真空容器壁厚计算

合集下载

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式容器标准:《GB 150-2011 压力容器》《NB/T 47003.1-2009 钢制焊接常压容器》钢材标准:《GB 713-2008 锅炉和压力容器用钢板》--GB 150碳素钢和低合金钢的钢板标准牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007 碳素结构钢和低合金结构钢热轧厚钢板和钢带》--GB150 Q235B钢板标准《GB 24511-2009 承压设备用不锈钢钢板及钢带》--GB150高合金钢的钢板标准《GB/T 4237-2007 不锈钢热轧钢板和钢带》--NB/T 47003高合金钢板标准,化学成分、力学性能《GB/T 3280-2007 不锈钢冷轧钢板和钢带》《GB/T 20878-2007 不锈钢和耐热钢牌号及化学成分》《GB/T 699-1999 优质碳素结构钢》牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn《GB/T 700-2006 碳素结构钢》--牌号Q195、Q215、Q235、Q275《GB/T 709-2006 热轧钢板和钢带的尺寸、外形、重量级允许偏差》不锈钢牌号对照表《GB 150-2011 压力容器》俗称GB 24511-2009承压设备用不锈钢钢板及钢带GB/T 4237-1992不锈钢热轧钢板和钢带ASME(2007)SA240 统一数字代号新牌号旧牌号型号S304 S30408 06Cr19Ni10 0Cr18Ni9 304 S316 S31608 06Cr17Ni12Mo2 0Cr17Ni12Mo2 316 S316L S31603 022Cr17Ni12Mo2 00Cr17Ni14Mo2 316L S321 S32168 06Cr18Ni11Ti 0Cr18Ni10Ti 321圆筒直径:钢板卷焊的筒体,规定内径为公称直径。

任务四 压力容器的强度计算及校核

任务四 压力容器的强度计算及校核

项目一压力容器任务四压力容器的强度计算及校核容器按厚度可以分为薄壁容器和厚壁容器,通常根据容器外径Do与内径Di 的比值K来判断,K>1.2为厚壁容器,K≤1.2为薄壁容器。

工程实际中的压力容器大多为薄壁容器。

为判断薄壁容器能否安全工作,需对压力容器各部分进行应力计算与强度校核。

一、圆筒体和球形壳体1.壁厚计算公式圆筒体计算壁厚:圆筒体设计壁厚:球形容器计算壁厚:球形容器设计壁厚:式中δ——圆筒计算厚度,mmδd——圆筒设计厚度,mmpc——计算压力,MPa。

pc=p+p液,当液柱静压力小于5%设计压力时,可忽略Di——圆筒的内直径,mm[σ]T——设计温度T下,圆筒体材料的许用应力,MPa(可查表)φ——焊接接头系数,φ≤1.0C2——腐蚀裕量,mm2.壁厚校核计算式在工程实际中有不少的情况需要进行校核性计算,如旧容器的重新启用、正在使用的容器改变操作条件等。

这时容器的材料及壁厚都是已知的,可由下式求设计温度下圆筒的最大允许工作压力[pw]。

式中δe——圆筒的有效厚度,mm设计温度下圆筒的计算应力σT:σT值应小于或等于[σ]Tφ。

设计温度下球壳的最大允许工作压力[pw]:设计温度下球壳计算应力σT:σT值应小于或等于[σ]Tφ。

二、封头的强度计算1.封头结构封头是压力容器的重要组成部分,常用的有半球形封头、椭圆形封头、碟形封头、锥形封头和平封头(即平盖),如图1-4所示。

工程上应用较多的是椭圆形封头、半球形封头和碟形封头,最常用的是标准椭圆形封头。

以下只介绍椭圆形封头的计算,其他形式封头的计算可查阅GB150—2011。

图1-4 封头的结构型式2.椭圆形封头计算椭圆形封头由半个椭球面和高为h的直边部分所组成,如图1-5所示。

直边h的大小根据封头直径和厚度不同有25mm、40mm、50mm三种,直边h的取值可查表1-7。

表1-7 椭圆形封头材料、厚度和直边高度的对应关系单位:mm图1-5 椭圆形封头椭圆形封头的长、短轴之比不同,封头的形状也不同,当其长短轴之比等于2时,称为标准椭圆形封头。

附1 薄壁容器设计

附1 薄壁容器设计
t
2 p
C1 C2
37
内压薄壁容器设计计算步骤
1. 选材:Q235-A、Q235-B、20R、16MnR、不锈钢等
2. 选取参数:P、t、[σ]t、φ、σs、C1、C2 3. 计算筒体壁厚: n
2 p
t
pDi
C1 C2
4. 筒体水压试验应力校核:
35
椭圆形封头设计
组成:长短轴分别为Di和2h的半椭球和高度为h0的 短圆筒(直边)
36
标准椭圆形封头
定义Di /2h=2的椭圆封头为标准椭圆封头。
标准椭圆封头壁厚公式为
n
2 0.5 p
t
pDi
C1 C2
(8-8)
上式中各参数取法同筒体。 筒体: n
pDi
39
1.6 2600 n 0.8 1.0 14.2 2 170 1.0 1.6
圆整取δn=16mm厚的16MnR钢板制作罐体。 2.封头壁厚设计


采用标准椭圆形封头。φ =1.0 设计壁厚δ n按(8-8)式计算:
n
2 0.5 p 1.6 2600 1.8 14.1 2 1701.0 0.5 1.6
6~7 8~25 26~30 32~34 36~40 42~50 52~60 0.6 0.8 0.9 1 1.1 1.2 1.3
20
⑵腐蚀裕量C2
C2应根据各种钢材在不同介质中的腐蚀速度和容器设计寿 命确定。 C2=nλ n:设计寿命, λ :年腐蚀率 塔类、反应器类容器设计寿命 n一般按20年考虑,换热器 壳体、管箱及一般容器按10年考虑。 ①腐蚀速度λ<0.05mm/a(包括大气腐蚀)时:碳素钢和低合 金钢单面腐蚀C2=1mm,双面腐蚀取C2=2mm; ②当腐蚀速度λ>0.05mm/a时,单面腐蚀取C2=2mm,双 面腐蚀取C2=4mm。

任务四 压力容器的强度计算及校核

任务四 压力容器的强度计算及校核

项目一压力容器任务四压力容器的强度计算及校核容器按厚度可以分为薄壁容器和厚壁容器,通常根据容器外径Do与内径Di 的比值K来判断,K>1.2为厚壁容器,K≤1.2为薄壁容器。

工程实际中的压力容器大多为薄壁容器。

为判断薄壁容器能否安全工作,需对压力容器各部分进行应力计算与强度校核。

一、圆筒体和球形壳体1.壁厚计算公式圆筒体计算壁厚:圆筒体设计壁厚:球形容器计算壁厚:球形容器设计壁厚:式中δ——圆筒计算厚度,mmδd——圆筒设计厚度,mmpc——计算压力,MPa。

pc=p+p液,当液柱静压力小于5%设计压力时,可忽略Di——圆筒的内直径,mm[σ]T——设计温度T下,圆筒体材料的许用应力,MPa(可查表)φ——焊接接头系数,φ≤1.0C2——腐蚀裕量,mm2.壁厚校核计算式在工程实际中有不少的情况需要进行校核性计算,如旧容器的重新启用、正在使用的容器改变操作条件等。

这时容器的材料及壁厚都是已知的,可由下式求设计温度下圆筒的最大允许工作压力[pw]。

式中δe——圆筒的有效厚度,mm设计温度下圆筒的计算应力σT:σT值应小于或等于[σ]Tφ。

设计温度下球壳的最大允许工作压力[pw]:设计温度下球壳计算应力σT:σT值应小于或等于[σ]Tφ。

二、封头的强度计算1.封头结构封头是压力容器的重要组成部分,常用的有半球形封头、椭圆形封头、碟形封头、锥形封头和平封头(即平盖),如图1-4所示。

工程上应用较多的是椭圆形封头、半球形封头和碟形封头,最常用的是标准椭圆形封头。

以下只介绍椭圆形封头的计算,其他形式封头的计算可查阅GB150—2011。

图1-4 封头的结构型式2.椭圆形封头计算椭圆形封头由半个椭球面和高为h的直边部分所组成,如图1-5所示。

直边h的大小根据封头直径和厚度不同有25mm、40mm、50mm三种,直边h的取值可查表1-7。

表1-7 椭圆形封头材料、厚度和直边高度的对应关系单位:mm图1-5 椭圆形封头椭圆形封头的长、短轴之比不同,封头的形状也不同,当其长短轴之比等于2时,称为标准椭圆形封头。

YZG-1400型圆形真空干燥器设计计算书

YZG-1400型圆形真空干燥器设计计算书

YZG-14圆形真空干燥器设计计算书编制:潘玉红校对:庄国仁编号:YZG14-001-JS 一、筒体耐压强度校对核算箱体内尺寸:φ1400×2054筒体内直径:Dn=1400mm假设箱体壁厚为10mm,则当量外径Doe=1400+8×2=1416mm1、箱体耐负压强度的校核:L = 1400 =0.99D0 1416D0 = 1416 =141.6δ10由《机械设计手册》(4)T32.3-1查得系数A=0.00078由T32.3-3查得系数B=105Mpa许用外压力[P]= B = 105×10 =0.598MPaDo/δ1755实用外压力P=0.1MPa<[P]=0.598Mpa2、容器筒体内压0.07Mpa强度校核:正常操作的筒体内压允许通过0.07Mpa,但操作时会出现误操作瞬间压力可能会达到0.3Mpa,所以取内压0.3Mpa作校核计算.设计温度为120℃,由《化工容器设计》附录查得:[б]120℃=111Mpaбt= P(Di+tn-c) = 0.3×(1400+8-1.8) = 12.4MPa2(tn-c)34.02φ[б]t=0.6×111=66.6MPa>бt=12.4MPaбt 校核温度下容器壁中的计算应为Mpaφ焊缝系数此取φ=0.8;tn 筒体名义壁厚mm;c 腐蚀余量,这里取1.8mm。

二、筒体上零部件的强度校核。

1、螺杆强度校核计算筒体内表压为0.3Mpa,作用在螺杆上的总力FF=1/4π×1.782×0.3106=746×103NF N=1/4F=187×103NFn 187×103б= = =233MPaπ/4d12 0.785×0.032[б]L= 900/1.7 =529Mpa. б<[б]L螺杆强度符合要求.2、视镜玻璃的耐压校核。

视镜玻璃采用压力为1.0Mpa的钢化玻璃制造,则耐压合格。

内压薄壁圆筒与封头的强度设计

内压薄壁圆筒与封头的强度设计

其强度条件为

t
n
[ ]t

PD 2S
[
]t
内压薄壁圆筒与封头的强度设计
一、强度计算公式
1.圆柱形容器
圆筒的设计壁厚为Байду номын сангаас
Sd
Pc Di
2[ ]t
Pc
C2
对已有设备进行强度校核和确定最大允许工作压力的计算公式分别为
t Pc (Dc Se ) [ ]t
2Se
[Pw ]
2[
Di
]t Se
外压容器
有安全泄放装置 无安全泄放装置 容器(真空) 夹套(内压)
容器(内压) 夹套(真空)
设计压力 1.0~1.10倍工作压力 不低于(等于或稍大于)安全阀开启托力(安全阀开启压力取1.05~ 1.10倍:工作压力) 取爆破片设计爆破压力加制造范围上限 设计外压力取1.25倍最大内外压力差或0.1MPa二者中的小值 设计外压力取0.1MPa 没计外压力按无夹套真空容器规定选取 设计内压力按内压容器规定选取
内压薄壁圆筒与封头的强度设计
四、容器的耐压试验及其强度校核
容器制成以后(或检修后投入生产之前),必须作耐压试验或增加气密性试验,以 检验容器的宏观强度和有无渗漏现象。耐压试验就是用液体或气体作为加压介 质,在容器内施加比设计压力还要高的试验压力,并检查容器在试验压力下是 否渗漏,是否有明显的塑性变形以及其他的缺陷,以确保设备的安全运行。
Pc
S
Pc Di
4[ ]t
Pc
C2
t Pc (Di Se ) [ ]t
4Se
[Pw ]
4[
Di
]t Se
Se
内压薄壁圆筒与封头的强度设计

真空管道配管设计规定

真空管道配管设计规定

技术规定T-PD030308C-2004真空管道配管设计规定实施日期 2004年2月27日第 1 页共 7 页目次1 总则 (2)1.1 目的 (2)1.2 范围 (2)1.3 规范性引用文件 (2)2 一般规定 (2)2.1 真空管道的定义 (2)2.2 真空管道的壁厚计算 (2)2.3 真空管道的材料选用 (3)3 真空管道的配管设计规定 (3)3.1 气体管道 (3)3.2 蒸汽管道 (3)3.3 放空、冷凝液排出管 (3)3.4 真空泵的管道布置及阀门安装 (4)附录A(规范性附录)管道承受外压与壁厚的关系 (5)附录B(规范性附录)减压转油线的壁厚计算 (6)本规定所有权属中国石化工程建设公司。

未经本公司的书面许可,不得进行任何方式的复制;不得以任何理由、任何方式提供给第三方或用于其它目的。

第 2 页共 7 页T-PD030308C-2004 技术规定1 总则1.1 目的为适应石油化工装置建设中真空管道配管的需要,不断提高配管设计水平,特编制本规定。

1.2 范围1.2.1 本规定对石油化工装置的各种抽真空管道壁厚计算、材料选用、气体管道、蒸汽管道、放空、冷凝液排出管、真空泵的管道及阀门安装的设计进行了规定。

1.2.2 本规定适用于石油化工装置的各种真空管道设计,如真空蒸馏、真空浓缩、真空调湿、真空结晶、真空干燥、真空过滤、真空制冷等。

1.3 规范性引用文件下列文件中的条款通过本规定的引用而成为本规定的条款。

凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本规定。

凡是不注日期的引用文件,其最新版本适用于本规定。

GB 150 钢制压力容器ASME 锅炉及压力容器规范2 一般规定2.1 真空管道的定义管道外环境压强大于管道内介质的压强时,管道承受外压;环境压强可以是大气压、水压、土层的压力,或是几者的集合。

石化装置环境压力一般是当地的大气压,此时承受外压的管道即为真空管道。

真空压力容器设计

真空压力容器设计

Mpa的储液罐罐体,材料Q235-A,
Di=1800mm,罐体高度4500mm,液料高度3000mm, C1=0.8mm,腐蚀裕量C2=1.5mm,焊缝系数φ=1.0,液体密 度为1325kg/m3,罐内最高工作温度50ºC 。
试计算罐体厚度并进行水压试验应力校核。
注:Q235-A材料的许用应力[σ]20=113MPa
(2)层间松动问题。
21
槽形绕带式
优点 (1)筒壁应力分布均匀且能承受一部分由内压 产生的轴向力

缺点 (2)机械化程度高,材料利用率高。
(1)钢带成本高,公差要求严格。 (2)绕带时钢带要求严格啮合,否则无法贴紧。
22
。 扁平钢带倾角错绕式
特点
(1)机械化程度高,材料利用率高
(2)整体绕制,无环焊缝。 (3)带层呈网状,不会整体裂开。 (4)扁平钢带成本低,绕制方便。

[σ]50=113MPa,屈服极限σS=235 Mpa 试确定罐体厚度并进行水压试验校核。
43
44
韧性断裂
压力容器在载荷作用下,应力达到或接近材料 的强度极限而发生的断裂。 特点
断裂前发生较大的塑性变形,容器发生明显的鼓 胀,断口处厚度减薄,断裂时几乎不形成碎片。 失效原因
① 容器厚度不够。 ② 压力过大。
33
34
焊接接头系数
35
材料许用应力
安全系数
碳素钢、低合金钢及铁素体高合金钢: nb≥3.0 ns≥1.6 nD≥1.5 nn≥1.0 奥氏体高合金钢: nb≥3.0 ns≥1.5 nD≥1.5 nn≥1.0
36
37
压力试验
38
液压试验
1、试验压力 ● 内压容器:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空容器壁厚计算:
内筒壁厚的选取原则:为了降低冷损,在保证足够的强度和较好的工艺条件下,应尽量减少厚度。

内压圆筒壁厚计算公式如下:
[]0)0.2/(C P D P +-⨯⨯⨯=φσδ
式中:
δ为内壁厚
P 为设计工作压力,取P=4Kgf/cm 2
D 为内筒直径,D=600mm ;
[]σ为材料的许用应力,SUS304的[]σ=1430Kgf/cm 2
φ为焊缝系数,取φ=0.80
0C 为壁厚余度,取0C =0.18mm
经计算δ=1.05+0.18=1.23mm
考虑一定的裕度及焊接工艺性,取δ=1.5mm
外筒壁厚的选取原则:应保证足够的刚度,以免丧失稳定。

外压中圆筒壁厚计算公式如下:
04.06
.0)59.2/(C E l p m D i +∙∙∙⨯=δ
式中: δ为筒体计算壁厚
P 为工作压力,取P=1Kgf/cm 2
i D 为筒体内径,i D =700mm
m 为稳定系数,一般取m=3
L 为计算长度,L=900mm
E 为材料的弹性模数,SUS304的E=20.9×105Kgf/cm 2
0C 为壁厚余度,取0C =0.22mm
经计算δ=2.43+0.22=2.65mm
我们取外筒壁厚为δ=3mm
Welcome !!! 欢迎您的下载,资料仅供参考!。

相关文档
最新文档