7×26H10/a11×6H9/h10
30
课堂练习答案 将下述要求标注在下图中。
(1) 小端 d1 40h7 (2) 键槽对称度公差为0.02
(3)小端d1轴线对大端d2右端面垂直度公差为Φ 0.03。
31
本章重点:
1.平键和矩形花键结合的特点(标准件、键与键槽侧面配合,既 平行平面结合;
2.平键和矩形花键结合的公差(尺寸公差带、几何公差和表面粗 糙度)的选用及其图样标注;
作业: 思考题2、4、5,作业题1、2
26
作业题 :答 案
作业题1:某减速器中输出轴的伸出端与相配件孔的配合为 Φ45H7/m6,并采用正常联结平键。 试确定轴槽和轮毂槽剖面尺寸和极限偏差、键槽对称度公 差和表面粗糙度Ra的上限值。
图8.8 花键位置度公差
花键轴加工工艺及花键滚刀设计

3)零件轴向的定位基准选择在外花键圆柱段以 及φ95轴段的外圆表面。
机床选择:
机床
C620-1卧式车床 X63卧式铣床 MD118磨床 Y3150E滚齿机 Y4250剃齿机
用途 粗、精车外轮廓,车削退刀槽
及螺纹 粗、精铣花键键槽 磨削各轴段外圆表面
模数 螺旋角 齿根高系数 齿向公差
公法线长度
公法线长度公差 螺旋副中心距极
限偏差
mn=12 β=0° hf=1.25 FB=0.016 W=95.189 mm
FW=0.025
a+fa=744 ±0.04
主要表面加工方法:
加工表面
精度等级
花键轴右端面
IT7
花键轴左端面
IT11
Φ10中心孔
IT10
花键槽
花键滚刀设计
根据花键轴花键尺寸,参考《复杂刀具设计手 册》,选定的花键滚刀基本尺寸及槽数如下表:
花键.轴尺寸 n—D×d×b
滚刀 外径 Deg
总长度 L
轴台 外径 D1
轴台 长度
l1
孔径 d
槽数 zg
10—88×82×12 100
85
55
4
32
14
花键滚刀齿形计算
花键滚刀齿形计算
5)花键侧在节圆上的齿形角:
6)滚刀齿形最大齿形角:
过渡曲线高度验算
加工出的键齿直线部分高度:
其中g为过渡曲线高度,如图所示:
确定花键滚刀齿形
计算确定花键滚刀的法向齿形,常用的方法有: 1)计算法; 2)代圆弧法; 3)查表法。
采用代圆弧法计算得出以下结果:
渐开线花键强度校核(完整计算)

≤1.0
l/dm >1.0-1.5
1.1-1.3
1.2-1.6
1.2-1.5
1.4-2.0
1.3-1.7
1.6-2.4
1.4-1.9
1.8-2.8
1.5-2.1
2.0-3.2
1.2-1.6
1.3-2.1
1.3-1.8
1.5-2.5
1.4-2.0
1.7-2.9
1.5-2.2
1.9-3.3
1.6-2.4
/
1
K1
/
1.25
K2
/
1.1
K3
/
1.1
K4
/
1.5
K
/
0.15
σH1
Mpa
110
σH2
Mpa
9.4
Mb
N.m
0
dh
mm 22.8375
αtn
/
2.181987
Ft
N
37500
W
N/mm 51.54913
τtn
Mpa 192.4141
[σH]
Mpa 294.4353
σH
Mpa 52.60115
满足要求
牌号 20CrMnTi
40Cr 45
材料力学性能
抗拉强度[σ b]
1080 980 600
屈服强度[σ s]
835 785 355
原动机(输入端)
均匀、平衡 轻微冲击 中等冲击
使用系数K1
均匀、平衡 1.00 1.25 1.50
工作机(输出端) 中等冲击 1.25 1.50 1.75
严重冲击 1.75或更大 2.00或更大 2.25或更大
花键强度校核

花键强度校核一、已知条件1、花键副基本参数齿数:z =21模数:m= 2压力角:a =30º花键结合长度:l=64mm外花键大径:mm D ee 2.45=外花键小径:mm D ie 41=钩身内径D=270mmh 为截面高度δ为截面宽=75mm2、钩身强度计算钩身主弯曲截面(水平截面)A-A 是最危险的截面,其次是与铅垂线成45°的截面B-B 和垂直面C-C 。
(1)截面A-A 内侧最大拉应力:5.2S A A A t D K F Qh σσ≤= A F =4107675.2⨯mm2A K =1)21ln(2-++Dh h h D A A =0.141 MPa MPa S t 1375.292.92270141.0107675.236910715.245=<=⨯⨯⨯⨯⨯=σσ 所以A-A 截面通过(2)截面B-B 内侧合成应力:5.2322st στσσ≤+=∑2)5.0(6707.0707.0δδσB B B B t h e Q D K F Qh -⨯+=M P a 88.7775378)5.12755.0(10715.26707.0270144.010835.237810715.2707.02545=⨯-⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯= B F Q 707.05.1⨯=τ=4510835.210715.2707.05.1⨯⨯⨯⨯=10.156 其中:B F =410835.2⨯mm2B K =0.144 代入5.2322s t στσσ≤+=∑得∑σ=79.85MPa <137MPa所以B-B 截面通过(3)截面C-C 内侧合成应力:5.221sττττ≤+=∑ 其中:纯剪切应力c F Q 5.11=τ=15.34MPa C F =410655.2⨯mm2 扭转应力:τδτW e Q )5.0(2-= 62210735.235475291.0⨯=⨯⨯==c h K W δτ 代入得τδτW e Q )5.0(2-==2.34MPa 代入5.221s ττττ≤+=∑得MPa MPa s 21.795.233435.2075.18=⨯=<=∑ττ s τ为材料的剪切许用应力所以C-C 截面通过二、吊钩头部耳孔计算1、已知条件板钩直柄部分宽度b=280mm耳孔曲率系数α,查表得α=3.5耳顶到耳孔中心的距离0h =220mm2、头部耳孔计算耳孔水平截面E-E 和垂直截面D-D 为危险截面截面E-E 中直径d1的耳孔内侧拉应力最大,5.2b S t Q σδασ≤= 代入数据得MPa MPa Q t 13725.4575108.25.310715.2b 25<=⨯⨯⨯⨯==δασ 所以E-E 截面通过在耳孔垂直面D-D 中,切向拉应力最大5.2)25.0()25.0(220220S t d h d d h Q σδσ≤-+= 代入数据得t σ=30.58MPa<137MPa所以D-D 截面通过三、钩身挠度计算:1、已知条件:钩身截面的垂直惯性矩3101039.4mm I ⨯=起升质量m=Kg 4103.5⨯小车运行加速度2/078.0s m =α吊耳中心到钩头中心距离L= 31002.2⨯mm弹性模量E= Pa 111010.2⨯动载系数5.15=φ2、挠度计算主要计算小车行驶方向钩身的最大挠度y ≤L/1000钩身垂直力P= N m 34510201.6078.0103.55.1⨯=⨯⨯⨯=αφ钩头的最大弯矩Nmm PL M 7331025.11002.210201.6⨯=⨯⨯⨯== 钩身的最大挠度EIPL y 33=代入数据得y=0.002mm<L/1000=2.02mm 所以钩身挠度符合使用要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四部分 轴的设计与校核
4.1输入花键轴设计与校核
4.1.1材料、性能参数选择以及输入花键轴的设计计算
(1)已经确定的运动学和动力学参数假设转速min /900r n =;轴所传递的扭矩
mm N T ⋅⨯=31018.3
(2)轴的材料选择:因为花键轴齿轮左端同样是和花键齿轮啮合,所以由表选用45(调质),根据材料主要性能表查得:抗拉强度极限MPa b 640=σ,屈服强度极限MPa s 355=σ,弯曲疲劳极限MPa 2751=-σ,剪切疲劳极限MPa 1551=-τ,屈服许用弯曲应力为
[]MPa 601=-σ
(3)根据机械设计手册式12.3-1计算轴的最小直径: []
3
min 5τT
d ≥
根据表12.3-2取[]MPa 35=τ 代入数据得:
[]
mm T
d 69.735
3180
553
3
min =⨯=≥τ (4)因为轴上有花键,所以采用增大轴径的方法来增加轴的强度。
根据选用的轴承为94276/-T GB 深沟球轴承16003,根据轴承标准件查的其轴径是17mm ,长度是7mm ;借鉴双踏板设计,此处的定位右边是利用矩形花键的外轴径定位,左端是定位是箱体孔,采用过盈配合夹紧。
矩形花键长度是57.5mm ,为了便于加工与左端轴承的配合,直接将左端轴承处一起加工,总长为64.5mm 。
根据所选用的花键为420166⨯⨯⨯=⨯⨯⨯B D d N ,其轴径为20mm ,,右端为94276/-T GB 深沟球轴承16005,所以它的轴径为25mm 长度为8mm ,定位是靠右端大轴花键828246⨯⨯⨯=⨯⨯⨯B D d N 的长度为7mm ,有段突出部分轴径12mm ,长度也是12mm ,最后轴的设计总长为98.5mm 。
其中齿轮定位采用弹性挡圈定位。
至此,已初步确定了轴的各段直径和长度。
4.1.2输入花键轴二维图标注和三维图如下:
4.1.3输入花键轴的校核
(1)最小轴径校核公式
[]MPa MPa d W T 3538.914
.31216318016
πT 33min max =<=⨯⨯===
ττ 满足条件,所以设计合理。
(2)进一步校核轴的的强度,其中轴向力不考虑,径向力求解
N d T F t 57.11356
31802222=⨯==
N F F t r 49.32786.0364.057.113cos tan 122=⨯⨯=⨯⨯=σα
这里两个锥齿轮的设计是一模一样的,具有变向的作用,所以俩锥齿轮的力都是32.49N ,
由于该径向力所产生的弯矩很小,故此处不用考虑,仅需校核扭转强即可。
此处需要校核两花键部分。
右边花键:
()()[]
12
42
16.62032364641614.33180
324-<=⨯⨯⨯⨯+⨯=+-⋅+=
=
σπσMPa D d D d D N B d M W M l 右
左边花键:
()()[]
12
42
99.12832524642414.33180
324-<=⨯⨯⨯⨯+⨯=
+-⋅+=
=
σπσMPa D d D d D N B d M W M l 右 同样满足强度。
(3)最后校核轴的扭转刚度,根据公式:
m
I l T LG pi
i i z i /)(11037.514
=∑⨯=ϕ
式中:T —轴所受的扭矩,mm N ⋅;
G —轴的材料的剪切弹性模量,MPa ,对于45钢,4101.8⨯=G ; I p —轴截面的极惯性矩,4
mm ,对于圆轴,32
4
d I p π=
L —阶梯轴受扭矩作用的长度,mm ;
T i 、l i 、I pi —分别代表阶梯轴第i 段上所受的扭矩、长度和极惯性
矩;
z —阶梯轴受扭矩作用的轴段数。
轴的扭转刚度条件为:对于一般传动轴,可取[]m /)(15.0 -=ϕ
[]m /)( ϕϕ≤
经计算轴的扭转刚度满足要求。
4.1.4花键的校核
左边花键是和内外花键齿轮套相配合,并且可以自由滑动,一直在工作的工作长度是34mm ,而且花键采用的是中系列,其中主要配合是:
10
11
41110207716
6d H a H f H B D d N ⨯⨯⨯=⨯⨯⨯
计算它的名义切向力为: ()N d F m t 3.3532
/162031802T 2=+⨯==
名 可以求出它的单位载荷,
()mm N l z F W t /73.134
63
.353=⨯=⋅=
名 (1)齿面压应力:
MPa h W w H 865.02
73.1===
σ 计算齿面许用压应力:
[]()
()
MPa K K K K S u b
H 5.1195.115.175.14.1640
4321=⨯⨯⨯⨯=
⨯⨯⨯⨯=
σσ
计算结果[]H H σσ<,满足要求。
(2)齿根弯曲应力的计算公式:
MPa S hW Fw F 30.14
73.12662
2=⨯⨯==σ 按照设计手册,计算齿根许用弯曲应力为:
[]()
MPa K K K K S F b
F 26.815
.115.175.10.2640
4321=⨯⨯⨯⨯=
=
σσ
计算结果[]F F σσ<,设计安全。
(3)齿根剪切应力的校核:
()mm D
d D Kd d d k 6.17204165.016=÷⨯⨯+=-+=
MPa d T k
m 97.26.1714.33180161633
=÷÷⨯==πτ []MPa F 63.40226.81==τ
因为 []F m ττ< ,所以满足条件。
(4)扭转与弯曲强度校核:
MPa m Fa v 14.597.2303222=⨯+=+=τσσ
许用应力:
[]()
MPa K K K K S F b
v 26.815
.115.175.12640
4321=⨯⨯⨯⨯=
=
σσ
计算结果[]v v σσ<,因此安全。
(5)静连接静应力校核:
MPa Zhld T m F 15.118
342675.03180
22=⨯⨯⨯⨯⨯==
ϕσ
计算得知[]MPa F 6401
=<-σσ 所以设计满足要求。
又因为右边花键是用花键套连接,其连接方式是:
10
11
81110287724
6d H a H f H B D d N ⨯⨯⨯=⋅⋅⋅ 采用同样的方法校核,也是满足强度要求的。