导数公式和运算法则教案

合集下载

(完整版)导数公式和运算法则教案

(完整版)导数公式和运算法则教案

§1.2.2基本初等函数的导数公式
及导数的运算法则
【教学目标】
1.知识与技能:
熟练掌握基本初等函数的导数公式;掌握导数的四则运算法则;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
2.过程与方法:
通过对每个公式的针对性简单练习,使学生掌握基本初等函数的导数公式,通过8个基本初等函数的整合练习,加深理解导数的运算法则,以及解题的简洁性和变式的灵活性.
3.情感态度与价值观:
通过对新知的理解与巩固,培养学生创新能力,应变能力,运算能力,思维敏捷度,使学生体会到成功的喜悦,培养学生的学习兴趣.
【教学重点与难点】
1.重点:基本初等函数的导数公式、导数的四则运算法则.
2.难点:基本初等函数的导数公式和导数的四则运算法则的应用.
【教学手段】
多媒体幻灯片
【学习目标】
1.掌握基本函数的导数公式,灵活运用公式求某些函数的导数.
2.理解函数的和、差、积、商的求导法则,能够用法则求一些函数的导数.
【教学过程】。

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案马长琴

学校: 临清一中 学科:数学 编写人:马长琴 审稿人:张林§1.2.2基本初等函数的导数公式及导数的运算法则一.教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.二.教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点: 基本初等函数的导数公式和导数的四则运算法则的应用三.教学过程:(一).创设情景复习五种常见函数y c =、y x =、应用 1(1 (2)根据基本初等函数的导数公式,求下列函数的导数.(1)2y x =与2x y =(2)3x y =与3log y x =2.(1推论:['()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数) 提示:积法则,商法则, 都是前导后不导,前不导后导, 但积法则中间是加号, 商法则中间是减号. (2)根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)sin y x x =⋅;(3)2(251)x y x x e =-+⋅;(4)4x x y =; 【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.四.典例精讲例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是函数关系()(15%)t p t =+的导数。

解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:当05p =时,()5(15%)t p t =+,根据基本初等函数导数公式和求导法则,有'()5 1.05ln1.05t p t =⨯所以'10(10)5 1.05ln1.050.4p =⨯≈(元/年)因此,在第10个年头,这种商品的价格约为0.4元/年的速度上涨. 例2日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%解:净化费用的瞬时变化率就是净化费用函数的导数.(1) 因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨. (2) 因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.点评 函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.五.课堂练习做导学案的当堂检测六.课堂小结(1)基本初等函数的导数公式表(2)导数的运算法则七.布置作业八.教学后记。

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思

人教A版选修2《基本初等函数的导数公式及导数的运算法则》教案及教学反思一、教学目标通过本节课的学习,让学生: 1. 熟练掌握基本初等函数的导数公式; 2. 掌握导数的常数因子、和差、积、商的运算法则; 3. 能够应用所学知识求出初等函数的导数; 4. 培养学生的逻辑思维能力和应用能力。

二、教学内容2.1 基本初等函数的导数公式(1)常数函数的导数公式:[C]′=0(2)幂函数的导数公式:[x n]′=nx n−1(3)指数函数的导数公式:[e x]′=e x(4)对数函数的导数公式:$[\\ln{x}]'=\\dfrac{1}{x}(x>0)$ (5)三角函数的导数公式:$$\\begin{aligned} [\\sin{x}]'&=\\cos{x}\\\\[\\cos{x}]'&=-\\sin{x}\\\\ [\\tan{x}]'&=\\sec^2{x} (x\ eq n\\pi+\\frac{\\pi}{2})\\\\ [\\cot{x}]'&=-\\csc^2{x} (x\ eq n\\pi) \\end{aligned}$$2.2 导数的运算法则(1)常数因子法则:设C为常数,则[Cf(x)]′=Cf′(x)(2)和差法则:$[f(x)\\pm g(x)]'=f'(x)\\pm g'(x)$ (3)积法则:[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)(4)商法则:$[\\dfrac{f(x)}{g(x)}]'=\\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} (g(x)\ eq0)$三、教学过程3.1 导入教师通过数字游戏,引导学生探讨“导数”的概念,并由此引出本节课的教学内容。

3.2 讲授教师对基本初等函数的导数公式以及导数的运算法则进行一一讲解,强调注意事项和易错点。

数学《导数运算法则》教案

数学《导数运算法则》教案

数学《导数运算法则》教案教学内容:导数运算法则教学目标:1. 理解导数的概念和意义;2. 掌握导数的运算法则:和、差、积、商的求导法则、复合函数求导法则;3. 能够应用导数运算法则解决实际问题。

教学重难点:1. 掌握导数运算法则;2. 能够应用导数运算法则解决实际问题。

教学方法:1. 知识讲解法;2. 案例分析法;3. 练习演练法。

教学过程:一、导入请学生回忆上节课学习的内容:导数的定义和意义。

二、学习导数运算法则1. 和、差、积、商的求导法则:(1)和差求导法则:设 f(x) 和 g(x) 都在 x 处可导,则(f(x)\pm g(x))^{'}=f^{'}(x)\pm g^{'}(x)(2)积的求导法则:设 f(x) 和 g(x) 都在 x 处可导,则(f(x)\cdot g(x))^{'}=f^{'}(x)\cdot g(x)+f(x)\cdot g^{'}(x) (3)商的求导法则:设 f(x) 和 g(x) 都在 x 处可导,g(x)\neq 0,则\left(\frac{f(x)}{g(x)}\right)^{'}=\frac{f^{'}(x)g(x)-f(x)g^{'}(x)}{(g(x))^2}2. 复合函数的求导法则:设函数 y=f(g(x)),其中 f(u) 在 u=g(x) 处可导,g(x) 在 x 处可导,则\frac{dy}{dx}=f^{'}(g(x))\cdot g^{'}(x)三、应用导数运算法则解决实际问题请学生结合具体案例,多做练习,能够熟练应用导数运算法则解决实际问题。

四、课堂小结本节课主要学习了导数运算法则,包括和差、积、商的求导法则,以及复合函数求导法则。

通过案例分析的方式,帮助学生理解掌握导数运算的具体方法,并能够应用于实际问题的求解中。

五、作业布置1. 预习下节课内容:高阶导数的定义及其计算;2. 完成课堂练习题并检查答案;3. 阅读相关的数学文章,加深对导数运算法则的理解。

导数的运算法则教案

导数的运算法则教案

公开课教案:导数的四则运算法则
第一小节:导数的加法与减法法则;
(一)教学目标
1.知识与技能:
了解函数的和、差的导数公式的推导;掌握两个函数的和、差、积、商的求导法则;能正确运用两个函数的和差积商的求导法则和已有的导数公式求某些简单函数的导数。

2.过程与方法:
利用学生已掌握的导数的定义,得出一个简单的两个函数的和的导数,从而提出问题,引入课题,通过学生的猜想、尝试,探究出函数的和、差、积、商的求导法则,使学生加深对求导法则的理解。

3.情感与价值观:
通过学生的主动参与,师生、生生的合作交流,提高学生的学习兴趣,激发其求知欲,培养探索精神。

(二)教学重点、难点
教学重点:掌握函数的和、差、积、商的求导法则。

教学难点:学生对积和商的求导法则的理解和运用。

(三)教学方法
本节在教学中可运用尝试探索、类比联想、变式练习等方法进行。

(五):教学反思。

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案马长琴

基本初等函数的导数公式及导数的运算法则教案编写者:马长琴教学目标:1. 理解基本初等函数的导数公式。

2. 掌握导数的运算法则。

3. 能够运用导数公式和运算法则解决问题。

教学重点:1. 基本初等函数的导数公式。

2. 导数的运算法则。

教学难点:1. 导数公式的记忆和应用。

2. 导数运算法则的推导和应用。

教学准备:1. 教学PPT。

2. 教案手册。

3. 黑板和粉笔。

教学过程:一、导入(5分钟)1. 引导学生回顾导数的定义和性质。

2. 提问:导数在实际应用中的作用是什么?二、基本初等函数的导数公式(15分钟)1. 讲解常数的导数公式:\( (c)' = 0 \)2. 讲解幂函数的导数公式:\( (x^n)' = nx^{n-1} \)3. 讲解指数函数的导数公式:\( (a^x)' = a^x \ln(a) \)4. 讲解对数函数的导数公式:\( (\log_a(x))' = \frac{1}{x \ln(a)} \)5. 讲解三角函数的导数公式:\( (\sin(x))' = \cos(x) \)\( (\cos(x))' = -\sin(x) \)\( (\tan(x))' = \sec^2(x) \)6. 讲解反三角函数的导数公式:\( (\arcsin(x))' = \frac{1}{\sqrt{1-x^2}} \)\( (\arccos(x))' = -\frac{1}{\sqrt{1-x^2}} \)\( (\arctan(x))' = \frac{1}{1+x^2} \)三、导数的运算法则(15分钟)1. 讲解导数的四则运算法则:加法法则:\( (f(x) + g(x))' = f'(x) + g'(x) \)减法法则:\( (f(x) g(x))' = f'(x) g'(x) \)乘法法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)除法法则:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{[g(x)]^2} \)2. 讲解导数的复合运算法则:-链式法则:\( (f(g(x)))' = f'(g(x)) \cdot g'(x) \)-反函数法则:\( (f^{-1}(x))' = \frac{1}{f'(f^{-1}(x))} \)-乘积法则:\( (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)-商法则:\( \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) f(x) \cdot g'(x)}{[g(x)]^2} \)四、巩固练习(15分钟)1. 让学生独立完成教材上的练习题。

数学高中导数定律教案

数学高中导数定律教案

数学高中导数定律教案
教学目标:
1.理解导数的定义和意义。

2.掌握导数的基本运算法则。

3.掌握导数的常用定律。

教学重点:
1.导数的定义和基本运算法则。

2.导数的常用定律。

教学难点:
1.对导数的理解和应用。

2.导数的运算法则及定律的灵活运用。

教学准备:
1.教科书、教具、黑板、彩色粉笔。

2.学生练习本。

教学过程:
一、导入(5分钟)
教师引导学生回顾导数的定义和意义,引出导数的运算法则和常用定律。

二、讲解导数的基本运算法则(10分钟)
1.导数的四则运算法则。

2.导数的复合函数法则。

三、讲解导数的常用定律(15分钟)
1.常数函数导数的定理。

2.幂函数导数的定理。

3.指数函数导数的定理。

4.对数函数导数的定理。

四、巩固练习(15分钟)
教师出示几道相关的练习题,让学生运用所学的导数定律进行练习,并进行讲解。

五、课堂小结(5分钟)
教师和学生一起回顾本节课的重点内容,并对导数的定律进行总结。

六、作业布置(5分钟)
布置相关的作业,要求学生运用导数的定律进行求解。

教学反思:
通过本节课的学习,学生能够掌握导数的基本运算法则和常用定律,并能够灵活运用导数
定律解决相关问题。

同时,教师也要引导学生多进行练习,加深对导数定律的理解和掌握。

导数公式和运算法则教案

导数公式和运算法则教案

导数公式和运算法则教案一、教学目标1.理解导数的定义和概念。

2.掌握导数的公式和运算法则。

3.能够灵活运用导数公式和运算法则解决实际问题。

二、教学准备1.教材:高中数学教材。

2.工具:黑板、彩色粉笔、教学PPT。

三、教学过程1.导入导数的定义和概念(15分钟)教师使用PPT展示导数的定义和概念,引导学生回顾导数的概念,并解释导数与函数的变化率之间的关系。

通过一些例题让学生感受导数的实际应用。

2.导数公式的介绍和讲解(30分钟)教师依次讲解常见函数的导数公式,包括幂函数、指数函数、对数函数、三角函数等。

对每个函数的导数公式进行逐一证明和解释,引导学生理解其中的推导过程。

3.导数的基本运算法则(30分钟)教师介绍导数的基本运算法则,包括常数规则、加减法则、乘法法则和除法法则。

通过实例演示,让学生理解和掌握这些运算法则的应用。

并提醒学生注意特殊情况和需要注意的问题。

4.实例演练与讨论(30分钟)教师提供一些实际问题,让学生利用导数公式和运算法则进行求解。

鼓励学生积极思考和参与讨论,提高他们的解题能力。

5.小结和课后作业(15分钟)教师对本节课的内容进行小结,并强调要求学生掌握导数的公式和运算法则。

布置相关的课后作业,巩固和深化学生的学习。

四、教学反思本节课通过对导数公式和运算法则的介绍和讲解,培养了学生对导数的理论和实际应用的理解能力,同时通过实例演练和讨论,培养了学生解决问题的能力和思维能力。

在教学过程中,教师注重直观性的解释和举例,并给予学生足够的练习机会,提高了学习效果。

同时,在教学过程中也注意对学生解题过程的引导和问题的提问,以激发学生的思考,提高他们的思维水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2.2基本初等函数的导数公式
及导数的运算法则
【教学目标】
1.知识与技能:
熟练掌握基本初等函数的导数公式;掌握导数的四则运算法则;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
2.过程与方法:
通过对每个公式的针对性简单练习,使学生掌握基本初等函数的导数公式,通过8个基本初等函数的整合练习,加深理解导数的运算法则,以及解题的简洁性和变式的灵活性.
3.情感态度与价值观:
通过对新知的理解与巩固,培养学生创新能力,应变能力,运算能力,思维敏捷度,使学生体会到成功的喜悦,培养学生的学习兴趣.
【教学重点与难点】
1.重点:基本初等函数的导数公式、导数的四则运算法则.
2.难点:基本初等函数的导数公式和导数的四则运算法则的应用.
【教学手段】
多媒体幻灯片
【学习目标】
1.掌握基本函数的导数公式,灵活运用公式求某些函数的导数.
2.理解函数的和、差、积、商的求导法则,能够用法则求一些函数的导数.
【教学过程】
教学内容设计意图
一.预习新知
1.昨天的学习任务:熟记基本初等函数的导数公式、导数的四则运算法则
2.对昨天的学习任务课堂检测(提问的方式)明确今天学习任务,对此进行先学。

检测学习效果
e a
n d
l l t h i n
g s
i n
t h
e i r
b e
i n g
a r
e g
o o
d f
o r
s 二.新课精讲细练
公式1.若,则
公式2.若,则
师:
(1)上节课我们已经用定义求得,常数函数的导数为0;(2)公式2是幂函数的求导,
的导数是把
拿到前面做系数,指数
要减1;
训练一
小结1注意先把函数转化成 的形式,在求导 x 给出基本初等函数的导数公式,
并要求学生熟记,
注意读法
公式3. 若, 则公式4. 若, 则公式5. 若 , 则公式6. 若
,则
(3)由公式3和公式4得,
的导数为

的导数为负的;
(4)公式5是指数函数的求导,
的导数为
乘以
;而公式6可
以看成公式5的特殊情况,
这个函数非常特殊,其函数和导数是一样的;
训练二7.若 , 则
8.若
,则
(5)公式7是对数函数的求导,
的导数为
;而公式8可以
看成公式7的特殊情况,
的导数是
训练三
小结2 基本初等函数的8个导数公式
练习以一般代特殊思想,脱掉符号的帽子
引导学生观察、分析公式的特征和联系,加深对公式的记忆
l l t h i n
g s i n t h
e i r b e i n g
a r e 基本初等函数的导数公式表(书)
再次熟记
〖运算法则〗(学生阅读课本第14页表格)
导数的运算法则
1.2.
3.
给出导数的运算法则,并要求学生熟记.
1.两个函数的和(或差)的导数,等于这两个函数的导数的和(或差);
2.两个函数的积的导数,第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数;
3.两个函数的商的导数,等于分子的导数乘分母,减去分母的导数乘分子,再除以分母的平方.观察导数的运算法则,帮助学生记忆.
思考:常数与函数
的积的导数是什么?
根据“求导的乘法法则”有,
由此我们得到一个常用的结论,常数与函数的积的导数,等于常数乘函数的导数,即:.三.例题讲解:求函数的导数.
解:因为

所以,函数
的导数是
运用导数的乘法法则,得出重要推论,方便日后应用.
注意书写规范性进一步巩固运算
法则
四.当堂训练
求下列函数的导数:
解题的简洁性题型的变式性
(1) (2));)1)(1(-+=x x y )1)(1(-+=x x y (12
-x (3) (4)y=2x x y cos sin +=x x
x cos 2
cos 2sin +(5)y=x x
x cos 2
cos 2sin
+五.小结回顾
1.八个基本初等函数的导数公式和导数的四则运算法则,要求熟记这些结论.
2. 化繁为简,化归转化
六.当堂测试求下列函数的导数
.1x e y 2=.2)12)(12(++=x x y 学生总结,老师
补充,知识再现,加深印象,并查缺补漏.
检测学习效果
七、作业布置:
课本第18页习题1.2A 组:4(1).(2).(3)
让学生对知识巩固与加深.。

相关文档
最新文档