MAX3232电平转换原理图
LPC2132学习板系统用户手册

8 个 LED 灯通过跳线直接与 LPC2132 的 I/O 口相连,当相应的 I/O 口,输出低电平时,相应 的 LED 灯亮;反之,灯灭。
6 个按键灯通过跳线直接与 LPC2132 的 I/O 口相连,当有 I/O 口检测到低电平,则说明有按键 按下。
2 个 8 位数码管采用 2 个 74HC595 驱动,之所以用两片 74HC595 完全是为了用户考虑,因为 用一片的话,在单步调试时,总会有一个数码管不点亮,对用户造成不便。
LPC2132 学习板系统用户手册
2008.10.28 V1.0
目录
一 硬件设计说明 1. 电源电路 2. 复位电路 3. 系统时钟电路 4. JTAG 接口电路 5. 按键及显示电路 6. 串口电路 7. 蜂鸣器电路 8. A/D 和 D/A 电路 9 跳线说明
二 LPC2132 底层软件 1. 启动代码 2. 分散加载 3. 基本驱动
RS-9-1 和 RS-9-2 为标准 DB9 接头,可以直接接电脑串口或调制解调器接口,DB9 接头的第 二脚为计算机的数据接收端,第三脚为计算机的数据发送端。
图中转换芯口电路
7. 蜂鸣器电路
LPC2132 的 P0.29 脚控制蜂鸣器,当 P0.29 脚为输入状态或输出高时,蜂鸣器无声,当 P0.29 脚为输输出低电平时蜂鸣器鸣叫。
在使用硬件 SPI 接口主方式时,要把 SPI 的四个 I/O 口全设置为 SPI 功能。如使用 SPI0,就要 把 P0.4、P0.5、P0.6、P0.7 四个引脚配置为 SPI 功能,而且 P0.7/SSEL0 不能为低电平,在 LPC2132 开发板上该引脚接了一个 10K 的上拉电阻。从图 6 中可以看出,两片 74HC595 的从机选择引脚 RCK 分别接 SSELA/P0.22 和 SSELB/P0.23,即直接由 MCU 的 P0.22、P0.23 控制。
MAX3232中文资料.pdf

MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容________________________________________________________________Maxim Integrated Products119-0273; Rev 7; 1/07MegaBaud和UCSP是Maxim Integrated Products, Inc.的商标。
本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。
如需进一步确认,请在您的设计中参考英文资料。
有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访问Maxim的中文网站:。
M A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Note 1:V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V.V CC ...........................................................................-0.3V to +6V V+ (Note 1)...............................................................-0.3V to +7V V- (Note 1)................................................................+0.3V to -7V V+ + V- (Note 1)...................................................................+13V Input VoltagesT_IN, SHDN , EN ...................................................-0.3V to +6V MBAUD...................................................-0.3V to (V CC + 0.3V)R_IN.................................................................................±25V Output VoltagesT_OUT...........................................................................±13.2V R_OUT....................................................-0.3V to (V CC + 0.3V)Short-Circuit DurationT_OUT....................................................................ContinuousContinuous Power Dissipation (T A = +70°C)16-Pin TSSOP (derate 6.7mW/°C above +70°C).............533mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)....696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)........762mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)...842mW 18-Pin SO (derate 9.52mW/°C above +70°C)..............762mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)..889mW 20-Pin SSOP (derate 7.00mW/°C above +70°C).........559mW 20-Pin TSSOP (derate 8.0mW/°C above +70°C).............640mW 28-Pin TSSOP (derate 8.7mW/°C above +70°C).............696mW 28-Pin SSOP (derate 9.52mW/°C above +70°C).........762mW 28-Pin SO (derate 12.50mW/°C above +70°C).....................1W Operating Temperature RangesMAX32_ _C_ _.....................................................0°C to +70°C MAX32_ _E_ _ .................................................-40°C to +85°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________3TIMING CHARACTERISTICS—MAX3222/MAX3232/MAX3241(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容4_______________________________________________________________________________________典型工作特性Ω, T A = +25°C, unless otherwise noted.)LOAD CAPACITANCE (pF)0246810121416182022150MAX3222/MAX3232SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )20003000100040005000510152025303540MAX3222/MAX3232SUPPLY CURRENT vs. LOAD CAPACITANCEWHEN TRANSMITTING DATALOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )20003000100040005000TIMING CHARACTERISTICS—MAX3237(V CC = +3.0V to +5.5V, C1–C4 = 0.1µF (Note 2), T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Note 2:MAX3222/MAX3232/MAX3241: C1–C4 = 0.1µF tested at 3.3V ±10%; C1 = 0.047µF, C2–C4 = 0.33µF tested at 5.0V ±10%.MAX3237: C1–C4 = 0.1µF tested at 3.3V ±5%; C1–C4 = 0.22µF tested at 3.3V ±10%; C1 = 0.047µF, C2–C4 = 0.33µF tested at 5.0V ±10%.Note 3:Transmitter input hysteresis is typically 250mV.MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________5-7.5-5.0-2.502.55.07.50MAX3241TRANSMITTER OUTPUT VOLTAGEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )2000300010004000500046810121416182022240MAX3241SLEW RATEvs. LOAD CAPACITANCELOAD CAPACITANCE (pF)S L E W R A T E (V /µs )20003000100040005000510152025303545400MAX3241SUPPLY CURRENT vs. LOADCAPACITANCE WHEN TRANSMITTING DATALOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )20003000100040005000-7.5-5.0-2.502.55.07.50MAX3237TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )200030001000400050000102030504060700MAX3237SLEW RATE vs. LOAD CAPACITANCE(MBAUD = V CC )LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )500100015002000-7.5-5.0-2.502.55.07.50MAX3237TRANSMITTER OUTPUT VOLTAGE vs. LOAD CAPACITANCE (MBAUD = V CC )LOAD CAPACITANCE (pF)T R A N S M I T T E R O U T P U T V O L T A G E (V )5001000150020001020304050600MAX3237SUPPLY CURRENT vs.LOAD CAPACITANCE (MBAUD = GND)LOAD CAPACITANCE (pF)S U P P L Y C U R R E N T (m A )200030001000400050000246810120MAX3237SLEW RATE vs. LOAD CAPACITANCE(MBAUD = GND)LOAD CAPACITANCE (pF)S L E W R A T E (V /µs )2000300010004000500010302040506070MAX3237SKEW vs. LOAD CAPACITANCE(t PLH - t PHL )LOAD CAPACITANCE (pF)1000150050020002500____________________________________________________________________典型工作特性(续)(V CC = +3.3V, 235kbps data rate, 0.1µF capacitors, all transmitters loaded with 3k Ω, T A = +25°C, unless otherwise noted.)M A X 3222/M A X 3232/M A X 3237/M A X 32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容6_________________________________________________________________________________________________________________________________________________________________引脚说明MAX3222/MAX3232/MAX3237/MAX32413.0V至5.5V、低功耗、1Mbps、真RS-232收发器,使用四只0.1µF外部电容_______________________________________________________________________________________7_______________________________详细说明双电荷泵电压转换器MAX3222/MAX3232/MAX3237/MAX3241的内部电源由两路稳压型电荷泵组成,只要输入电压(V CC )在3.0V至5.5V范围以内,即可提供+5.5V (倍压电荷泵)和-5.5V (反相电荷泵)输出电压。
MAX3232EEAE中文资料

MAX3222EEPN -40°C to +85°C 18 Plastic DIP —
MAX3232ECAE 0°C to +70°C 16 SSOP
—
MAX3232ECWE 0°C to +70°C 16 Wide SO —
MAX3232ECPE 0°C to +70°C 16 Plastic DIP —
General Description
The MAX3222E/MAX3232E/MAX3237E/MAX3241E/ MAX3246E +3.0V-powered EIA/TIA-232 and V.28/V.24 communications interface devices feature low power consumption, high data-rate capabilities, and enhanced electrostatic-discharge (ESD) protection. The enhanced ESD structure protects all transmitter outputs and receiver inputs to ±15kV using IEC 1000-4-2 Air-Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge (±9kV for MAX3246E), and ±15kV using the Human Body Model. The logic and receiver I/O pins of the MAX3237E are protected to the above standards, while the transmitter output pins are protected to ±15kV using the Human Body Model.
如何产生负电压

二极管可用 IN5817 ~ IN5822 系列快恢复二极管;CCOMP 取决于 RFB 及电路布局,通常在 100pF ~ l0nF 之间取值。
4、专用 DC/DC 电压反转器提供负压
ME7660 是一种 DC/DC 电荷泵电压反转器,采用 AL 栅 CMOS 工艺设计。该芯片能将输入范围为+1.5V 至+10V 的电压转 换成相应的-1.5V 至-10V 的输出,并且只需外接两只低损耗电容,无需电感。芯片的振荡器额定频率为 10KHZ,应用于 低输入电流情况时,可于振荡器与地之间外接一电容,从而以低于 10KHZ 的振荡频率正常工作。
TC232 芯片
如何产生负电压?
1、电荷泵提供负压
TTL 电平/232 电平转换芯片(如,MAX232,MAX3391 等)是最典型的电荷泵器件可以输出较低功率的负压。但有些 LCD 要求-24V 的负偏压,则需要另外想办法。可用一片 max232 为 LCD 模块提供负偏压。TTL-in 接高电平,RS232-out 串 一个 10K 的电位器接到 LCM 的 VEE。这样不但可以显示, 而且对比度也可调。 MAX232 是+5V 供电的双路 RS-232 驱 动器,芯片的内部还包含了+5V 及±10V 的两个电荷泵电压转换器。
使用 MAX749 产生负压时应注意外围元件的选择,这里特别说明几点:
1)
晶体管:可以用 PNP 晶体管或 P 沟道 MOSFET。前者经济,使用简单,后者能提供更大电流,且转换效率
较高,但往往需要较高的输入电压(通常要求 +5V 或 +5V 以上)。如使用 2SC8550 三极管,可以提供较大的输出电流。
请看我们邮购部的说明:
(原文件名:SNAG-0034.jpg) 引用图片
低压异步通讯接口电路MAX3232

将 升压 电路 相 关 的 4只 电容 容 量减 少。
MA 3 3 X 2 2主 要 特 点 :芯 片 内 部 设 置
了静 电保 护 电路 ,可 有 效 抑 制 高 达 1 k 5V
不 :
MA 3 3 × 2 2各引脚功能描述如表 1所
图 2M A 22 P X3 3 E E外形 图
1 0
1 1
1 2
TN1 I 。第一路 C S 1 L逻辑 电平输入 ,来 自单片机 T D端。( MOS MO 、一 r X C 、 1r _L逻辑 电平 )
R T 。第一路 C OU 1 M0S 1 L逻 辑 电平 输 出 , 单 片机 R D 端 。 ( MOS 、_ r 去 x C 、 1r 辑 电平 ) _L逻
不 可 同 日而 语 。 是 R 2 2有 着 广 泛 的 大 但 S3
已经 不 能 很 好 完成 这 项 工 作 了 。 × 2 2 MA 3 3
_
常 见 的 为 1 脚 DI 封 装 的 Nhomakorabea 6 P
-
众 基 础 , 的技 术透 明 , 范 简 单 , 易 掌 是 MA 2 2的 增 强 品 种 。 能 够 替 代 MA 3 3 E E 它 在 引 脚 排 列 、 能 等 方 它 规 容 X3 ×22 P。 功 握 。所 以 目前 在对 传 输 速 率 要 求 不 高 的场 MA 2 2完 成 5 系 统 与 R 2 2高 电 压 面 也 与 采 用 同样 封 装 的 MA 2 2完 全 兼 X3 V S3 ×3 r ..。。 .. 1 . . . 一 . . l . 。 。 _ , 合 , 终 能保 有 一 席 之 地 。 始 接 口 的 匹配 , 同时 也 能 实 现 3 V低 压 系 统 容 , 以代换 。代换 时在 外 围 电路 方面 , 可 需 R 2 2最 基 本 的 通 讯 方 式 为 数 据 接 与 R 2 2接 口的 互联 。 S3 S3 收及 数 据 传送 双 线 传 输 这 种 模 式 。它采 用
基于STM32的RS232-CAN通信协议转换器设计

基于STM32的RS232-CAN通信协议转换器设计王英志;杨佳;韩太林【摘要】依据RS232接口和CAN总线的特点,设计了RS232接口与CAN总线的协议转换器。
以集成串行接口和CAN总线控制器的STM32F103C8单片机为核心,设计转换器的硬件电路和软件程序,实现RS232和CAN总线通信协议的转换。
本转换器具有通信隔离、防雷电等功能,具有体积小,成本低,便于实现,易于推广等特点,在应用中取得良好效果。
【期刊名称】《制造业自动化》【年(卷),期】2013(000)014【总页数】3页(P141-143)【关键词】协议转换;CAN总线;RS232;STM32F103C8【作者】王英志;杨佳;韩太林【作者单位】长春理工大学电子信息工程学院,长春130022;吉林建筑工程学院电气与电子信息工程学院,长春130021;长春理工大学电子信息工程学院,长春130022【正文语种】中文【中图分类】TP2730 引言目前,RS232接口和CAN总线接口广泛应用于工业设备之间的通信。
它们各有特点,应用在不同领域。
RS232通信距离短,接口容易损坏。
CAN总线具有多点通信、组网方便,传输距离远,通信实时性好,纠错能力强,成本低等特点,能更好地匹配和协调各个控制系统[1]。
基于两种接口特点,本文介绍一种实现RS232接口设备与CAN总线设备进行通信的转换器,更好的解决用户在地域、通信网络、接口协议等方面的矛盾。
1 系统硬件设计RS232-CAN通信协议转换器设计,主要是完成RS232与CAN总线之间的通信协议转换,实现数据的互联通信。
在通信过程中,为了使系统具有通用性和稳定性,对供电电源、通信隔离、防雷电等方面进行了特殊设计。
系统原理框图如图1所示。
图1 系统原理框图1.1 单片机选择选用意法半导体公司ARM Co rtex™-M 3核的32位STM 32F103C8单片机,负责系统的整体运行。
单片机特点为:最大时钟频率为72MHz,3个16位定时器,其内部集成CAN2.0控制器、USART接口和USB2.0全速接口等,调试模式为SWD和JATG接口。
第4章 异步串行通信

第4章异步串行通信本章导读:目前几乎所有的台式电脑都带有9芯的异步串行通信口,简称串行口或COM 口.由于历史的原因,通常所说的串行通信就是指异步串行通信。
USB、以太网等也用串行方式通信,但与这里所说的异步串行通信物理机制不同。
有的台式电脑带有两个串行口: COM1 口和COM2 口,部分笔记本电脑也带有串行口。
随着 USB接口的普及,串行口的地位逐渐降低,但是作为设备间简便的通信方式,在相当长的时间内,串行口还不会消失,在市场上也可很容易购买到USB到串行口的转接器因为简单且常用的串行通信只需要三根线(发送线、接收线和地线),所以串行通信仍然是MCU与外界通信的简便方式之一。
实现异步串行通信功能的模块在一部分MCU中被称为通用异步收发器(Universal Asynch¬ronous Receiver/Transmitters, UART ),在另一些 MCU 中被称为串行通信接口( Serial Communication Interface, SCI)。
串行通信接口可以将终端或个人计算机连接到MCU,也可将几个分散的 MCU连接成通信网络,本章的主要知识点有①阐述了串口相关的基础知识;②描述了K60串口糢块的功能概要;③介绍了串口模块驱动构件编程时涉及的相关寄存器;④设计并封装了串行通信的驱动构件;⑤给出第一个中断例程的执行过程和设计流程。
本章介绍的K60UART模块的工作原理以及编程实例,这些编程实例都使用了基于构件的编程思想,读者在阅读时可以仔细体会,以求得对编程方法有更深刻的理解本章所出现的UART 字眼,在没有其他说明的情况下,都是特指K60的UART模块,本章串口驱动编程涉及的寄存器全部给出其详细介绍,目的是让读者对嵌入式底层驱动编程设计的寄存器有个直观的了解,以后各章节将不再给出相关寄存器的详细介绍。
4.1异步串行通信的基础知识本节简要概括了串行通信中常用的基本概念,为学习MCU的串行接口编程做准备。
5V3.3V电平转换问题

5V3.3V电平转换问题5V 3.3V电平转换问题总结在5V和3.3V芯⽚与模块之间经常要使⽤到电平之间的转换,现总结如下。
1、问题来源常⽤电平类型包括5V-CMOS、5V-TTL、3.3V-LVCMOS、3.3V-LVTTL,这四种电平允许输⼊和输出的最⼤、最⼩⾼低电平阈值有所差异,因此,在连接时,有时需要进⾏相应的电平转换以使输⼊和输出之间的电平匹配。
如下表所列是常⽤的上述四种电平⾼低电平阈值,需要注意的是,不同的芯⽚⼚商在制造时,上述值有所差异,具体以芯⽚的数据⼿册为准,以下表格中数值参照Texas InstrumentO=OUTPUT,I=INPUT,VOH(min)表⽰:输出在此值~VCC之间,均为⾼电平,其他依次类似。
假如,有⼀个3.3V-LVTTL器件,输出的⾼电平,且⾼电平值为2.4V,送到⼀个5V-CMOS 器件,对5V-CMOS,仅3.5V以上才能识别为⾼电平,⽽2.4V电平属于⾼低中间未知的⼀个电平范围之内,因此,不能保证其能够被准确的识别为⾼电平,在这种情况下,需要进⾏电平转换。
同时,对于3.3V器件,由于其引脚⼤多数情况下⽆法耐受5V的电压,因此,也需要进⾏相应的电平转换。
2、5V器件——>3.3V器件这种情况⼤部分情况下是由于3.3V器件⽆法耐受5V电平,导致需要增加相应的转换电路。
在此部分中,5V器件统称为前级,3.3V器件统称为后级。
(1)电阻分压法:前级输出通过两个电阻(常取kΩ级别的)进⾏分压,分压后输出给后级。
操作较为简单,但需要注意某些应⽤:a)若分压电阻过⼤,会导致后级流⼊电流过⼩,不适合某些需要⼀定驱动能⼒要求的器件;b)若分压电阻过⼩,会导致功耗过⼤,不适合低功耗的应⽤,且前级引脚输出会等效存在⼀定的⼩阻值电阻,影响分压;c)不适合⾼速应⽤场合,后级输⼊引脚⼤多存在对地的分布电容,通过RC⽹络构成充电电路,会造成信号传输的延时,低速信号链中可不考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RS232TO TTL 通讯模块
实现RS232到TTL数据转换。
芯片采用MAX3232适用电压3V-5.5V,具有ESD保护功能、支持流控制、零延时自动收发转换和波特率自适应特点,即插即用,稳定可靠。
主要资源:
一、DB9母头RS232接口带流控功能可直接接电脑
二、2.54排针RS232接口带流控功能可替代DB9接头
三、3个指示灯分别是电源指示灯、数据收指示灯、数据发指示灯
四、2.54排针TTL接口带流控功能可直接接TTL设备
淘宝网站
https:///?spm=2013.1.1000126.d21.lOnOC1
以MCU单片机TTL到PC台式机RS232数据通信为例
1、PC台式机接DB9接口
2、MCU通过杜邦线接排针P1接口
P1接口说明
1GND接GND信号流向:GND
2VCC接3V-5V信号流向:VCC<--MCU_5V/MCU_3.3V
3RX接MCU_TX信号流向:PC_RX<--MAX3232<--RX
4TX接MCU_RX信号流向:PC_TX-->MAX3232-->TX
5CTS接MCU_RTS信号流向:PC_CTS<--MAX3232<--MCU_RTS 6RTS接MCU_CTS信号流向:PC_RTS-->MAX3232-->MCU_CTS
产品附件
1、RS232-TTL小板一个
2、杜邦线十根十种颜色
3、防静电自封袋一个
4、原理图
淘宝
https:///?spm=2013.1.1000126.d21.lOnOC1产品图片。