温度值精确到0.1度,lcd1602显示

合集下载

LCD显示的温度计

LCD显示的温度计

单片机课程设计与制作任务书专业:学号:姓名:一、设计题目:字符型LCD显示的温度计二、设计要求:1、利用DS18B20作为传感器,将温度数据送入51单片机内部,数据处理后,通过字符型LCD(型号:1602)显示出来。

2、显示温度的精度:0.1°C。

3、能设置告警的上下限温度。

三、设计内容:硬件设计、软件设计及样品制作四、设计成果形式:1、设计说明书一份(不少于4000字,附PROTEL绘制的电路原理图及程序清单);2、样品一套。

五.完成期限:200 年月日指导教师:年月日教研室:年月日设计思路及关键技术一、系统总体结构本设计由温度传感器、单片机、LCD显示模块和按键等构成。

单片机是集成的IC芯片,只需根据实际选型。

其他部分都需要根据应用要求和性能指标自行设计。

系统框图如图1—1所示:二、关键设计方法1、硬件电路设计①该系统采用AT89S51单片机作为控制中心,负责数据处理、显示控制等功能。

②温度传感器方案1:测温度采用热敏电阻温度传感器,如00C时电阻为50Ω,1000C时电阻为70Ω左右。

先经放大,再经V/F转换后接入单片机T0引脚,作为脉冲计数。

方案2:测温度采用热敏电阻温度传感器,如00C时电阻为50Ω,1000C时电阻为70Ω左右。

先放大,送入A/D转换器ADC0809,转换值送入单片机进行数据处理转换成温度值。

方案3:采用数字化温度传感器DS18B20.建议采用方案3。

③LCD显示当前测量的温度采用字符型液晶显示器1602,液晶显示器以其微功耗、体积小、显示内丰富、使用方便等诸多优点,在通信、仪器仪表、电子设备等低功耗应用系统中得到越来越广泛的应用。

2、DS18B20使用简介由于DS18B20 单线通信功能是分时完成的,它有严格的时隙概念,因此读写时序很重要.系统对DS18B20的各种操作必须按协议进行.操作协议为:初始化DS18B20(发复位脉冲)→发ROM 功能命令→发存储器操作命令→处理数据.主机控制DS18B20完成温度转换的程序必须经过3个步骤:初始化、ROM操作指令、存储器操作指令.假设单片机系统所用的晶振频率为12MHz,根据DS18B20的初始化时序、写时序和读时序,分别编写3个子程序:INIT为初始化子程序,WRITE 为写(命令或数据)子程序,READ为读数据子程序,所有的数据读写均由最低位开始.主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量温度值,温度测量每1s 进行一次,流程图如图1—2。

温度值精确到01度

温度值精确到01度

温度值精确到0.1度,lcd1602显示仿真电路图如下c程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P3^7;//ds18b20与单片机连接口sbit RS=P3^0;sbit RW=P3^1;sbit EN=P3^2;unsigned char code str1[]={"temperature: "};unsigned char code str2[]={" "};uchar data disdata[5];uint tvalue;//温度值uchar tflag;//温度正负标志/*************************lcd1602程序**************************/ void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;for(i=0;i<ms;i++)for(j=0;j<100;j++);}void wr_com(unsigned char com)//写指令//{ delay1ms(1);RS=0;RW=0;EN=0;P2=com;delay1ms(1);EN=1;delay1ms(1);EN=0;}void wr_dat(unsigned char dat)//写数据//{ delay1ms(1);;RS=1;RW=0;EN=0;P2=dat;delay1ms(1);EN=1;delay1ms(1);EN=0;}void lcd_init()//初始化设置//{delay1ms(15);wr_com(0x38);delay1ms(5);wr_com(0x08);delay1ms(5);wr_com(0x01);delay1ms(5);wr_com(0x06);delay1ms(5);wr_com(0x0c);delay1ms(5);}void display(unsigned char *p)//显示//{while(*p!='\0'){wr_dat(*p);p++;delay1ms(1);}}init_play()//初始化显示{ lcd_init();wr_com(0x80);display(str1);wr_com(0xc0);display(str2);}/******************************ds1820程序***************************************/ void delay_18B20(unsigned int i)//延时1微秒{while(i--);}void ds1820rst()/*ds1820复位*/{ unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd()/*读数据*/{ unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){ DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata)/*写数据*/{unsigned char i=0;for (i=8; i>0; i--){ DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}read_temp()/*读取温度值并转换*/{uchar a,b;ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0x44);//*启动温度转换*/ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0xbe);//*读取温度*/a=ds1820rd();b=ds1820rd();tvalue=b;tvalue<<=8;tvalue=tvalue|a;if(tvalue<0x0fff)tflag=0;else{tvalue=~tvalue+1;tflag=1;}tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数return(tvalue);}/*******************************************************************/ void ds1820disp()//温度值显示{ uchar flagdat;disdata[0]=tvalue/1000+0x30;//百位数disdata[1]=tvalue%1000/100+0x30;//十位数disdata[2]=tvalue%100/10+0x30;//个位数disdata[3]=tvalue%10+0x30;//小数位if(tflag==0)flagdat=0x20;//正温度不显示符号elseflagdat=0x2d;//负温度显示负号:-if(disdata[0]==0x30){disdata[0]=0x20;//如果百位为0,不显示if(disdata[1]==0x30){disdata[1]=0x20;//如果百位为0,十位为0也不显示}}wr_com(0xc0);wr_dat(flagdat);//显示符号位wr_com(0xc1);wr_dat(disdata[0]);//显示百位wr_com(0xc2);wr_dat(disdata[1]);//显示十位wr_com(0xc3);wr_dat(disdata[2]);//显示个位wr_com(0xc4);wr_dat(0x2e);//显示小数点wr_com(0xc5);wr_dat(disdata[3]);//显示小数位}/********************主程序***********************************/void main(){ init_play();//初始化显示while(1){ read_temp();//读取温度ds1820disp();//显示}}不好意思哈,昨晚很早就下了。

lcd1602液晶屏显示原理

lcd1602液晶屏显示原理

lcd1602液晶屏显示原理LCD1602液晶屏显示LCD1602液晶屏是一种广泛应用于嵌入式系统中的设备,其主要作用是显示文字和图像。

下面我们将从液晶屏的基本构成、显示原理、控制方式等方面进行详细介绍。

基本构成LCD1602液晶屏的主要构成有以下几个部分:•LCD显示区域:是液晶屏的主要显示部分,通常由16x2的字符点阵组成。

•背光源:为了方便在低光环境下观察屏幕内容,液晶屏通常都有背光源,可以显示白色、蓝色等不同颜色。

•驱动电路板:液晶屏需要通过电路来进行控制。

驱动电路板是一个电路板,上面有各种电子元器件,如芯片、晶振、电容、电阻等。

显示原理LCD1602液晶屏工作的原理是基于液晶分子的光学变化。

液晶屏的显示区域由若干个液晶单元组成,每个液晶单元是由一个薄膜晶体管(TFT)和一个电容组成的。

当液晶单元受到电压作用时,会发生形变,从而改变光线的传播方向,从而实现显示。

控制方式LCD1602液晶屏的控制方式通常采用微处理器进行控制。

常用的控制方式有以下几种:•8位并行控制:使用8根数据线,可以同时传输8位二进制数据,速度快,适用于需要传输大量数据的应用场景。

•4位并行控制:使用4根数据线,需要进行两次数据传输才能完成一次指令或数据的传输,速度比较慢,但可以降低接口引脚数量,适用于资源受限的系统。

•串行控制:使用单根数据线,数据按照一定的格式进行传输,速度较慢,但可以进一步减少接口引脚数量。

总结综上所述,LCD1602液晶屏是一种常用于嵌入式系统中的设备,其所采用的液晶分子光学变化原理是实现显示的基础,常用的控制方式有8位并行控制、4位并行控制和串行控制三种。

液晶屏在嵌入式系统中发挥着重要的作用,广泛应用于各种计算机设备、仪器仪表、通讯设备等方面。

接下来,我们将详细介绍液晶屏的控制流程和相关指令。

控制流程LCD1602液晶屏的控制流程通常包括以下大致步骤:1.初始化液晶屏:向液晶屏发送一系列指令,包括设置接口方式、显示模式、光标定位等。

lcd1602显示原理

lcd1602显示原理

lcd1602显示原理
LCD1602显示原理是利用液晶技术实现显示的一种方法。

它由16行2列的字符组成,每个字符由5×8的点阵组成。

在每个字符的背后都有一个液晶单元,通过控制液晶单元来控制字符的显示。

液晶单元是由两片平行的玻璃衬底组成,中间夹着液晶材料。

当没有电场作用在液晶材料上时,液晶材料呈现出类似于玻璃的透明状态。

而当有电场作用在液晶材料上时,液晶材料会发生变化,变得无法透过光线,从而产生黑色或其他颜色。

LCD1602显示原理是通过控制电压的加减来改变液晶单元的透明度,从而实现字符的显示。

当给液晶单元加上电压时,液晶材料会对光产生影响,使得光无法透过。

而当断开电压时,液晶材料会恢复透明状态,光可以透过。

通过对每个字符的液晶单元施加适当的电场,就可以实现字符的显示。

控制LCD1602显示的电路通常由驱动芯片和控制器组成。

驱动芯片负责产生所需的电场,控制器负责发送命令和数据到驱动芯片。

通过控制器发送特定的命令和数据,就可以让驱动芯片产生适当的电场,从而实现字符的显示。

总之,LCD1602显示原理是通过控制液晶单元的透明度来实现字符的显示,通过电压的加减来改变液晶单元的状态,从而产生黑色或其他颜色,最终完成字符的显示。

LCD1602及其控制器的基本显示方法

LCD1602及其控制器的基本显示方法

LCD1602及其控制器的基本显⽰⽅法LCD显⽰及键盘⽤法LCD1602及其控制器的基本显⽰⽅法向LCD输⼊的数据为ASCII码,需要通过数码扫描依次送到LCD显⽰,下⾯介绍LCD 控制器IP核LCD16X2A及其相关程序。

逻辑符号如下图:U_lcd_ctrl模块即为该控制器核在AltiumDesinger原理图中的符号表⽰。

其作⽤是接受前⾯⽤户⾃⼰的逻辑单元送来的ASCII码数据和控制信号,然后与外部的LCD显⽰器通讯,显⽰相应字符。

数据总线使⽤输⼊输出分离模式,IP核后⾯需要增加双向BUF控制单元(U8)。

L CD控制器端⼝说明如下:⽤户控制逻辑接⼝:CLK:控制器⼯作时钟,上升沿有效RST:复位信号,⾼电平有效DA TA[7..0]:ASCII码数据总线ADDR[3..0]:字符在LCD屏幕上的地址(共两⾏,每⾏16个字符)ADDR=“0000”~“1111”对应每⾏的第0~15个字符LINE:LCD1602屏幕上的⾏选择信号,LINE=0时数据在第⼀⾏显⽰,LINE=1时数据在第⼆⾏显⽰BUSY:控制器忙信号,数据未显⽰稳定时BUSY=1;反之为0STROBE:数据输⼊有效使能,⾼电平有效LCD显⽰器接⼝:LCD_E:LCD显⽰器使能LCD_RW:LCD读写⽅向控制LCD_RS:LCD命令,数据选择LCD_DA TA_TRI:LCD数据⾼阻态控制LCD_DA TAO:LCD数据输出总线LCD_DA TAI:LCD数据输⼊总线控制器⼯作原理如下:A 控制器复位当RST信号有效时(⾼电平),控制器进⼊LCD复位与初始化操作,此时,BUSY信号持续⾼电平,表⽰控制器忙,LCD不能进⾏⽤户请求的操作。

RST信号由⾼变低后的⼤约80us之后,LCD控制器初始化完成,可以响应⽤户的操作请求,此时,BUSY信号变低。

LCD处于显⽰模式。

B 字符显⽰上电后的LCD必须初始化⼀次,之后LCD控制器停留于“WAIT FOR DA TA”状态。

DS18B20温度计 c程序 lcd1602显示

DS18B20温度计 c程序 lcd1602显示

2007-12-14 19:05温度值精确到0.1度,lcd1602显示仿真电路图如下c程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P3^7;//ds18b20与单片机连接口sbit RS=P3^0;sbit RW=P3^1;sbit EN=P3^2;unsigned char code str1[]={"temperature: "};unsigned char code str2[]={" "};uchar data disdata[5];uint tvalue;//温度值uchar tflag;//温度正负标志/*************************lcd1602程序**************************/ void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;for(i=0;i<ms;i++)for(j=0;j<100;j++);}void wr_com(unsigned char com)//写指令//{ delay1ms(1);RS=0;RW=0;EN=0;P2=com;delay1ms(1);EN=1;delay1ms(1);EN=0;}void wr_dat(unsigned char dat)//写数据//{ delay1ms(1);;RS=1;RW=0;EN=0;P2=dat;delay1ms(1);EN=1;delay1ms(1);EN=0;}void lcd_init()//初始化设置//{delay1ms(15);wr_com(0x38);delay1ms(5);wr_com(0x08);delay1ms(5);wr_com(0x01);delay1ms(5);wr_com(0x06);delay1ms(5);wr_com(0x0c);delay1ms(5);}void display(unsigned char *p)//显示//{while(*p!='\0'){wr_dat(*p);p++;delay1ms(1);}}init_play()//初始化显示{ lcd_init();wr_com(0x80);display(str1);wr_com(0xc0);display(str2);}/******************************ds1820程序***************************************/ void delay_18B20(unsigned int i)//延时1微秒{while(i--);}void ds1820rst()/*ds1820复位*/{ unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd()/*读数据*/{ unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){ DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata)/*写数据*/{unsigned char i=0;for (i=8; i>0; i--){ DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}read_temp()/*读取温度值并转换*/{uchar a,b;ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0x44);//*启动温度转换*/ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0xbe);//*读取温度*/a=ds1820rd();b=ds1820rd();tvalue=b;tvalue<<=8;tvalue=tvalue|a;if(tvalue<0x0fff)tflag=0;else{tvalue=~tvalue+1;tflag=1;}tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数return(tvalue);}/*******************************************************************/ void ds1820disp()//温度值显示{ uchar flagdat;disdata[0]=tvalue/1000+0x30;//百位数disdata[1]=tvalue%1000/100+0x30;//十位数disdata[2]=tvalue%100/10+0x30;//个位数disdata[3]=tvalue%10+0x30;//小数位if(tflag==0)flagdat=0x20;//正温度不显示符号elseflagdat=0x2d;//负温度显示负号:-if(disdata[0]==0x30){disdata[0]=0x20;//如果百位为0,不显示if(disdata[1]==0x30){disdata[1]=0x20;//如果百位为0,十位为0也不显示}}wr_com(0xc0);wr_dat(flagdat);//显示符号位wr_com(0xc1);wr_dat(disdata[0]);//显示百位wr_com(0xc2);wr_dat(disdata[1]);//显示十位wr_com(0xc3);wr_dat(disdata[2]);//显示个位wr_com(0xc4);wr_dat(0x2e);//显示小数点wr_com(0xc5);wr_dat(disdata[3]);//显示小数位}/********************主程序***********************************/void main(){ init_play();//初始化显示while(1){read_temp();//读取温度ds1820disp();//显示}}。

LCD1602原理与显示程序

LCD1602原理与显示程序

LCD1602原理与显示程序LCD1602的原理是基于液晶显示技术。

液晶是一种特殊的物质,具有双折射性质,即能将入射的光线分成两束,通过改变液晶分子的排列方式,可以改变其双折射的性质,从而使得光线透过液晶时会发生偏转。

LCD1602利用这一原理,在液晶显示面板上设置了16列和2行的像素点阵,通过控制每个像素点的液晶分子的排列方式,来实现字符的显示。

初始化是指在使用LCD1602之前,需要对其进行一系列的初始化操作,以确保其正常工作。

具体的初始化步骤如下:1.设置通信协议:LCD1602可以通过并行接口和串行接口进行通信,根据具体的接口方式,选择相应的通信协议。

2.设置工作模式:LCD1602有两种工作模式,分别是4位模式和8位模式。

选择适合的工作模式,并设置相应的控制寄存器。

3.设置显示模式:LCD1602可以显示不同的字符集,如英文字符、数字、特殊符号等。

选择合适的字符集,并设置显示模式。

4.清除显示:设置清除显示寄存器,将显示区域清空。

5.光标设置:设置光标位置和显示方式,如光标是否闪烁、光标位置等。

完成初始化后,就可以将要显示的数据写入LCD1602数据写入是指将要显示的字符或数字写入到LCD1602的显示区域。

具体的数据写入步骤如下:1.设置光标位置:根据需要显示的字符位置,设置光标的位置。

2.数据写入:通过通信接口,将要显示的数据写入到LCD1602的数据寄存器。

3.延时:由于LCD1602的刷新速度较慢,需要等待一定的时间,使得数据能够稳定显示在液晶屏上。

4.更新光标位置:根据数据的长度和显示方式,更新光标的位置。

通过以上的步骤,就可以实现LCD1602的显示功能。

总结起来,LCD1602的原理是基于液晶显示技术,通过控制液晶分子排列方式来实现字符的显示。

其显示程序包括初始化和数据写入两个方面的内容,通过设置通信协议、工作模式、显示模式等参数,并将要显示的数据写入到LCD1602的显示区域,来实现字符的显示。

DS18B20温度计 c程序 lcd1602显示(word文档良心出品)

DS18B20温度计 c程序 lcd1602显示(word文档良心出品)

2007-12-14 19:05温度值精确到0.1度,lcd1602显示仿真电路图如下c程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P3^7;//ds18b20与单片机连接口sbit RS=P3^0;sbit RW=P3^1;sbit EN=P3^2;unsigned char code str1[]={"temperature: "};unsigned char code str2[]={" "};uchar data disdata[5];uint tvalue;//温度值uchar tflag;//温度正负标志/*************************lcd1602程序**************************/ void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;for(i=0;i<ms;i++)for(j=0;j<100;j++);}void wr_com(unsigned char com)//写指令//{ delay1ms(1);RS=0;RW=0;EN=0;P2=com;delay1ms(1);EN=1;delay1ms(1);EN=0;}void wr_dat(unsigned char dat)//写数据//{ delay1ms(1);;RS=1;RW=0;EN=0;P2=dat;delay1ms(1);EN=1;delay1ms(1);EN=0;}void lcd_init()//初始化设置//{delay1ms(15);wr_com(0x38);delay1ms(5);wr_com(0x08);delay1ms(5);wr_com(0x01);delay1ms(5);wr_com(0x06);delay1ms(5);wr_com(0x0c);delay1ms(5);}void display(unsigned char *p)//显示//{while(*p!='\0'){wr_dat(*p);p++;delay1ms(1);}}init_play()//初始化显示{ lcd_init();wr_com(0x80);display(str1);wr_com(0xc0);display(str2);}/******************************ds1820程序***************************************/ void delay_18B20(unsigned int i)//延时1微秒{while(i--);}void ds1820rst()/*ds1820复位*/{ unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd()/*读数据*/{ unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){ DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ)dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata)/*写数据*/{unsigned char i=0;for (i=8; i>0; i--){ DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}}read_temp()/*读取温度值并转换*/{uchar a,b;ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0x44);//*启动温度转换*/ds1820rst();ds1820wr(0xcc);//*跳过读序列号*/ds1820wr(0xbe);//*读取温度*/a=ds1820rd();b=ds1820rd();tvalue=b;tvalue<<=8;tvalue=tvalue|a;if(tvalue<0x0fff)tflag=0;else{tvalue=~tvalue+1;tflag=1;}tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数return(tvalue);}/*******************************************************************/ void ds1820disp()//温度值显示{ uchar flagdat;disdata[0]=tvalue/1000+0x30;//百位数disdata[1]=tvalue%1000/100+0x30;//十位数disdata[2]=tvalue%100/10+0x30;//个位数disdata[3]=tvalue%10+0x30;//小数位if(tflag==0)flagdat=0x20;//正温度不显示符号elseflagdat=0x2d;//负温度显示负号:-if(disdata[0]==0x30){disdata[0]=0x20;//如果百位为0,不显示if(disdata[1]==0x30){disdata[1]=0x20;//如果百位为0,十位为0也不显示}}wr_com(0xc0);wr_dat(flagdat);//显示符号位wr_com(0xc1);wr_dat(disdata[0]);//显示百位wr_com(0xc2);wr_dat(disdata[1]);//显示十位wr_com(0xc3);wr_dat(disdata[2]);//显示个位wr_com(0xc4);wr_dat(0x2e);//显示小数点wr_com(0xc5);wr_dat(disdata[3]);//显示小数位}/********************主程序***********************************/void main(){ init_play();//初始化显示while(1){read_temp();//读取温度ds1820disp();//显示}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
sbit DQ=P3^7;//ds18b20与单片机连接口
sbit RS=P3^0;
sbit RW=P3^1;
sbit EN=P3^2;
unsigned char code str1[]={"temperature: "};
unsigned char code str2[]={" "};
uchar data disdata[5];
uint tvalue;//温度值
uchar tflag;//温度正负标志
/*************************lcd1602程序**************************/ void delay1ms(unsigned int ms)//延时1毫秒(不够精确的){unsigned int i,j;
for(i=0;i<ms;i++)
for(j=0;j<100;j++);
}
void wr_com(unsigned char com)//写指令//
{ delay1ms(1);
RS=0;
RW=0;
EN=0;
P2=com;
delay1ms(1);
EN=1;
delay1ms(1);
EN=0;
}
void wr_dat(unsigned char dat)//写数据//
{ delay1ms(1);;
RS=1;
RW=0;
EN=0;
P2=dat;
delay1ms(1);
EN=1;
delay1ms(1);
EN=0;
}
void lcd_init()//初始化设置//
{delay1ms(15);
wr_com(0x38);delay1ms(5);
wr_com(0x08);delay1ms(5);
wr_com(0x01);delay1ms(5);
wr_com(0x06);delay1ms(5);
wr_com(0x0c);delay1ms(5);
}
void display(unsigned char *p)//显示//
{
while(*p!='\0')
{
wr_dat(*p);
p++;
delay1ms(1);
}
}
init_play()//初始化显示
{ lcd_init();
wr_com(0x80);
display(str1);
wr_com(0xc0);
display(str2);
}
/******************************ds1820程序
***************************************/ void delay_18B20(unsigned int i)//延时1微秒{
while(i--);
}
void ds1820rst()/*ds1820复位*/
{ unsigned char x=0;
DQ = 1; //DQ复位
delay_18B20(4); //延时
DQ = 0; //DQ拉低
delay_18B20(100); //精确延时大于480us
DQ = 1; //拉高
delay_18B20(40);
}
uchar ds1820rd()/*读数据*/
{ unsigned char i=0;
unsigned char dat = 0;
for (i=8;i>0;i--)
{ DQ = 0; //给脉冲信号
dat>>=1;
DQ = 1; //给脉冲信号
if(DQ)
dat|=0x80;
delay_18B20(10);
}
return(dat);
}
void ds1820wr(uchar wdata)/*写数据*/
{unsigned char i=0;
for (i=8; i>0; i--)
{ DQ = 0;
DQ = wdata&0x01;
delay_18B20(10);
DQ = 1;
wdata>>=1;
}
}
read_temp()/*读取温度值并转换*/
{uchar a,b;
ds1820rst();
ds1820wr(0xcc);//*跳过读序列号*/
ds1820wr(0x44);//*启动温度转换*/
ds1820rst();
ds1820wr(0xcc);//*跳过读序列号*/
ds1820wr(0xbe);//*读取温度*/
a=ds1820rd();
b=ds1820rd();
tvalue=b;
tvalue<<=8;
tvalue=tvalue|a;
if(tvalue<0x0fff)
tflag=0;
else
{tvalue=~tvalue+1;
tflag=1;
}
tvalue=tvalue*(0.625);//温度值扩大10倍,精确到1位小数
return(tvalue);
}
/*******************************************************************/ void ds1820disp()//温度值显示
{ uchar flagdat;
disdata[0]=tvalue/1000+0x30;//百位数
disdata[1]=tvalue%1000/100+0x30;//十位数
disdata[2]=tvalue%100/10+0x30;//个位数
disdata[3]=tvalue%10+0x30;//小数位
if(tflag==0)
flagdat=0x20;//正温度不显示符号
else
flagdat=0x2d;//负温度显示负号:-
if(disdata[0]==0x30)
{disdata[0]=0x20;//如果百位为0,不显示
if(disdata[1]==0x30)
{disdata[1]=0x20;//如果百位为0,十位为0也不显示
}
}
wr_com(0xc0);
wr_dat(flagdat);//显示符号位
wr_com(0xc1);
wr_dat(disdata[0]);//显示百位
wr_com(0xc2);
wr_dat(disdata[1]);//显示十位
wr_com(0xc3);
wr_dat(disdata[2]);//显示个位
wr_com(0xc4);
wr_dat(0x2e);//显示小数点
wr_com(0xc5);
wr_dat(disdata[3]);//显示小数位
}
/********************主程序***********************************/ void main()
{ init_play();//初始化显示
while(1)
{read_temp();//读取温度
ds1820disp();//显示
}
}。

相关文档
最新文档