初二数学《反比例函数》知识点
八年级数学反比例函数知识点

反比例函数1、反比例函数的定义:一般地,xky =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数。
x 为自变量,y 为因变量,其中x 不能为零 2、反比例函数的等价形式:①y 是x 的反比例函数 ←→ )0(≠=k x ky (定义式) 1.u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ;2.矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致( )ABCD3.如图,为反比例函数的图象,则它的解析式为_________.4.反比例函数x k y =的图像经过(-23,5)点、(a ,-3)及(10,b )点, 则k = ,a = ,b = ;②)0(≠=k k xy 判断一个函数是否为反比例函数,判定两点是否在同一反比例函数上 4、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( ) A 、 (-a ,-b ) B 、 (a ,-b ) C 、(-a ,b ) D 、(0,0) 5、函数x k y =的图象经过点(-4,6),则下列各点中不在xky =图象上的是( ) A 、(3,8) B 、(3,-8) C 、(-8,-3) D 、(-4,-6) 6、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是( ) A 、6 B 、―6 C 、9 D 、―9 7.已知y 与 2x 成反比例,且当x=3时,y=61,那么当x =2时,y =_________,当y =2时,x =_________. ③)0(1≠=-k kx y 系数待定问题: 1. 已知函数22(1)m y m x -=-,当m=_____时,它的图象是双曲线.2.已知函数2(1)k y k x -=+ (k 为整数),当k 为_________时,y 是x 的反比例函数.3、()22105m y m x-=-是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;3.反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大;oyy o y o y o③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交。
反比例函数知识点总结

反比例函数知识点总结一、定义和性质y=k/x其中k为常数,称为反比例函数的比例常数。
1.y随着x的增加而减小,或随着x的减小而增加。
2.当x=0时,函数y无定义。
3.曲线y=k/x在第一象限中,以坐标轴为渐近线。
二、图像和图像特征第一象限:当x>0时,y>0,两者同号,图像在该象限中呈现右上方向的增长,且随着x增大而逐渐降低,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(1/k,k)。
第二象限:当x<0时,y<0,两者异号,图像在该象限中呈现左下方向的增长,且随着x减小而逐渐增大,但不会等于0。
这个分支与y轴无交点,但是它和x轴的交点是(-1/k,-k)。
三、定义域和值域四、解析表达式五、反比例函数的性质与变换1.反比例函数的比例常数k越大,曲线的形状越平缓,即曲线与坐标轴之间的夹角越小。
2.反比例函数的图像关于y轴对称。
3.对于反比例函数的图像,x轴和y轴是渐近线,即曲线会无限接近x轴和y轴。
4.若给定一个特定的函数值y0,可以通过求解方程y0=k/x,得到x 与y的关系式。
六、反比例函数的应用1.马力与速度的关系:汽车的马力与速度成反比例关系,马力越大,达到其中一速度所需的时间越短。
2.投资收益与投资金额的关系:在一些投资项目中,投资收益与投资金额成反比例关系,这意味着投资金额较小的项目可能会有更高的投资收益率。
3.速度与时间的关系:在物理学中,速度和时间是反比例关系,速度越大,所需的时间越短。
4.电阻与电流的关系:根据欧姆定律,电阻与电流成反比例关系,电阻越大,所能通过的电流越小。
总结:反比例函数是一类常见的函数关系,具有重要的应用价值。
对于反比例函数的定义和性质,需要了解其图像特征以及定义域和值域的范围。
同时,反比例函数可以通过解析表达式表示,并具有一些特殊的性质和变换规律。
在实际生活中,反比例函数有着广泛的应用,例如在汽车马力与速度的关系、投资收益与投资金额的关系、速度与时间的关系以及电阻与电流的关系等方面。
反比例函数知识点框架

反比例函数知识点框架
一、定义
反比例函数,又称反比例关系,是指两个变量之间成反比例的函数关系。
二、特点
1. 反比例函数的图象是一条抛物线,抛物线的顶点为原点,两条抛物线的方向相反;
2. 反比例函数的导数是一个负值,表示反比例函数的斜率是负的;
3. 反比例函数的值在原点处取得最大值,而两端的值则趋于零;
4. 反比例函数的横坐标和纵坐标之间是一种反比例关系,即横坐标增大,纵坐标减小,反之亦然。
三、应用
1. 反比例函数可以用来描述两个变量之间的反比例关系,例如:温度与热量之间的关系;
2. 反比例函数也可以用来描述数量与价格之间的反比例关系,例如:汽油价格与汽油消费量之间的关系;
3. 反比例函数也可以用来描述距离与时间之间的反比例关系,例如:距离与旅行时间之间的关系。
反比例函数知识点梳理

反比例函数知识点梳理
1. 反比例函数的定义
反比例函数是指当自变量 x 不为零时,函数值 y 的变化遵循比例关系,其中比例常数 k 不等于 0,即 y = k/x。
通常我们把它写成y = k/x+b,其中 b 为常数。
2. 反比例函数的图像
反比例函数的图像在 x 轴上有一个垂线渐近线,而在 y 轴上具有一个水平渐近线。
当 x 接近 0 时,y 显著变化,而当 x 变得很大时,y 变得很小。
例如,如果 k = 1,则函数 y = 1/x+b 的图像看起来如下:
3. 反比例函数的性质
反比例函数的图像不会穿过垂线渐近线和水平渐近线。
当自变量 x 非常大或非常小时,反比例函数的值渐近于 0。
反比例函数也不具有最大值或最小值。
4. 反比例函数的应用
反比例函数有很多实际应用,如工业、商业、科学等领域。
例如,在数学中,它可用于表征第一定律的 Ohm 定律,即电流与电压成反比例关系。
5. 反比例函数的问题解决
解决反比例函数问题的关键在于找到比例常数 k 和常数 b。
这可以通过已知的点对、图像或其他信息来确定。
以上是反比例函数的知识点梳理,希望对您有所帮助。
反比例函数知识点总结

反比例函数知识点总结反比例函数知识点总结1.反比例函数的定义一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。
它可以从以下几个方面来理解:⑴ x是自变量,y是x的反比例函数;⑵自变量x的取值范围是x≠0的一切实数,函数值的取值范围是y≠0;⑶比例系数k≠0是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:① y=k/x(k≠0);② y=kx^-1(k≠0);③ xy=k(定值)(k≠0);⑸函数y=k/x(k≠0)与函数x=k/y(k≠0)是等价的,所以当y是x的反比例函数时,x也是y的反比例函数。
当k=0时,y=k/x就不是反比例函数了。
2.用待定系数法求反比例函数的解析式由于反比例函数y=k/x(k≠0)中,只有一个待定系数,因此,只要一组对应值,就可以求出k的值,从而确定反比例函数的表达式。
3.反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称。
由于反比例函数中自变量x≠0,函数值y≠0,所以它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例函数的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
4.反比例函数的性质关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表所示:反比例函数 y=k/x(k≠0) k的符号 k>0 k0 y0时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小。
当k<0时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y随x的增大而增大。
(完整版)中考——反比例函数知识点【经典】总结

反比例函数一、基础知识1.定义:一般地,形如(为常数,)的函数称为反比例函数。
还可以写成xk y =k o k ≠x ky =kxy =1-2.反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分y k k 母中含有自变量,且指数为1.x ⑵比例系数0≠k ⑶自变量的取值为一切非零实数。
x ⑷函数的取值是一切非零实数。
y 3.反比例函数的图像⑴图像的画法:描点法①列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数)②描点(有小到大的顺序)③连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所xky =k 0≠k 0≠x 0≠y 以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。
⑶反比例函数的图像是是轴对称图形(对称轴是或)。
x y =x y -=⑷反比例函数()中比例系数的几何意义是:过双曲线 ()上任意引x k y =0≠k k xky =0≠k 轴轴的垂线,所得矩形面积为。
x y k 4.反比例函数性质如下表:的取值k 图像所在象限函数的增减性ok >一、三象限在每个象限内,值随的增大而减小y xo k <二、四象限在每个象限内,值随的增大而增大y x 5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)k 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。
xky =7. 反比例函数的应用题型总结:一.反比例函数的图象与性质【例1】对与反比例函数,下列说法不正确的是( )xy 2=A .点()在它的图像上 1,2--B .它的图像在第一、三象限C .当时,0>x 的增大而增大随x yD .当时,0<x 的增大而减小随x y 【例2】已知反比例函数的图象经过点(1,-2),则这个函数的图象一定经过( ()0ky k x=≠)A 、(2,1)B 、(2,-1)C 、(2,4)D 、(-1,-2)【例3】在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系x k y 1=xk y 2=1k 2k 一定是( )A. +=0B. ·<0C. ·>0D.=1k 2k 1k 2k 1k 2k 1k 2k 【例4 】已知,且反比例函数的图象在每个象限内,随的增大而增大,如果点3=b xby +=1y x 在双曲线上,求a 是多少?()3,a xb y +=1【例5】两个反比例函数y=k x 和y=1x 在第一象限内的图像如图3所示, 点P 在y=kx的图像上,PC⊥x 轴于点C ,交y=1x 的图像于点A ,PD⊥y 轴于点D ,交y=1x的图像于点B , 当点P 在y=kx的图像上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上, 少填或错填不给分).二.反比例函数的判定l t y ABC【例1】若与成反比例,与成正比例,则是的( )y x x z y z A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定【例2】如果矩形的面积为6cm 2,那么它的长cm 与宽cm 之间的函数图象大致为( )y x 三.反比例函数的解析式特征(的指数,值与图像分布关系):x k 【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?222-+=k k kxy 【例2】如果函数22(1)my m x -=-为反比例函数,则m 的值是 ( )A 、1-B 、0C 、21 D 、1四.比较反比例函数图象上点的横纵坐标大小关系:【例1】在反比例函数的图像上有三点,,,,,。
反比例函数知识点归纳

反比例函数知识点归纳定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x 是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
函数y=k/x 称为反比例函数,其中k≠0,其中x是自变量,1.当k>0时,图象分别坐落于第一、三象限,同一个象限内,y随x的减小而增大;当k<0时,图象分别坐落于二、四象限,同一个象限内,y随x的减小而减小。
2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
3.x的值域范围就是:x≠0;y的取值范围是:y≠0。
4..因为在y=k/x(k≠0)中,x无法为0,y也无法为0,所以反比例函数的图象不可能将与x轴平行,也不可能将与y轴平行。
但随着x无穷减小或是无穷增加,函数值无穷收敛于0,故图像无穷吻合于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
(k为常数,k≠0)的形式,那么表示y就是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x≠0的一切实数,看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。
补足表明:1.反比例函数的解析式又可以译成: (k就是常数,k≠0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的值域就是一切非零实数。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的值域范围就是不等同于0的一切实数。
反比例函数的图像为双曲线。
由于反比例函数属奇函数,存有f(-x)=-f(x),图像关于原点等距。
反比例函数知识点总结

反比例函数知识点总结一、反比例函数定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。
二、图象特征1. 反比例函数的图象是一组双曲线。
2. 当 k > 0 时,双曲线的两支分别位于第一象限和第三象限。
3. 当 k < 0 时,双曲线的两支分别位于第二象限和第四象限。
4. 双曲线的对称轴是 y 轴。
三、性质1. 反比例函数不是定义在全体实数上的函数,其定义域为 (-∞, 0) ∪ (0, +∞)。
2. 反比例函数的值域为全体实数 R。
3. 反比例函数是奇函数,具有对称性,其对称中心为原点 (0, 0)。
4. 当 x 的值增大时,y 的值减小;当 x 的值减小时,y 的值增大。
5. 反比例函数没有渐近线,但当 x 趋向于 0 时,y 趋向于无穷大或负无穷大。
四、运算法则1. 反比例函数的加法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 + y2 = (k1x2 + k2x1) / (x1x2)。
2. 反比例函数的减法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 - y2 = (k1x2 - k2x1) / (x1x2)。
3. 反比例函数的乘法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 * y2 = (k1 * k2) / (x1 * x2)。
4. 反比例函数的除法法则:若 y1 = k1/x1,y2 = k2/x2,则 y1 /y2 = (k1 / k2) * (x2 / x1)。
五、实际应用反比例函数在物理学、经济学、生物学等领域有广泛的应用。
例如,在电路分析中,电流与电阻的关系可以由欧姆定律表示为 I = V/R,其中 V 为电压,I 为电流,R 为电阻,这可以看作是反比例函数的一个特例。
六、常见问题及解析1. 问题:如何确定反比例函数的定义域和值域?解析:反比例函数的定义域为除去 0 的所有实数,即 (-∞, 0) ∪ (0, +∞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、目标与要求
1.使学生理解并掌握反比例函数的概念。
2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式。
3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想。
4.会用描点法画反比例函数的图象。
5.结合图象分析并掌握反比例函数的性质。
6.体会函数的三种表示方法,领会数形结合的思想方法。
7.利用反比例函数的知识分析、解决实际问题。
8.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型。
二、知识框架
三、重点、难点
1.重点:利用反比例函数的知识分析、解决实际问题。
重点:理解并掌握反比例函数的图象和性质。
重点:利用反比例函数的图象和性质解决一些综合问题。
重点:理解反比例函数的概念,能根据已知条件写出函数解析式。
2.难点:分析实际问题中的数量关系,正确写出函数解析式,解决实际问题。
难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质。
难点:学会从图象上分析、解决问题。
难点:理解反比例函数的概念。
四、知识点、概念总结
1.反比例函数:形如y=k/x,(k为常数,k≠0)的函数称为反比例函数。
其他形式xy=k,y=kx(-1)。
2.自变量的取值范围:
(1)k≠0;
(2)在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;
(3)函数y的取值范围也是任意非零实数。
3.图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y=-x。
对称中心是:原点。
4.反比例函数的几何意义
|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
即:过反比例函数y=k/x(k不等于0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=(x的绝对值)*(y的绝对值)=(x*y)的绝对值=k的绝对值。
5. 反比例函数的性质:
(1)(增减性)当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
(2)k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0.
(3)因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能
与x轴相交,也不可能与y轴相交。
(4)在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K|
(5)反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。
(6)若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A、B 两点关于原点对称。
(7)设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2+4k·m ≥(不小于)0.
(8)反比例函数y=k/x的渐近线:x轴与y轴。
(9)反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称。
(10)反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|。
(11)k值相等的反比例函数重合,k值不相等的反比例函数永不相交。
(12)|k|越大,反比例函数的图象离坐标轴的距离越远。
(13)(对称性)反比例函数图象是中心对称图形,对称中心是原点;反比例函数的图像也是轴对称图形,它的对称轴是x轴和y轴夹角的角平分线。
6.反比例函数的画法
(1)列表
如
(2)在平面直角坐标系中标出点
(3)用平滑的曲线描出点
(4)当双曲线在一三象限,K>0,在每个象限内,Y随X的增大而减小。
与X及Y轴无交点。
(5)当双曲线在二四象限,K<0,在每个象限内,Y随X的增大而增大。
与X及Y轴无交点。
(6)当两个数相等时那么呈弯月型。