资源遥感常用的遥感数据
常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司常见国产卫星遥感影像数据的简介本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。
中国资源卫星应用中心产品级别说明◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。
◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。
其中:■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级!◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。
◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。
■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可!■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。
国产卫星一、GF-3(高分3号)1.简介2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。
高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。
2.数据时间2016年8月10日-现在3.传感器SAR:1米二、ZY3-02(资源三号02星)1.简介资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。
这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,缩短重访周期和覆盖周期,充分发挥双星效能,长期、连续、稳定、快速地获取覆盖全国乃至全球高分辨率立体影像和多光谱影像。
最全的常见的资源遥感卫星及其数据

最全的常见的资源遥感卫星及其数据遥感基础与应⽤——常见的资源遥感卫星及其数据学院:资源与环境学院专业:地理信息系统班级:XX级2班学号:201XXXXX姓名:XXX指导教师:XXX时间:2013-4-29常见的资源遥感卫星及其数据前⾔:遥感卫星(remote sensing satellite )⽤作外层空间遥感平台的⼈造卫星。
⽤卫星作为平台的遥感技术称为卫星遥感。
通常,遥感卫星可在轨道上运⾏数年。
卫星轨道可根据需要来确定。
遥感卫星能在规定的时间内覆盖整个地球或指定的任何区域,当沿地球同步轨道运⾏时,它能连续地对地球表⾯某指定地域进⾏遥感。
所有的遥感卫星都需要有遥感卫星地⾯站,卫星获得的图像数据通过⽆线电波传输到地⾯站,地⾯站发出指令以控制卫星运⾏和⼯作。
常见的遥感卫星有美国陆地卫星、法国SPOT卫星、中巴资源卫星等等。
⼀、美国陆地卫星(Landsat系列)陆地卫星(Landsat)是美国地球资源卫星系列。
卫星作⽤是美国⽤于探测地球资源与环境的系列地球观测卫星系统,曾称作地球资源技术卫星(ERTS)。
按传感器可分为三类:1.RBVRBV是陆地卫星1~3号上携带的⼀套传感器,其全称是反束光导管摄像仪,简称RBV.在Lansat-1,Lansat-2上有三个波段:RBV1波段:蓝绿波段,波长范围是0.475µm~0.575µm;RBV2波段:红黄波段,波长范围是0.580µm~0.680µm;RBV3波段:红外波段,波长范围是0.690µm~0.830µm;在Lansat-3上RBV改成两台并列式,只有⼀个全⾊⼯作波段0.505µm~0.705µm,Lansat-1,Lansat-2的RBV的空间分辨率为80m,⽽Lansat-3上的RBV全⾊图像分辨率为40m。
犹豫RBV的图像质量不如MSS,故从Landsat-4开始取消了这种传感器。
常用遥感卫星数据介绍

•
Thursday, July 31, 2014
Landsat
Thursday, July 31, 2014
13
数据及适用年仹
• • • Landsat 7 ETM SLC-off (2003-) Landsat 7 ETM SLC-on (1999-2003) 敀障后 敀障前
Thursday, July 31, 2014
微米全色 0.52-0.90
LANDSAT 7 ETM SLC
标准参数 产品类型 单元格大小 Level 1T 标准地形校正 15m – 全色波段8;30m – 反射波段1-5和7;60m – 热波段6H和6L
输出格式 取样方法
地图投影 分发 传递
GeoTIFF 三次卷积 (CC)
中等空间分辨率: 4 – 30m » ASTER » LANDSAT » CBERS-2 » IRS • 低空间分辨率: 30 - > 1000 m
• » 气象方面:AVHRR、MODIS、
GMS、FY-1/2、SPOT-VGT • » 海洋方面:HY-1、SeaWiFS (美)
Thursday, July 31, 2014
Landsat 4-5 TM Landsat 4-5 MSS (1982-1992)
•
Landsat 1,2,3 MSS (1972-1983)
Thursday, July 31, 2014
LANDSAT 7
• 美国陆地卫星7 号(Landsat-7 ) 于1999 年4 月15 日由美国航空航天局(NASA) 发射升空,其携带的主要传感器为增强型主题成像仪 ( ETM+ ) 。 • Landsat-7 除了在空间分辨率和光谱特性等方面保持了与 Landsat-5 的基本 一致。Landsat-7每16 天扫瞄同一地区,即其16天覆盖全球一次。 • 2003 年5 月31 日(21:42:35 GMT) ,Landsat-7ETM+ 机载扫描行校正器 (ScanLinesCorrector, 简称SLC) 突然发生敀障,导致获取的图像出现数据 重叠和大约25% 的数据丢失,因此2003/5/31日之后Landsat 7的所有数据 都是异常的,需要采用SLC-off模型校正。另外,2003/5/31-2003/7/14以及 2003/7/3-2003/9/17之间的数据是没有获得。
介绍常用的资源遥感卫星及其数据

M: 0.61 0.68 µm B1: 0.50 0.59 µm B2: 0.61 0.68 µm B3: 0.78 0.89 µm B4: 1.58 1.75 µm
P: 0.50 0.73 µm B1: 0.50 0.59 µm B2: 0.61 0.68 µm B3: 0.78 0.89 µm
植被成像装置
距离方向18米 幅宽:75公里
5、 RADARSAT-1
RADARSAT卫星是加拿大于95年11月4日发射的,它具有7种模式、25 种波束,不同入射角,因而具有多种分辨率、不同幅宽和多种信息特 征。适用于全球环境和土地利用、自然资源监测等。 卫星参数: 太阳同步轨道(晨昏) 轨道高度:796公里 倾角:98.6o 运行周期:100.7分钟 重复周期:24天 每天轨道数:14 卫星过境的当地时间约为早6点晚6点。 重量:2750kg 工作模式 波束位置 入射角(度) 标称分辨率(米) 标称轴宽(公里) 精细模式(5个波束位置) F1- F5 37---48 10 50x50 标准模式(7个波束位置) S1- S7 20---49 30 100x100 宽模式 (3个波束位置) W1-W3 20---45 30 150x150 窄幅ScanSAR (2个波束位置) SN1 20---40 30 300x300 SN2 31---46 30 300x300 宽幅ScanSAR SW1 20---49 100 500x500 超高入射角模式(6个波束位置) H1-H6 49---59 25 75x75 超低入射角模式 L1 10---23 35 170x170 总结如下: RADARSAT: 波段 模式(μm) 标准模式(Standard Beam,简 称S) 宽模式(Wide Beam,简称W) 地面分辨率 约30米 约30米
常用遥感数据和波段用途

(一)NOAA/AVHRRNOAA/AVHRR(National Oceanic and Atomospheric Administration)是低空间分辨率遥感卫星。
它是美国国家海洋大气局的实用气象观测卫星,从1970年12月发射的第一颗到2002年6月24号发射的NOAA-M,30多年来共发射了17颗。
NOAA卫星的轨道为太阳同步近极地圆形轨道,以确保同一时间、同一地方的上午、下午成像。
轨道平均高度分别为833km和870km,轨道倾角98.7º和98.9º;是目前业务化运行最成熟的一种遥感卫星。
NOAA卫星采用双星系统,即NOAA12和NOAA14在服役,它的总体参数:总重量:1421公斤;负载量:194公斤;保留余量:36.4公斤;卫星尺寸:3.71米(长)*1.88米(直径)。
星载传感器有:①极精密高分辨率辐射计(AVHRR)以5个频道同时扫描大气,可获得可见光云图和红外云图,作为天气分析与预报之用。
此外,红外频道的数据可用来决定若干云参数及海面温度。
②泰洛斯业务垂直探测器(TOVS),这组仪器包括三个辐射计,各有不同的功能:A.高分辨率红外辐射探测器(HIRS/2)是具有20个可见光和红外频道的扫描辐射计,可以探测对流层内气温和水汽垂直分布以及臭氧总含量。
B.平流层探测单元(SSU)以3个红外频道观测平流层中的气温垂直分布。
C.微波探测单元(MSU)以4个微波频道观测波长0.5厘米的氧吸收带,可以穿透云层探测云下的气温垂直分布。
③太空环境监测器(SEM)负责侦测太空中太阳质子、α粒子及电子通量等资料。
④地球辐射收支试验(ERBE)以狭角视场和广角视场观测地球大气,可以监测太阳常数、行星反照率以及射出长波辐射等参数。
TIROS-N系列卫星具有数据汇集系统(DCS),可以接收来自两千多个固定及移动观测台的资料,加以处理储存,最后再传送到地面接收站。
AVHRR为TIROS-N系列卫星最主要的仪器,它由一个8英寸口径的卡塞格伦望远镜对准地面,用一个旋转镜对地面左右扫描,望远镜的瞬时视场角为1.3*1.3平方毫弧度,相当于星下点1.1平方公里,扫描每分钟360行,扫描角为正负55度,相当于地面2800公里。
常用遥感图像基本技术参数和各波段应用

常用遥感图像基本技术参数和各波段应用大纲要求:常用遥感图像(TM、OLI、SPOT、CBERS、MODIS、HJ-1、ASAR、RADARSAT等)的基本技术参数和各波段的主要应用范围等:了解目前常用的国内外遥感器及其主要技术参数、各波段的特点及主要应用范围等。
ndsat 4-5 TM(1)、产品描述Landsat主题成像仪(TM)是Landsat4和Landsat5携带的传感器,从1982年发射至今,其工作状态良好,几乎实现了连续的获得地球影像。
Landsat-4和Landsat5同样每16天扫瞄同一地区,即其16天覆盖全球一次。
LandsatTM影像包含7个波段,波段1-5和波段7的空间分辨率为30米,波段6(热红外波段)的空间分辨率为120米。
南北的扫描范围大约为170km,东西的扫描范围大约为183km。
2. Landsat8 OLI(1)、产品描述2013年2月11号,NASA 成功发射了Landsat 8 卫星。
LandSat- 8上携带有两个主要载荷:OLI和TIRS。
其中OLI(全称:Operational Land Imager ,陆地成像仪)由卡罗拉多州的鲍尔航天技术公司研制;TIRS(全称:Thermal Infrared Sensor,热红外传感器),由NASA的戈达德太空飞行中心研制。
OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。
OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。
使用遥感数据进行资源评估的方法和技巧

使用遥感数据进行资源评估的方法和技巧遥感数据的广泛应用领域之一是资源评估。
通过遥感技术,可以获得大范围、高分辨率的数据,为资源评估提供了有力的工具。
本文将介绍使用遥感数据进行资源评估的方法和技巧。
一、遥感数据的获取和处理使用遥感数据进行资源评估,首先需要获取合适的遥感数据。
常见的遥感数据来源包括卫星、航空摄影和无人机等。
其中,卫星影像是最常用的遥感数据之一,其覆盖范围广、时效性高。
获取到遥感数据后,还需要进行预处理,以提取并准确地表示资源信息。
预处理包括影像校正、镶嵌和辐射校正等步骤,可以通过遥感软件完成。
二、遥感数据的资源评估方法1. 光谱分析法光谱分析是遥感数据处理的核心技术之一。
通过分析遥感影像的光谱信息,可以识别或提取出不同类型的资源。
例如,植被指数可以通过计算遥感数据中的红外波段和可见光波段的比值来评估植被覆盖程度,据此可以进行植被资源的评估。
2. 空间分析法空间分析是对遥感影像进行空间位置和关联性分析的方法。
通过分析资源在空间上的分布和变化情况,可以推断出其相关特征和趋势。
例如,通过比较不同时间段的遥感影像,可以得到资源的变化情况,据此可以评估资源的利用状况和管理效果。
3. 监督分类法监督分类是一种基于人工标注样本的遥感影像分类方法。
通过选择代表不同资源类型的样本点,并进行遥感影像的分类标注,可以建立分类模型。
然后,使用该模型对整个遥感影像进行分类,从而评估资源的数量和分布状况。
4. 非监督分类法非监督分类是一种基于遥感影像统计学方法的分类技术。
它不需要事先标注样本,而是基于遥感数据本身的分布情况进行分类。
通过将遥感影像像元进行聚类,并根据聚类结果划分不同的资源类型或类别,可以实现资源评估。
三、遥感数据的资源评估技巧1. 多源数据融合不同遥感数据具有不同的优势和局限性。
为了获得更准确的资源评估结果,可以将多源遥感数据进行融合。
例如,将高空间分辨率的卫星影像与高光谱分辨率的航空摄影影像融合,可以充分利用两种数据的优势,提高资源评估的准确性。
常用遥感卫星数据介绍

常用遥感卫星数据介绍遥感卫星数据是指由遥感卫星获取的地球表面信息的数字化数据。
遥感卫星通过搭载在航天器上的观测仪器,利用电磁波辐射接收和传输地球表面的物理量,并将其转化为数字信号,最终生成遥感卫星数据。
常见的遥感卫星数据包括光学遥感数据、雷达遥感数据和地形遥感数据等。
光学遥感数据是指通过光学传感器收集的卫星数据,可以分为多光谱数据和高光谱数据两种。
多光谱数据通过在不同波段的探测器中接收光辐射,得到不同波段的图像,常见的有Landsat、Sentinel等卫星。
多光谱数据可以用于土地覆盖分类、植被监测、水资源调查等应用。
高光谱数据则是在较窄的波段范围内获取更多的光谱信息,可以更精确地进行地物分类和光谱分析。
雷达遥感数据是通过雷达传感器获取的卫星数据,利用雷达波的特性对地球表面进行探测和测量。
雷达遥感数据可以在夜晚或云层遮挡的条件下进行观测,具有独特的能力。
它可以提供地表反射率、地表高度、土壤含水量等信息,对于农业、气象和海洋等领域具有重要意义。
常见的雷达卫星包括SAR(合成孔径雷达)卫星、ERS卫星等。
地形遥感数据是通过测量地球表面和地形特征以获取地质、地貌、地貌和地表覆盖等方面的信息。
地形遥感数据可以通过激光雷达测距仪或雷达高度计获得。
地形遥感数据广泛应用于地质勘探、城市规划、水资源管理等领域。
常见的地形遥感卫星包括GEOID和ICESat等。
此外,还有热红外遥感数据用于测量地表及大气的热辐射,用于火灾监测和研究、城市热岛效应等;微波遥感数据用于测量大气和地表的微波辐射,用于气象观测、植被水分状况估算等;激光遥感数据用于三维地形测绘和建筑物监测等。
综上所述,常用的遥感卫星数据包括光学遥感数据、雷达遥感数据、地形遥感数据以及热红外遥感数据、微波遥感数据和激光遥感数据等。
这些数据可以提供丰富的地球表面信息,广泛应用于农业、地质、气象、环境和城市规划等领域。
随着遥感技术的不断发展,遥感卫星数据将为人们提供更多更精确的地球观测数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点:
1、多光谱遥感不仅可以根据影像的形态和结构的差异判别 地物, 还可以根据地物光谱的差异判别地物, 扩大了遥 感的信息量 2、航空摄影与陆地卫星用的多光谱摄影/扫描均能得到不同 谱段的遥感资料,并通过摄影彩色合成或计算机图像处 理, 获得比常规方法更为丰富的图像。 3、对于多光谱图像中的单波段数字图像,如TM, ETM1等 量化反映地物反射辐射强弱, 可以根据不同地物在该波 段上的反射率高低差异直接判别。
收集机载MSS热红外数据时,需要注意以下事 项:
高空间分辨率与高辐射分辨率是成反比。视角B越大 滞留时间越大,滞留时间越长。辐射分辨率越高,信 噪比越高,空间分辨率低监测器监测物体发射的能量 强度与物体与接收器间的距离成反比
热红外遥感数据特点
1、热红外波段图像,包括航空(如机载热红外 波扫描图像)、航天(如TM6,ETM+6), 记载的是地物热辐射信息,根据斯蒂芬-波尔 兹曼定律, 发射辐射能与绝对温度的四次方 成比例。影像灰度值越高,表明发射能量越多, 地物温度越高Leabharlann 资源遥感常用数据简析常用数据源
1、多光谱遥感 2、热红外遥感 3、微波 遥感
多光谱遥感
定义:将地物辐射电磁波分割成若干个较窄的光谱 段,以摄影或扫描的方式, 在同一时间获得同一 目标不同波段信息的遥感技术。
原理:不同地物有不同的光谱特性,同一地物则具 有相同的光谱特性。同一地物在不同波段的辐射能 量有差别,在不同波段图像上也有差别
热红外遥感辐射源
1、自然辐射源太阳辐射:可见光和近红外的主 要辐射源(近似6000K的黑体辐射)大气对太 阳辐射有吸收、反射和散射地球的电磁辐射 (近似300K的黑体辐射) 2、人工辐射源 3、微波辐射(0 8 30cm0.8-30cm) 激光辐射)、 激光辐射
热红外数据的采集
1、追踪扫描仪 2、推扫式线性排列电荷耦合 器件(CCD)监测NASA TIMNASA TIM和ATLAS有6 个热红外波段(8.2 -12.2μm) 分辨率:D = H 〃 B B:视角(毫弧度mrad); H:扫描仪的高度
简言之,即为把获取的光谱信息(数字信号)转换 成有用的信息
多光谱遥感数据的来源
1、美国(Landsat)卫星 2、法国SPOT卫星 3、美国QUICKBIRD卫星 4、美国IKONOS卫星 5、中巴地球资源卫星( CBERS-1)
美国Landsat卫星——地球资源卫 星(ERTS)
Landsat 8 2013年2月11日,在加州范登堡空军基地成功发射
光谱信息丰富,通常与SPOT全色卫星数据合成,应用面广
MSS放置在Landsat1-5:光学系统 镜子垂直于飞行方向;扫描时集 中能量反射到离散的感应元件上, 这些元件将每个视角内的辐射能 量转换成电信号,含有4组传感 器, TM有7组 6个平行的传感器对应4个光谱段 0.5-0.60.6-0.7;0.7-0.8;0.8-1.0 μm
微波遥感的图像特点
2、形状:热红外探测器检测到物体温度与 背景温度存在差异时,就能在影像上构成物 体的热分布形状。 如:山区河流在白天拍摄的热红外像片上 暗灰色调 夜间拍摄的山区河流为灰摄的热红 外像片上,呈现暗灰色调, 间拍摄的山区河 流为灰白色飘带。
热红外片上河流形状
白天
晚上
3、阴影:热红外影像上的阴影是目标物与背景之 间辐射差异造成的 可分为冷影和热影两种的,
Landsats1,2,3是太阳同步, 近极轨卫星(倾角 99°),高度919km, 每次绕行103分钟, 每 绕地球约天绕地球约14 圈. 重访周期18天
Landsat5 (近极轨,太阳同步)
分辨率: 30m, TM(专题制图仪)在约705km高度处,扫描 带 宽的覆盖范围:南北为1 070km,东西约为183km。 重访周期:16天。 数据构成: 多光谱(7个波段)。 辐射分辨率:8比特,即每个像元可能的数据范围为0到255
缺点:
多光谱影象存在一定程度的相关性以及 数据冗余现象, 通过函数变换保留主要信 息, 降低数据量,增强或提取有用信息。
热红外遥感
概念:利用传感器收集并 记录地物的热红外信息, 用来识别地物或反演地表 参数(温度、湿度、热惯 量等)。传感器工作波段 限于红外波段范围之内 原理:物体温度高于绝对 零度将发射红外能量热辐 射能量强度与波谱分布由 物质类型和温度
分辨率79m, 6bit(0-63),重采样到 7bit(0- 127)
LANDSAT-7
法国SPOT卫星
第一颗SPOT卫星,分辨率,多光谱20m,全色10m,第4\5 颗 含有一个植物传感器
SPOT4和SPOT5
1、增加了独立传感器called vegetation用于监测植被、 全球变化,可以利用数据合成NDVI数据集 2、Short-wavelength infrared (SWIR)波段(1.58-1.75μm ) 监测植被和土壤湿度
微波遥感
微波:在电磁波谱中,波长在1mm~1m的波段。
定义: 通过微波传感器获取从目标地物发射或反射 的微波辐射,通过判读来识别和处理的技术 分类:主动遥感、被动遥感。
微波遥感传感器分类
微波遥感成像特征
几何特征:目标地物的大小、形状及空间分布特点
物理特征:目标地物的属性特点 时间特征:目标地物的变化动态特点
IKONOS卫星相关技术参数
其他常用卫星遥感数据
1、美国„ QUICKBIRD
分辨率:全色0.61m,多光谱2.44m(5个波段)
2、CBERS-1(中巴地球资源卫星即资源一号卫星, 于 1999年10月14日发射成功)
由北京、广州和乌鲁木齐三个地面接收站接收该卫星 获取的我国境内的遥感数据。 所接收影像的地面分辨 率分别有19.5m、 78m、 256m等三种。
优点:
1、全天候。由于被遥感的物体在任何时间都在不断的向外 辐射热红外线 热红外遥感可以在白天或黑夜无人造光源的 条件下实线, 红外遥感可以在白天或黑夜无人造光源的条 件下实施。 2、在地表温度反演、城市热岛效应、林火监测、旱灾监测、 探地热、岩溶区探水等领域都有很广的应用
缺点:
1、地物从热辐射的吸收到标志地物热特性的温度 升高有一个热储存和热释放的过程,这与地物本身 的热性质和环境有关 2、改变地物热状况的热源,涉及微气象参数、土 壤物理参数 植被生化参数理参数、 被生化参数 3、热红外遥感空间分辨率比较低,混合像元问题 复杂
美国IKONOS
分辨率:多光谱(红、绿、蓝、近红外)4m,全色1m 幅宽: 11公里; 重复周期:1~3天; 数据构成:全色,多光谱(5个波段) 。 卫星飞行高度680km,每天绕地球14圈,相机的扫描宽度为11km。
特点:纹理、波 信 富谱信息丰富, 分辨率高、 覆 期短盖周期 短,应用面广,在军事和民用方面均有重要用途。 幅宽较窄,但价格较贵