人教版数学八年级上册14.3 因式分解 同步练习及答案

合集下载

人教版八年级数学上册《14.3因式分解》练习题-带参考答案

人教版八年级数学上册《14.3因式分解》练习题-带参考答案

人教版八年级数学上册《14.3因式分解》练习题-带参考答案一、选择题1.使用提公因式法分解时,公因式是()A.B.C.2ab D.2.下列因式分解正确的是()A.B.C.D.3.把多项式分解因式等于()A.B.C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)4.下列多项式因式分解的结果中不含因式的是()A.B.C.D.5.已知,那么代数式的值为()A.6 B.7 C.13 D.426.已知则的值为()A.57 B.120 C.D.7.如果多项式可分解为,则的值分别为()A.B.C.D.8.定义:两个自然数的平方和加上这两个自然数乘积的两倍即可得到一个新的自然数,我们把这个新的自然数称为“完全数”.例如:22+32+2×2×3=25,其中“25”就是一个“完全数”.则任取两个自然数可得到小于200且不重复的“完全数”的个数有()A.14个B.15个C.26个D.60个二、填空题9.分解因式:.10.把因式分解的结果是.11.若是多项式的一个因式,则k的值是.12.已知多项式P,Q的乘积为,若,则.13.生活中我们经常用到密码,如手机解锁、密码支付等为方便记忆,有一种用“因式分解”法产生的密码,其原理是:将一个多项式分解成多个因式,如:将多项式分解结果为当时,此时可得到数字密码将多项式因式分解后,利用题目中所示的方法,当时可以得到密码,则.三、计算题14.因式分解(1)(2)15.把下列各式因式分解(1)(2)(3)16.分解因式时,甲看错了a的值,分解的结果是,乙看错了b的值,分解的结果为.(1)求a、b的值.(2)分解因式的正确答案是什么?17.常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式;(2)三边满足,判断的形状.参考答案:1.C2.C3.D4.D5.D6.D7.D8.B9.10.11.12.13.3014.(1)解:;(2)解:.15.(1)解:原式=6x2 (2x2-x-28) =6x2 (2x+7)(x-4)(2)解:原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3 =a(2-3a)[a4+2a2(2-3a)+(2-3a)2] =a(2-3a)(a2+2-3a)2 =a(2-3a)(a-1)2(a-2)2(3)解:原式=a4bc + a3(b3 + c3) + 2a2b2c2 + abc(b3+c3) + b3c3 =bc(a4+ 2a2bc+ b2c2) + a(b3 + c3)(a2 + bc) =bc(a2 + bc)2 + a(b3 + c3)(a2 + bc) =(a2 + bc)[bc(a2 + bc) + a(b3 + c3)] =(a2 + bc)[(bca2 + ab3)+(b2c2 + ac3)] =(a2 + bc)[ab(ca+b2)+ c2(b2+ac)] =(a2 +bc)(b2 +ac)(c2 +ab)16.(1)解:∵分解因式时,甲看错了a的值,分解的结果是∴甲没有看错b,即;∵分解因式时,乙看错了b的值∴乙没有看错a,即(2)解:∵,,∴17.(1)解:.(2)解:∵∴∴∴或∴的形状是等腰三角形。

人教版八年级上册14.3因式分解同步测试含答案

人教版八年级上册14.3因式分解同步测试含答案

因式分解单元测试一. 选择题:(每题3分,共30分)1.把23)()(x a a x ---分解因式的结果为( ).(A ))1()(2+--a x a x (B ))1()(2---a x a x (C ))()(2a x a x +- (D ))1()(2---a x x a 2.2244b a b a +-和的公因式是( ).(A )22b a - (B)b a - (C)b a + (D)22b a + 3.下列从左到右的变形,属因式分解的有( ).(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(xyx y x +=+4.下列各式中,可分解因式的只有( ).(A )22y x + (B )32y x - (C )nb ma + (D )22y x +- 5.把3223y xy y x x --+分解因式,正确的结果是( ).(A )))((22y x y x -+ (B ))()(22y x y y x x +-+ (C )2))((y x y x -+ (D ))()(2y x y x -+ 6.下列各多项式中能用平方差公式因式分解的有( ). (1)22b a --;(2);4222y x -(3);422y x -(4);)()(22n m ---(5);12114422b a +- (6)22221n m +-.(A )1个 (B )2个 (C )3个 (D )4个 7.下列代数式中是完全平方公式的有( ).(1);442+-y y (2);2016922mn n m -+ (3)222224)5(;136)4(;144b ab a a a x x +++++- (A )1个 (B )2个 (C)3个 (D)4个 8.下列因式分解错误的是( ) . (A)(B)(C)(D )9.把代数式269mx mx m -+分解因式,下列结果中正确的是 ( ).22()()x y x y x y -=+-2269(3)x x x ++=+2()x xy x x y +=+222()x y x y +=+(第10题图)(A)2(3)m x + (B)(3)(3)m x x +- (C)2(4)m x - (D)2(3)m x -10.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形)(b a >,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面 积,验证了一个等式是( ).(A)))((22b a b a b a -+=- (B)2222)(b ab a b a ++=+(C)2222)(b ab a b a +-=- (D)222))(2(b ab a b a b a -+=-+二. 填空题:(每题2分,共20分)11.多项式22)(c b a --有一个因式a+b-c,则另一个因式为___________. 12.因式分解:22)3()3(x b x a -+-=____________________. 13.已知 ,24552455,15441544,833833,3223222222⨯=+⨯=+⨯=+⨯=+, 若a ba b ⨯=+21010 符合前面式子的规律, 则b a += ___ ___.14.因式分解:412++a a =__________________.15.如果162++mx x 是一个完全平方式,则m=______. 16.因式分解:m mn n m 11112--+=___________________. 17.因式分解:ab b a 2922---=_____________________. 18.因式分解:1242--x x =_________________.19.若),4)(2)(2(162x x x x n +-+=-则n 的值为 .20.若2249100y kxy x ++能分解为2)710(y x -,则k 的值为 . 三.分解下列因式:(每题3分,共30分)21. )2(9)2(22m y m x -+- 22. 22a 16ab 9b --+23. 43244m m m ++ 24.()()2233y x y x ---25.9x 2-y 2-4y -4 26.b a ax bx bx ax -++--2227.310434422-+---y x y xy x 28. (x + y )2 + 4 (x + y ) - 2129.2224)1(x x -+ 30.(a -1)(a +1)(a +3)(a + 5) + 16 四.解答题:(每题4分,共20分)31.已知:,163,1==+xy y x 求32232xy y x y x +-的值.( ) 32.若0178222=+-++y y x x ,求xy 的值.( )33.若052422=++-+y x y x ,求20062006)2(y x +的值.( )34.(1)若一个三角形的三边长分别为c b a ,,,且满足0222222=--++bc ab c b a ,试判断该三角形是什么三角形,并加以说明.(2)已知在△ABC 中,三边长c b a ,,满足等式010616222=++--bc ab c b a , 求证:b c a 2=+.35.已知:222005200520042004;120052004+⨯-=-⨯=n m ,试比较n m ,的大小.五.附加题:(共20分) 36.求( 1 + 21)( 1 + 221)( 1 +421)( 1 +821) +1521的值.37. 根据以下10个乘积,回答问题:1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯ 1921⨯ 2020⨯(1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;(2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(22a b ab +⎛⎫⎪⎝⎭≤)38.求值:)1)(1()1)(1)(1)(1(21616884422-+⋅++++x xx x x x x x x x x .39.如果b a ,是整数,且12--x x 是123++bx ax 的因式,求b 的值.40.若m y x y xy x ++---221145622可分解成两个一次因式的积,求m 的值并将多项式分解因式.因式分解单元测试一. 选择题:(每题3分,共30分)1.把23)()(x a a x ---分解因式的结果为( B ).(A ))1()(2+--a x a x (B ))1()(2---a x a x (C ))()(2a x a x +- (D ))1()(2---a x x a 2.2244b a b a +-和的公因式是( D ).(第10题图)(A )22b a - (B)b a - (C)b a + (D)22b a + 3.下列从左到右的变形,属因式分解的有( C ).(A )22))((a x a x a x -=-+ (B )3)4(342+-=+-x x x x(C ))8(8223-=-x x x x (D ))1(xyx y x +=+4.下列各式中,可分解因式的只有( D ).(A )22y x + (B )32y x - (C )nb ma + (D )22y x +- 5.把3223y xy y x x --+分解因式,正确的结果是( D ).(A )))((22y x y x -+ (B ))()(22y x y y x x +-+ (C )2))((y x y x -+ (D ))()(2y x y x -+ 6.下列各多项式中能用平方差公式因式分解的有( D ). (1)22b a --;(2);4222y x -(3);422y x -(4);)()(22n m ---(5);12114422b a +- (6)22221n m +-.(A )1个 (B )2个 (C )3个 (D )4个 7.下列代数式中是完全平方公式的有( B ).(1);442+-y y (2);2016922mn n m -+ (3)222224)5(;136)4(;144b ab a a a x x +++++- (A )1个 (B )2个 (C)3个 (D)4个 8.下列因式分解错误的是( D ) . (A)(B)(C)(D )9.把代数式269mx mx m -+分解因式,下列结果中正确的是 ( D ).(A)2(3)m x + (B)(3)(3)m x x +- (C)2(4)m x - (D)2(3)m x -10.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形)(b a >,再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面 积,验证了一个等式是( A ).(A)))((22b a b a b a -+=- (B)2222)(b ab a b a ++=+(C)2222)(b ab a b a +-=- (D)222))(2(b ab a b a b a -+=-+二. 填空题:(每题2分,共20分)22()()x y x y x y -=+-2269(3)x x x ++=+2()x xy x x y +=+222()x y x y +=+11.多项式22)(c b a --有一个因式a+b-c,则另一个因式为___________. a-b+c12.因式分解:22)3()3(x b x a -+-=____________________.()()b a x +-2313.已知 ,24552455,15441544,833833,3223222222⨯=+⨯=+⨯=+⨯=+ , 若a b a b ⨯=+21010 符合前面式子的规律, 则b a += ___ ___.10914.因式分解:412++a a =__________________.221⎪⎭⎫ ⎝⎛+a15.如果162++mx x 是一个完全平方式,则m=______. 8±16.因式分解:m mn n m 11112--+=___________________.()()n m m --11 17.因式分解:ab b a 2922---=_____________________.()()b a b a --++33 18.因式分解:1242--x x =_________________.()()26+-x x 19.若),4)(2)(2(162x x x x n +-+=-则n 的值为 4 .20.若2249100y kxy x ++能分解为2)710(y x -,则k 的值为 -140 . 三.分解下列因式:(每题3分,共30分)21. )2(9)2(22m y m x -+- 22. 22a 16ab 9b --+)3)(3)(2()9)(2(22y x y x m y x m -+-=--= =1)3(2--b a =)13)(13(--+-b a b a23. 43244m m m ++ 24.()()2233y x y x ---=()2244m m m ++ =()()y x y x y x y x 3333+---+- =()222m m + =()()y x y x 2244+-=()()y x y x +-825.9x 2-y 2-4y -4 26.b a ax bx bx ax -++--22 =)23)(23(--++y x y x =()()12++-x x b a27.310434422-+---y x y xy x 28. (x + y )2 + 4 (x + y ) - 21=()()32132-++-y x y x =()()37-+++y x y x29.2224)1(x x -+ 30.(a -1)(a +1)(a +3)(a + 5) + 16 =()()2211-+x x =()2214-+a a四.解答题:(每题4分,共20分)31.已知:,163,1==+xy y x 求32232xy y x y x +-的值.()64332.若0178222=+-++y y x x ,求xy 的值.(-4)33.若052422=++-+y x y x ,求20062006)2(y x+的值.(2)34.(1)若一个三角形的三边长分别为c b a ,,,且满足0222222=--++bc ab c b a ,试判断该三角形是什么三角形,并加以说明.(配方法,等边三角形)(2)已知在△ABC 中,三边长c b a ,,满足等式010616222=++--bc ab c b a ,求证:b c a 2=+.(0)2)(8()1025()96(2222=+--+=+--++c b a c b a c bc b b ab a35.已知:222005200520042004;120052004+⨯-=-⨯=n m ,试比较n m ,的大小.(作差法,n m n ,2=->m )五.附加题:(共20分)36.求( 1 + 21)( 1 +221)( 1 +421)( 1 +821) +1521的值.原式=1584221)211)(211)(211)(211)(21-2(1+++++=15842221)211)(211)(211)(211(2++++-=1584421)211)(211)(211(2+++- =158821)211)(211(2++-=151621)211(2+-=151521212+-=2 37. 根据以下10个乘积,回答问题:1129⨯ 1228⨯ 1327⨯ 1426⨯ 1525⨯ 1624⨯ 1723⨯ 1822⨯ 1921⨯2020⨯(1)试将以上各乘积分别写成一个“22-”(两数平方差)的形式,并将以上10个乘积按照从小到大的顺序排列起来;解:222222112920912282081327207⨯=-⨯=-⨯=-;;;221426206⨯=-; 221525205⨯=-;221624204⨯=-;222217232031822202⨯=-⨯=-;; 221921201⨯=-;222020200⨯=-.这10个乘积按照从小到大的顺序依次是:2020211922182317241625152614271328122911⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ (2)若乘积的两个因数分别用字母a b ,表示(a b ,为正数),请观察给出ab 与a b +的关系式.(不要求证明)(22a b ab +⎛⎫⎪⎝⎭≤)38.求值:)1)(1()1)(1)(1)(1(21616884422-+⋅++++x xx x x x x x x x x .解: 原式=}1)(1)(1)(1)(1)(1(16168844222x x x x x x x x x x x +++++-=)1)(1)(1)(1)(1)(1(1616884422xx x x x x x x x x x x x +++++-=313332321)1(xx x x x -=- 39.如果b a ,是整数,且12--x x 是123++bx ax 的因式,求b 的值.1)1)(1(232++=---bx ax x x ax (a=1,b= -2)40.若m y x y xy x ++---221145622可分解成两个一次因式的积,求m 的值并将多项式分解因式.(()()24352,10+--+-=y x y x m )。

2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14-3因式分解》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。

八年级数学上册14.3因式分解同步练习(一)(含解析)新人教版(new)

八年级数学上册14.3因式分解同步练习(一)(含解析)新人教版(new)

14。

3因式分解一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式分解因式结果正确的是()A.B。

C.D.2、多项式提取公因式后的另一个因式是( ).A。

B。

C。

D.3、因式分解:。

A。

B.C。

D。

4、因式分解的结果是的多项式是( )A。

B。

C。

D.5、下列从左到右的变形中,是因式分解的是()A。

B。

C。

D。

6、下列等式从左到右的变形是因式分解的是()A。

B。

C。

D.7、因式分解:=()A。

B。

C。

D。

8、因式分解:()A。

B.C.D。

9、下列各式能用平方差公式分解因式的有()①;②;③;④;⑤.A。

个B。

个C。

个D。

个10、把多项式分解因式,结果正确的是()A。

B。

C。

D。

11、把多项式分解因式时,应提出的公因式是()A.B.C.D.12、下列各组式子中,没有公因式的是( )A。

与B. 与C。

与D. 与13、多项式与多项式的公因式是( )A.B.C。

D。

14、下列从左到右的变形,是因式分解的是( )A.B。

C。

D.15、分解因式:______.A.B。

C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、因式分解: .17、因式分解:=_______.18、多项式与多项式的公因式是___________.19、若进行因式分解的结果为,则.20、分解因式:______.三、解答题(本大题共有3小题,每小题10分,共30分)21、用简便方法计算:。

22、分解因式:.23、能被整除吗?能被整除吗?14.3因式分解同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下列各式分解因式结果正确的是()A。

B。

C。

D。

【答案】A【解析】解:,不能分解因式,故该选项错误;,故该选项错误;,不是因式分解,故该选项错误;,故该选项正确.故答案应选:。

2、多项式提取公因式后的另一个因式是()。

A。

B。

C.D.【答案】C【解析】解:,故答案为:.3、因式分解:。

八年级数学上册14.3因式分解-十字相乘法同步测试题(人教版含答案)

八年级数学上册14.3因式分解-十字相乘法同步测试题(人教版含答案)

八年级数学上册14.3因式分解-十字相乘法同步测试题(人教版含答案)因式分解-十字相乘法测试时间:90分钟总分:100 题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)将下列多项式因式分解,结果中不含有因式a+1的是( ) A. a^2-1 B. a^2+a C. a^2+a-2 D. (a+2)^2-2(a+2)+1 把多项式x^2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是( ) A. a=-2,b=-3 B. a=2,b=3 C. a=-2,b=3 D. a=2,b=-3 若x^2+mx+n分解因式的结果是(x+2)(x-1),则m+n=( ) A. 1 B. -2 C. -1 D. 2 若多项式x^2+mx+36因式分解的结果是(x-2)(x-18),则m的值是( ) A. -20 B. -16 C. 16 D.20 多项式x^2-3x+a可分解为(x-5)(x-b),则a、b的值分别是( )A. 10和-2B. -10和2C. 10和2D. -10和-2 如果多项式x^2+ax+b 可因式分解为(x-1)(x+2),则a、b的值为( ) A. a=1,b=2 B. a=1,b=-2 C. a=-1,b=-2 D. a=-1,b=2 如果多项式mx^2-nx-2能因式分解为(3x+2)(x+p),那么下列结论正确的是( ) A. m=6 B. n=1 C. p=-2 D. mnp=3 下列因式分解结果正确的是( ) A.x^2+3x+2=x(x+3)+2 B. 4x^2-9=(4x+3)(4x-3) C.x^2-5x+6=(x-2)(x-3) D. a^2-2a+1=(a+1)^2 若x^2+mx-15=(x+3)(x+n),则mn的值为( ) A. 5 B. -5 C. 10 D. -10 如果二次三项式x^2+ax-1可分解为(x-2)⋅(x+b),那么a+b的值为( ) A. -2 B. -1 C. 1 D. 2 二、填空题(本大题共10小题,共30.0分)若关于x的二次三项式x^2-kx-3因式分解为(x-1)(x+b),则k+b的值为______ .若二次三项式x^2-px+6在整数范围内能进行因式分解,那么整数p的取值是______ .若x^2+mx-n能分解成(x-1)(x+4),则m=______,n=______.已知多项式x^2+px+q可分解为(x+3)(x-2),则p= ______ ,q= ______ .因式分解x^2+ax+b,甲看错了a的值,分解的结果是(x+6)(x-2),乙看错了b的值,分解的结果为(x-8)(x+4),那么x^2+ax+b分解因式正确的结果为_____________.已知x^2+(a+b)x+ab=(x+a)(x+b),则二次三项式x^2-2x-15可以因式分解为______ . x^2-x-12分解因式得______ .若x^2+mx+n分解因式的结果是(x+2)(x-1),则m+n的值为______.分解因式: (1)4x^2-9= ______ ; (2)x^2+3x+2= ______ ;(3)2x^2-5x-3= ______ .分解因式a^3-a^2-2a= ______ .三、计算题(本大题共4小题,共24.0分)分解因式: (1)5x^2+10x+5 (2)(a+4)(a-4)+3(a+2)因式分解: (1)2(x^2+y^2 )^2-8x^2 y^2 (2)6x^2-5x-4.解方程:x(x-3)=4.把下列各式因式分解 (1)3x^2-12y^2 (2)(a+b)^2-6c(a+b)+9c^2(3)x^2-2x-8 (4)(m+n)^2-4mn.四、解答题(本大题共2小题,共16.0分)阅读:分解因式x^2+2x-3.解:原式=x^2+2x+1-1-3 =(x+2x+1)-4 =(x+1)^2-4=(x+1+2)(x+1-2) =(x+3)(x-1) 此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此�}为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:分解因式:4a^2+4a-3.仔细阅读下面例题,解答问题;例题,已知二次三项式x^2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x^2-4x+m=(x+3)(x+n) 则x^2-4x+m=x^2+(n+3)x+3n∴{■(〖m=3n〗┴(n+3=-4) )┤ 解得:n=-7,m=-21 ∴另一个因式为(x-7),m的值为-21 问题:仿照以上方法解答下面问题:已知二次三项式3x^2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.答案和解析【答案】 1. C 2. A 3. C 4. A 5. D 6. B 7. B 8.C 9. C 10. B 11. 1 12. 5,-5,7,-7 13. 3;4 14. 1;-6 15. (x-6)(x+2)16. (x-5)(x+3) 17. (x-4)(x+3) 18. -1 19. (2x+3)(2x-3);(x+1)(x+2);(2x+1)(x-3) 20. a(a+1)(a-2) 21. 解:(1)原式=5(x^2+2x+1)=5(x+1)^2; (2)原式=a^2-16+3a+6=a^2+3a-10=(a-2)(a+5). 22. 解:(1)原式=2[(x^2+y^2 )^2-4x^2y^2]=2(x^2+y^2+2xy)(x^2+y^2-2xy)=2(x+y)^2 (x-y)^2; (2)原式=(2x+1)(3x-4). 23. 解:x^2-3x-4=0 (x-4)(x+1)=0 x-4=0或x+1=0∴x_1=4,x_2=-1. 24. 解:(1)原式=3(x^2-4y^2)=3(x+2y)(x-2y);(2)原式=(a+b-3c)^2; (3)原式=(x-4)(x+2); (4)原式=m^2+2mn+n^2-4mn=m^2-2mn+n^2=(m-n)^2. 25. 解:原式=4a^2+4a+1-1-3 =(4a^2+4a+1)-4 =(2a+1)^2-4 =(2a+1+2)(2a+1-2) =(2a+3)(2a-1) 26. 解:设另一个因式为(x+n),得3x^2+5x-m=(3x-1)(x+n),则3x^2+5x-m=3x^2+(3n-1)x-n,∴{■(〖-n=-m〗┴(3n-1=5) )┤,解得:n=2,m=2,∴另一个因式为(x+2),m的值为2.【解析】 1. 【分析】先把各个多项式分解因式,即可得出结果.本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.【解答】解:A.∵a^2-1=(a+1)(a-1),B.a^2+a=a(a+1),C.a^2+a-2=(a+2)(a-1),D.(a+2)^2-2(a+2)+1=(a+2-1)^2=(a+1)^2,∴结果中不含有因式a+1的是选项C.故选C. 2. 解:根据题意得:x^2+ax+b=(x+1)(x-3)=x^2-2x-3,则a=-2,b=-3,故选A 因式分解的结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a与b的值即可.此题考查了因式分解-十字相乘法,以及多项式乘以多项式,熟练掌握运算法则是解本题的关键. 3. 解:∵x^2+mx+n=(x+2)(x-1)=x^2+x-2,∴m=1,n=-2,则m+n=1-2=-1,故选C 根据因式分解的结果,利用多项式乘以多项式法则化简,再利用多项式相等的条件求出m与n的值,即可求出m+n的值.此题考查了因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 4. 解:x^2+mx+36=(x-2)(x-18)=x^2-20x+36,可得m=-20,故选A.把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键. 5. 解:∵多项式x^2-3x+a可分解为(x-5)(x-b),∴x^2-3x+a=(x-5)(x-b)=x^2-(b+5)x+5b,故b+5=3,5b=a,解得:b=-2,a=-10.故选:D.利用多项式乘法整理多项式进而得出a,b的值.此题主要考查了整式的混合运算,得出同类项系数相等是解题关键. 6. 解:根据题意得:x^2+ax+b=(x-1)(x+2)=x^2+x-2,则a=1,b=-2,故选B 已知分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出a与b的值即可.此题考查了因式分解-十字相乘法,熟练掌握十字相乘法是解本题的关键. 7. 解:∵多项式mx^2-nx-2能因式分解为(3x+2)(x+p),∴(3x+2)(x+p)=3x^2+(3p+2)x+2p=mx^2-nx-2,∴p=-1,3p+2=-n,解得:n=1.故选:B.直接利用多项式乘法运算法则得出p的值,进而得出n的值.此题考查了因式分解的意义;关键是根据因式分解的意义求出p的值,是一道基础题. 8. 解:A、原式=(x+1)(x+2),故本选项错误; B、原式=(2x+3)(2x-3),故本选项错误; C、原式=(x-2)(x-3),故本选项正确; D、原式=(a-1)^2,故本选项错误;故选:C.将各自分解因式后即可做出判断.此题考查了因式分解-十字相乘法,提公因式法,以及运用公式法,熟练掌握因式分解的方法是解本题的关键. 9. 解:由x^2+mx-15=(x+3)(x+n)=x^2+(3+n)x+3n,比较系数,得m=3+n,-15=3n,解得m=-2,n=-5,则mn=(-2)×(-5)=10.故选:C.根据多项式乘多项式的法则计算,然后根据对应项的系数相等列出方程,求解即可得到m、n的值,再代入计算即可.本题考查了多项式的乘法法则,根据对应项系数相等列式是解题的关键. 10. 解:(x-2)(x+b)=x^2+(b-2)x-2b,∵二次三项式x^2+ax-1可分解为(x-2)(x+b),∴a=b-2,-2b=-1,解得a=-3/2,b=1/2,∴a+b=-3/2+1/2=-1.故选:B.利用多项式的乘法运算法则展开,然后根据对应项的系数相等列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,根据对应项系数相等列式是解题的关键. 11. 解:由题意得:x^2-kx-3=(x-1)(x+b)=x^2+(b-1)x-b,∴-3=-b, -k=b-1,移项得:k+b=1.故答案为1.将因式分解的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件求出k与b的值,即可求出k+b的值.本题考查了因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键. 12. 解:若二次三项式x^2-px+6在整数范围内能进行因式分解,那么整数p的取值为5,-5,7,-7,故答案为:5,-5,7,-7 原式利用十字相乘法变形,即可确定出整数p的值.此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键. 13. 解:由题意得:x^2+mx-n=(x-1)(x+4)=x^2+3x-4,则m=3,n=4,故答案为:3;4.利用十字相乘法判断即可确定出m与n的值.此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键. 14. 解:根据题意得:x^2+px+q=(x+3)(x-2)=x^2+x-6,则p=1,q=-6,故答案为:1;-6 因式分解结果利用多项式乘以多项式法则计算,再利用多项式相等的条件求出p与q的值即可.此题考查了因式分解-十字相乘法,多项式乘以多项式,以及多项式相等的条件,熟练掌握十字相乘法是解本题的关键. 15. 解:甲看错了a的值:x^2+ax+b=(x+6)(x-2)=x^2+4x-12,∴b=-12 乙看错了b的值:x^2+ax+b=(x-8)(x+4)=x^2-4x-32,∴a=-4 ∴x^2+ax+b分解因式正确的结果:x^2-4x-12=(x-6)(x+2) 根据因式分解法的定义即可求出答案.本题考查因式分解,解题的关键是正确理解因式分解的定义,本题属于基础题型. 16. 解:原式=x^2+(-5+3)x+(-5)×3=(x-5)(x+3),故答案为:(x-5)(x+3) 根据已知等式分解的方法,将原式分解即可.此题考查了因式分解-十字相乘法,熟练掌握十字相乘的方法是解本题的关键. 17. 解:x^2-x-12=(x-4)(x+3).故答案是:(x-4)(x+3).因为-4×3=-12,-4+3=-1,所以利用十字相乘法分解因式即可.本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程. 18. 解:∵x^2+mx+n分解因式的结果是(x+2)(x-1),∴x^2+mx+n=x^2+x-2,∴m=1,n=-2,∴m+n=1-2=-1,故答案为-1.先把(x+2)(x-1)展开,求得m,n的值,再求m+n的值即可.本题考查了因式分解-十字相乘法,求得m,n的值是解题的关键. 19. 解:(1)原式=(2x+3)(2x-3); (2)原式=(x+1)(x+2); (3)原式=(2x+1)(x-3),故答案为:(1)(2x+3)(2x-3);(2)(x+1)(x+2);(3)(2x+1)(x-3) (1)原式利用平方差公式分解即可;(2)原式利用十字相乘法分解即可; (3)原式利用十字相乘法分解即可.此题考查了因式分解-十字相乘法,以及运用公式法,熟练掌握因式分解的方法是解本题的关键. 20. 解:原式=a(a2-a-2)=a(a+1)(a-2).故答案为:a(a+1)(a-2).原式提取公因式a后,利用十字相乘法分解即可得到结果.此题考查了因式分解-十字相乘法,熟练掌握十字相乘法是解本题的关键. 21. (1)原式提取5,再利用完全平方公式分解即可; (2)原式整理后,利用十字相乘法分解即可.此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 22. (1)原式提取公因式,再利用平方差公式及完全平方公式分解即可; (2)原式利用十字相乘法分解即可.此题考查了提公因式法与公式法的综合运用,以及因式分解-十字相乘法,熟练掌握因式分解的方法是解本题的关键. 23. 把方程化成一般形式,用十字相乘法因式分解求出方程的根.本题考查的是用因式分解法解一元二次方程,把方程化成一般形式,再用十字相乘法因式分解求出方程的根. 24. (1)原式提取公因式,再利用平方差公式分解即可; (2)原式利用完全平方公式分解即可; (3)原式利用十字相乘法分解即可; (4)原式整理后,利用完全平方公式分解即可.此题考查了因式分解-十字相乘法,以及提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 25. 根据配方法,可得平方差公式,根据平方差公式,可得答案.本题考查了因式分解,利用配方法得出平方差公式是解题关键,分解要彻底. 26. 首先设另一个因式为(x+n),得3x^2+5x-m=(3x-1)(x+n),继而可得方程组{■(〖-n=-m〗┴(3n-1=5) )┤,解此方程即可求得答案.此题考查了十字相乘法分解因式的知识.注意理解题意,结合题意求解是关键.。

【人教版八年级数学上册同步练习试题及答案】14.3因式分解(含答案解析)

【人教版八年级数学上册同步练习试题及答案】14.3因式分解(含答案解析)

14.3因式分解专题一因式分解1.下列分解因式正确的是()A.3x2-6x =x(x-6) B.-a2+b2=(b+a)(b-a) C.4x2-y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)2 2.分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.(3)平方差公式:a 2-b 2=(a+b)(a -b),两个数的平方差,等于这两个数的和与这两个数的差的积. (4)完全平方公式:a 2±2ab+b 2=(a ±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.【温馨提示】1.分解因式的对象必须是多项式,如把25a bc 分解成abc a ⋅5就不是分解因式,因为25a bc 不是多项式.2.分解因式的结果必须是积的形式,如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式.【方法技巧】1.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此时括号内的各项都应变号,如)2(22--=+-x x x x .2.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行变化,使之符合公式的特点.参考答案:1.B 解析:A中,3x2-6x=3x(x-2),故A错误;B中,-a2+b2=-(a-b)(a+b)=(b+a)(b -a),故B正确;C中,4x2-y2=(2x)2-(2y)2=(2x-y)(2x+y),故C错误;D中,4x2-2xy+y2的中间项不是2×2x×y,故不能因式分解,故D错误.综上所述,选B.2.3m(m-3n)2解析:3m3-18m2n+27mn2=3m(m2-6mn+9n2)=3m(m-3n)2.3.(2a-b)2解析:(2a+b)2-8ab=4a2+4ab+b2-8ab=4a2-4ab+b2=(2a-b)2.4.(x2) 解析:x4-4=(x2+2)(x2-2)=(x2.5.解:(1)3x2--4);(2)x4-10x2+25=(x2-5)22(x2.6.解:(1)x3-2x=x(x2-;(2)x4-6x2+9=(x2-3)22(x2.7.B 解析:∵m-n=-5,mn=6,∴m2n-mn2=mn(m-n)=6×(-5)=-30,故选B.8.2013 解析:32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.9.解:(1)答案不唯一,如:(x2-4x)+(x2+2x)=2x2-2x=2x(x-1).(2) 答案不唯一,如:x2-4x>x2+2x,合并同类项,得-6x>0,解得x<0.如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。

2024年-人教版数学八年级上册14.3因式分解同步练习及答案

第14章《整式乘除与因式分解》同步练习(§14.3)班级学号姓名得分一、填空题(每题3分,共30分)1.计算:103_________.a a ÷=2.计算: 3532(3)(0.5)_________.m n m n -÷-=3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+…(n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=7.使等式1)5(93=-+m 成立时,则m 的取值是_____.8.已知多项式3x 3+ax 2+3x +1能被x 2+1整除,且商式是3x +1,那么a 的值是.9.已知10m =3,10n =2,则102m -n =.10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.二、选择题(每题3分,共24分)11.下列计算中正确的是( )A .248x x x =÷B .55a a a =÷C .23y y y =÷D .224)()(x x x -=-÷- 第一次折叠 图-1 左 左 右 右 第二次折叠 图-2 (第10题)12.若n 221623=÷,则n 等于( )A .10B .5C .3D .613.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)ab ab ab 632=⋅;(4)3232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为( )A .a 2B .b 2C .b a +D .b a -15.如果8a 写成下列各式,正确的共有( )①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧8882a a a =-A .7个B .6个C .5个D .4个16.已知2239494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m17.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+三、解答题(共46分)19.(8分)计算(1)2242)()(ab ab ÷;(2))4()7124(22333a b a b a a -÷-+-.20.(6分)先化简,后求值.x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求商式必须为2xy ,(1)若小明报的是)2(23xy y x -,小亮应报什么整式?(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B +A 看作了AB ÷,结果得x x 212+,求B +A 的值.23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗(1)试求:410312⊗⊗和的值.(2)试求:4319105212⊗⊗⨯⊗和(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.参考答案一、填空题1.67)(,m a a -2.36n ,41052⨯3.xy x y 44323-+-4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.92 10.1cm 二、选择题11.C12.A13.C14.D 15.C16.A 17.C18.D三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等。

人教版八年级上数学14.3 因式分解 同步练习及答案(含答案)

第14章《整式乘除与因式分解》同步练习(§14.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.计算:103_________.a a ÷=2.计算: 3532(3)(0.5)_________.m n m n -÷-=3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=7.使等式1)5(93=-+m 成立时,则m 的取值是_____.8.已知多项式3x 3+ax 2+3x +1能被x 2+1整除,且商式是3x +1,那么a 的值是 .9.已知10m =3,10n =2,则102m -n = .10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.二、选择题(每题3分,共24分)11.下列计算中正确的是( )A .248x x x =÷B .55a a a =÷C .23y y y =÷D .224)()(x x x -=-÷-第一次折叠 图-1 第二次折叠 图-2 (第10题)12.若n 221623=÷,则n 等于( )A .10B .5C .3D .613.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)ab ab ab 632=⋅;(4)3232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a -15.如果8a 写成下列各式,正确的共有( )①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧8882a a a =-A .7个B .6个C .5个D .4个16.已知2239494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m17.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+三、解答题(共46分)19.(8分)计算(1)2242)()(ab ab ÷; (2))4()7124(22333a b a b a a -÷-+-.20.(6分)先化简,后求值.x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求商式必须为2xy ,(1)若小明报的是)2(23xy y x -,小亮应报什么整式?(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B +A 看作了AB ÷,结果得x x 212+,求B +A 的值.23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗(1)试求:410312⊗⊗和的值.(2)试求:4319105212⊗⊗⨯⊗和(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.参考答案一、填空题1.67)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.92 10.1cm 二、选择题11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D三、解答题19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)不相等。

人教版八年级上册14.3《因式分解》同步练习卷 含答案

人教版2020年八年级上册14.3《因式分解》同步练习卷一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?。

人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)

第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章《整式乘除与因式分解》
同步练习
(§14.3)
班级 学号 姓名 得分
一、填空题(每题3分,共30分)
1.计算:103_________.a a ÷=
2.计算: 3532(3)(0.5)_________.m n m n -÷-=
3.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为______.
4.一个三角形的面积是c b a 433,一边长为2abc ,则这条边上的高为______.
5.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434
=-⨯,… 根据你发现的规律,计算:2222122334(1)
n n ++++=⨯⨯⨯⨯+… (n 为正整数). 6.计算:2010232_______,________a a x x ÷=÷=
7.使等式1)5(93=-+m 成立时,则m 的取值是_____.
8.已知多项式3x 3+ax 2+3x+1能被x 2+1整除,且商式是3x+1,那么a 的值是 .
9.已知10m =3,10n =2,则102m-n = .
10.小宇同学在一次手工制作活动中,先把一张矩形纸片按图-1的方式进行折叠,使折
痕的左侧部分比右侧部分短1cm ;展开后按图-2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是_____.
二、选择题(每题3分,共24分)
11.下列计算中正确的是( )
A .248x x x =÷
B .55a a a =÷
C .23y y y =÷
D .224)()(x x x -=-÷-
12.若n 221623=÷,则n 等于( )
A .10
B .5
C .3
D .6
13.下面是小林做的4道作业题:(1)ab ab ab 532=+;(2)ab ab ab -=-32;(3)
ab ab ab 632=⋅;(4)3
232=÷ab ab .做对一题得2分,则他共得到( ) A .2分 B .4分 C .6分 D .8分
14.(2008辽宁省大连市)若x =b a -,y =b a +,则xy 的值为 ( )
A .a 2
B .b 2
C .b a +
D .b a -
15.如果8a 写成下列各式,正确的共有( )
①44a a +;②42)(a ;③216a a ÷;④24)(a ;⑤44)(a ;⑥1220a a ÷;⑦44a a ⋅;⑧ 8882a a a =-
A .7个
B .6个
C .5个
D .4个
16.已知2239
494b b a b a n m =÷,则( ) A .3,4==n m B .1,4==n m C .3,1==n m D .3,2==n m
17.计算:xy xy y x y x 2)232(2223÷+--的结果是( )
A .xy y x 232-
B .22
322+-xy y x C .1232+--xy y x D .12322+--xy y x 18.下列计算正确的是( )
A .x y x y x 221222223=⋅÷
B .572222579
19n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+
三、解答题(共46分)
19.(8分)计算
(1)2242)()(ab ab ÷; (2))4()7124(22333a b a b a a -÷-+-.
20.(6分)先化简,后求值.
x y x y x y x 2)])(()[(2÷--+-,其中5.1,3==y x
21.(8分)小明与小亮在做游戏时,两人各报一个整式,小亮报的整式作为除式,要求
商式必须为2xy ,
(1)若小明报的是)2(23xy y x -,小亮应报什么整式?
(2)若小明报23x ,小亮能报出一个整式吗?说说你的理由.
22.(8分)已知:A =x 2,B 是多项式,小明同学是个小马虎,在计算A +B 时,误把B
+A 看作了A B ÷,结果得x x 2
12+,求B +A 的值. 23.(7分)一个单项式的平方与5632123y x y x --的积为,求这个单项式.
24.(9分)我们约定:b a b a 1010÷=⊗,如1010103434=÷=⊗
(1)试求:410312⊗⊗和的值.
(2)试求:4319105212⊗⊗⨯⊗和
(3)想一想,)()(c b a c b a ⊗⊗⊗⊗和是否相等,验证你的结论.
参考答案
一、填空题
1.6
7)(,m a a - 2.36n ,41052⨯ 3.xy x y 44323-+- 4.323b a 5.21n n + 6.20085,a x 7.m =-3 8.1 9.9
2 10.1cm
二、选择题
11.C 12.A 13.C 14.D 15.C 16.A 17.C 18.D
三、解答题
19.(1)24a b ;(2)22473ab b a a +- 20.x y -,1.5 21.(1)y x -221;(2)小亮不
能报出一个整式 22.3222x x x ++ 23.±2x 2y 24.(1)9610,10;(2)181210,10;(3)
不相等。

相关文档
最新文档