数学三试题考研数学真题及解析
2020考研数学(三)真题(含解析)

,
而 cos f '(x) cos f '(x) ,故 cos f '(x) 也为偶函数,故 cos f '(x) f (x) 为非奇非偶函数。
(4) 已知幂级数 nan (x 2)n 的收敛区间为(−2,6) ,则 an (x 1)2n 的收敛区间为
n1
n1
(A).(-2,6) (B).(-3,1) (C).(-5,3) (D).(-17,15)
(C) x k11 k23 k34
【答案】 C
(D) x k12 k23 k34
4
(5)设 4 阶矩阵 A (aij ) 不可逆, a12 的代数余子式 A12 0 ,1,2,3,4 是矩阵 A 的列向量组, A*为
A 的伴随矩阵,则 A* x 0 的通解为(
)
(A) x k11 k22 k33
(B) x k11 k22 k34
f ( x)a f ( x) a
ua u a
【解析二】由拉格朗日中值公式得 sin f (x) sin a ( f (x) a)cos ,其中 介于 a 与 f (x) 之间,
由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,故 lim a ,
)
xa x a
xa
xa
(A) bsin a (B) bcos a (A) bsin f (a) (A) bcos f (a)
【答案】B
【解析一】由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,
xa x a
2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。
而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。
各科的考试时间均为3小时。
考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。
考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
2020年考研数学三真题及答案解析

设 k1(α1 α2 ) k2α2 0 ,即 k1α1 (k1 k2 )α2 0 ,
由于 α1, α2 线性无关,故 k1 k2 0 可知 α1 α2 , α2 线性无关.
α3 是 A 属于特征值 1的特征向量,即 Aα3 α3 ,因此 A(α3) (α3 ) ,即 α3 也是 A 属于特征值 1的特征向量
1 0 0
属于特征值
1的特征向量,则满足
P 1 AP
=
0
1
0
的可逆矩阵
P
为
(
)
0 0 1
(A) α1 α3, α2 , α3 .
(B) α1 α2 , α2, α3 .
(C) α1 α3, α3, α2 .
(D) α1 α2 , α3, α2 .
(6)【答案】(D).
【解析】α1, α2 是 A 属于特征值 1 的线性无关的特征向量,即 Aα1 α1, Aα2 α2 , 故 A(α1 α2 ) α1 α2 ,即 α α2 也是 A 属于特征值 1 的特征向量.
(D) x k1α2 k2α3 k3α4 ,其中 k1, k2 , k3 为任意常数.
(5)【答案】(C).
【解析】由 A 不可逆知, r A 4 ,又元素 a12 对应的代数余子式 A12 0 ,故 r A 3 ,从而 r A 3 .
n, r A n,
由 r A* 1, r A n 1, 可知 r A* 1.
xa
xa
xa
xa
xa
b lim cos b cos a. a
故应选(B).
1
(2)若 f x e x1 ln 1 x , 则 f x 第二类间断点的个数为
ex 1 x 2
2010——2017年考研数学三真题及参考答案解析(精心整理)

2010年考研数学三真题与解析一.选择题1.若1])1(1[lim =--→xox e a xx 则a = A0B1C2D32.设21,y y 是一阶线性非齐次微分方程)()(x q y x p y =+'的两个特解,若常数μλ,使21y y μλ+是该方程的解,21y y μλ-是该方程对应的齐次方程的解,则A 21,21==μλB 21,21-=-=μλC 31,32==μλD 32,32==μλ 3.设函数f(x),g(x)具有二阶导数,且.0)(<''x g 若a x g =)(0是g(x)的极值,则f(g(x))在0x 取极大值的一个充分条件是A 0)(<'a fB 0)(>'a fC 0)(<''a fD 0)(>''a f4设1010)(,)(,ln )(xe x h x x g x xf ===则当x 充分大时有 Ag(x)<h(x)<f(x)Bh(x)<g(x)<f(x) Cf(x)<g(x)<h(x)Dg(x)<f(x)<h(x)5设向量组线性表示,,,:,可由向量组sI βββααα⋯⋯21r 21II ,,:,下列命题正确的是:A 若向量组I 线性无关,则s r ≤B 若向量组I 线性相关,则r>sC 若向量组II 线性无关,则s r ≤D 若向量组II 线性相关,则r>s6.设A 为4阶实对称矩阵,且02=+A A ,若A 的秩为3,则A 相似于A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0111B⎪⎪⎪⎪⎪⎭⎫⎝⎛-0111 C⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0111D⎪⎪⎪⎪⎪⎭⎫⎝⎛---01117.设随机变量X 的分布函数⎪⎩⎪⎨⎧≥-<≤<=-1,110,21,0)(x e x x x F x,则P (X=1)=A0B 21C 121--e D 11--e 8.设)(1x f 为标准正态分布概率密度,)(2x f 为[-1,3]上均匀分布的概率密度,若⎩⎨⎧<>≥≤=)0,0(0),(0),()(21b a x x bf x x af x f 为概率密度,则a,b 满足:A2a+3b=4B3a+2b=4Ca+b=1Da+b=2 二.填空题9.设可导函数y=y(x),由方程⎰⎰=+-xy x t dtt x dt e 020sin 2确定,则____________0==x dxdy10.设位于曲线)()ln 1(12+∞<≤+=x e x x y 下方,x 轴上方的无界区域为G ,则G 绕x 轴旋转一周所得空间区域的体积为____________11.设某商品的收益函数R(p),收益弹性为31p +,其中p 为价格,且R(1)=1,则R(p)=________________ 12.若曲线123+++=bx ax x y 有拐点(-1,0),则b=_____________13.设A ,B 为3阶矩阵,且2,2,31=+==-B A B A ,则_________1=+-B A14.设___________ET ,1T )0)(,(N ,,122321==>⋯∑=则计量的简单随机样本。
考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1
n
,
ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn
5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)
1
0f
2020-1987年考研数学三真题及答案

历年考研数学三真题解析及复习思路(数学三)2020年-1987年2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x xe xf x e x -+=--的第二类间断点的个数为 ( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。
2020年考研数学(三)真题(后附解析答案)

2020年全国硕士研究生招生考试数学(三)(科目代码:303)一、选择题(1〜8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母写在题后的括号内.)(1)设1口心—°= b,则lim sinfQ)—sina=().x-^a x——a x-*a3C——a(A)6sin a(B)6cos a(C)6sin/(a)iIn I14-rr I(2)函数心)=二的第二类间断点的个数为((e—1)(j?—2)(A)l(B)2(03(3)设奇函数心)在(-00,-1-00)上具有连续导数,则().(A)f[cos/"(/)+/^(Olldr是奇函数J0(E)「[cos/(i)+/(O]d^是偶函数J0(C)[[cos/"'(/)+y(t)]d/是奇函数J0(D)「[cos是偶函数J0(D)bcos/(a) ).(D)4(4)设幕级数—2)"的收敛区间为(一2,6),则工a”Q+l)2n的收敛区间为().n=\n=1(A)(-2,6)(B)(-3,l)(0(-5,3)(D)(-17,15)(5)设4阶矩阵A=(a“)不可逆,a*的代数余子式A12丰O,aj,a2,a3,a,为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*X=0的通解为().(A)X=^1a1+^2a2+^3a3,其中k x,k2,k.为任意常数(B)X=^1a1+k2a2+k3a4,其中k,,k2,k3为任意常数(C)X=bS+展as+匕。
4,其中紅,k2,k3为任意常数(D)X=k i a2k2a3+怂。
4,其中ki,k2^k3为任意常数(6)设A为3阶矩阵,a】,a?为A的属于特征值1的线性无关的特征向量,as为A的属于特征I1°°\值一1的特征向量,则满足P_1AP=0-10的可逆矩阵卩为().'o01'(A)(a j a3,a2,—a3)(B)(a〕+ct2,a2,—a3)(C)(a1+a3,—a3,a2)(D)(a T+a2»—a3,a2)(7)设A,B,C为三个随机事件,且PC A)=P(£)=P(C)=±,P(AB)=O,P(AC)=P(BC)=2,412则A,B,C中恰有一个事件发生的概率为().3215(A)Z(B)T(C)7(D)12(8)设随机变量(X,Y)服从二维正态分布N(0,0;1,4;-,则下列随机变量中服从标准正态分布且与X相互独立的是().(A)啤(X+Y)(B)尝(X—丫)55(C)y(X+Y)(D)y(X-Y)二、填空题(9〜14小题,每小题4分,共24分.请将答案写在题中的横线上.)(9)设z=arctanRy+sin(z+了)],贝0dz|(0,…)=______.(10)曲线jc y+e2iy=0在点(0,—1)处的切线方程为________.(H)设某厂家生产某产品的产量为<2,成本C(Q)=100+13Q,该产品的单价为/,需求量—2,则该厂家获得最大利润时的产量为(12)设平面区域。
2021考研数学(三)真题(含详细解析)

【答案】C
【解析】当
x
0
时,
x2 0
(et3
1)dt
'
2x(ex6
1)
2x7 ,故 x2 (et3 1)dt 是 x7 的高阶无穷小. 0
(2)函数
f
(x)
ex
1
,
x
x
0 ,在
x
0
处(
)
1, x 0
(A)连续且取极大值 (B)连续且取极小值 (C)可导且导数为 0 (D)可导且导数不为 0
B
1T
T 2
,
1 1
,k
表示任意常数,则线性方
3T
1
程组 Bx 的通解 x ( )
(A) k1 2 3 4
(B)1 k2 3 4
(C)1 2 k3 4
【答案】D
(D)1 2 3 k4
【解析】由 A (1,2,3,4 ) 为 4 阶正交矩阵,知向量组 1,2,3,4 是一组标准正交向量组,则
0 0 1 3
PAQ Q
,则
Q
1 0 0
0 1
1
3
.选(C)
0 1
0 0 1 0 0 1
(8)设 A, B 为随机事件,且 0 P(B) 1,下列命题不成立的是(
)
(A)若 P(A | B) P(A) ,则 P(A | B) P(A)
(B)若 P(A | B) P(A) ,则 P(A | B) P(A)
从而 E( ) E X EY 1 2 ,
D( ) DX DY 2cov(X ,Y ) DX DY 2
DX
DY
12
2 2
21 2
.选(D).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年全国硕士研究生入学考试数学(三)
一 填空 (1)()11lim _________n
n n n -→∞
+⎛⎫
=
⎪⎝⎭
(2)设函数()x 2f x =在
的
某领域内可导,且()()
(),21f x f x e f '==,则
()2_________f '''=
(3)设函数()f u 可微,且()1
02
f '=
,则()224Z f x y =-在点(1,2)处的全微分()1,2_________dz
=
(4)设矩阵2112A ⎛⎫
=
⎪-⎝⎭
,E 为2阶单位矩阵,矩阵E 满足BA=B+2E,则_________B =
(5)设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则
(){}max ,1_________P X Y ≤=
(6)设总体X 的概率密度为()()121,,, (2)
x
n f x e x x x x -=
-∞<<+∞为总体的简单随机样本,其样本方差2
S ,则E 2
S =__________
二 选择题
(7) 设函数()y f x =具有二阶导数,且()()0,0,f x f x x '''>>∆为自变量x 在点0x 处的增量,y dy ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则 ( )
(A)0dy v <<∆ (B)0y dy <∆< (C)0y dy ∆<< (D)
0dy y <∆<
(8) 设函数()f x 在x=0处连续,且()22
lim
1n f n n →=,则
(A)()()'000f f -=且存在 (B)
()()'010f f -=且存在
(C)()()'000f f +=且存在 (D)
()()'010f f +=且存在
(9) 若级数
1n
n a
∞
=∑收敛,则级数 ( )
(A)
1n
n a
∞
=∑收敛
(B)
()
11n
n n a ∞
=-∑收敛
(C)
1
1n n n a a
∞
+=∑收敛
(D)
1
1
2n n n a a ∞
+=+∑收敛 (10) 设非齐次线性微分方程()()x x y P y Q '+=有两个的解()()12,,y x y x C 为任意常数,则该方程通解是:
(A)()()12C y x y x -⎡⎤⎣⎦收敛 (B)()()()112y x C y x y x +-⎡⎤⎣⎦收敛 (C)()()12C y x y x +⎡⎤⎣⎦收敛 (D)()()()112y x C y x y x ++⎡⎤⎣⎦收敛
(11) 设()(),,f x y x y ϕ与均为可微函数,且(),0y x y ϕ'≠,已知()00,x y 是(),f x y 在约束条件(),0x y ϕ=下的一个极值点,下列选项正确的是 ( )
(A) 若()()0000,0,,0x y f x y f x y ''==则 (B) 若()()0000,0,,0x y f x y f x y ''=≠则 (C) 若()()0000,0,,0x y f x y f x y ''≠=则 (D) 若()()0000,0,,0x y f x y f x y ''≠≠则
(12) 设125,,......∂∂∂,均为n 维列向量,A 是m n ⨯矩阵,下列正确的是 ( )
(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关 (B) 若125,,......∂∂∂相关,则125,......A A A ∂∂∂无关 (C) 若125,,......∂∂∂无关,则125,......A A A ∂∂∂相关 (D) 若125,,......∂∂∂无关,则125,......A A A ∂∂∂无关
(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B,再将B 得第一列得-1倍加到第2
列得C,记110010001P ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,则
(A)1C P AP -= (B)1C PAP -= (C)T C P AP = (D)
T C PAP =
(14) 设随机变量X 服从正态分布()2
1
1
,N
μσ,随机变量Y 服从正态分布()22
2
,N μσ,
且{}{}
1211P X P Y μμ-<>-<,则必有( )
(A)12σσ<
(B)12σσ> (C)12μμ< (D)
12μμ>
三 解答题
(15) 设()1sin
,,0,01arctan x
y y y
f x y x y xy x
π-=
->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞
=
(Ⅱ) ()0
lim x g x +
→ (16)
计算二重积分
D
,其中D 是由直线,1,0y x y x ===,所围成的平面
区域.
(17) 证明:当0,sin 2cos sin 2cos a b b b b b a a a a πππ<<<++>++时.
(18) 在XOY 坐标平面上,连续曲线L 过点()1,0,M 其上任意点()(),0P x y x ≠处的切线低斜率与直线OP 的斜率之差等于(>0)ax a 常数
(Ⅰ) 求L 的方程:
(Ⅱ) 当L 与直线y=ax 所围成平面图形的面积为
8
3
时,确定a 的值. (19) 求幂级数()()
1
211121n n n x n n -+∞
=--∑的收敛域及和函数()s x . (20)
设4
维
向量
组
()()()1231,1,1,1,2,2,2,2,3,3,3,3,T
T
T
a a a ∂=+∂=+∂=+()44,4,4,4T
a ∂=+问a 为
何值时1234,,,∂∂∂∂线性相关?当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.
(21) 设3 阶实对称矩阵A 的各行元素之和均为3,向量
()()121,2,1,0,1,1T T
αα=--=-
是线性方程组Ax=0的两个解.
(Ⅰ) 求A 的特征值与特征向量
(Ⅱ) 求正交矩阵Q 和对角矩阵A,使得T
Q AQ A =。
(Ⅲ)求A 及6
3()2
A E -
,其中E 为3阶单位矩阵. (22) 设随机变量X 的概率密度为()1
,1021,02,4
0,x x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩
其它()2
,,Y X F X Y =令为二维
随机变量(),X Y 的分布函数,求:
(Ⅰ) Y 的概率密度()Y f y (Ⅱ) ()cov ,X Y (Ⅲ)1,42F ⎛⎫
-
⎪⎝⎭
(23) 设总体X 的概率密度为(),01,1,120,x f x x θθθ<<⎧⎪
=-≤<⎨⎪⎩
其它,其中θ是未知参数
()1201,,,......n X X X θ<<为来自总体的随机样本,记
N 为样本值12,,......n X X X 中小于1
的个数,求:
(Ⅰ) θ的矩估计。
(Ⅱ) θ的最大似然估计.。