2018年浙江高考数学复习:第2部分 专题限时集训17 集合与常用逻辑用语含答案
高考数学第2部分必考补充专题突破点17集合与常用逻辑用语教学案(2021学年)

(浙江专版)2018年高考数学第2部分必考补充专题突破点17 集合与常用逻辑用语教学案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高考数学第2部分必考补充专题突破点17 集合与常用逻辑用语教学案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高考数学第2部分必考补充专题突破点17 集合与常用逻辑用语教学案的全部内容。
突破点17集合与常用逻辑用语[核心知识提炼]提炼1 集合的概念、关系及运算(1)集合元素的特性:确定性、互异性、无序性.ﻩ(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C.(3)空集是任何集合的子集.(4)含有n个元素的集合的子集有2n个,真子集有2n-1个,非空真子集有2n-2个.ﻩ(5)重要结论:ﻩA∩B=A⇔A⊆B,A∪B=A⇔B⊆A.提炼2 充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,qD p)ABp是q的必要不充分条件(q⇒p,pDq)BAp是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(pD q,qD p)A与B互不包含以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
2018年高考数学浙江专版三维二轮专题复习训练:知能专

知能专练(一)集合与常用逻辑用语一、选择题1.(2017·北京高考)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1}B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}解析:选A由集合交集的定义可得A∩B={x|-2<x<-1}.2.(2017·浙江延安中学模拟)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是() A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠0解析:选D“若p,则q”的逆否命题为“若綈q,则綈p”,又a=b=0的实质为a=0且b=0,故其否定为a≠0或b≠0.故选D.3.(2017·宁波模拟)“x<0”是“ln(x+1)<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B ln(x+1)<0⇔0<x+1<1⇔-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.4.(2017·吉林模拟)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是()A.[1,+∞)B.(-∞,1]C.[-3,+∞)D.(-∞,-3]解析:选A设P={x|x>1或x<-3},Q={x|x>a},因为q是p的充分不必要条件,所以Q P,因此a≥1.5.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)·(x-2)<0,x∈Z},则A∪B=() A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.6.(2018届高三·安徽“江南十校”联考)已知集合A={x|x2-x≤0},函数f(x)=2-x(x∈A)的值域为B,则(∁R A)∩B等于()A.{x|1<x≤2} B.{x|1≤x≤2}C.{x|0≤x≤1} D.{x|x>1}解析:选A由题意知,集合A={x|0≤x≤1},∴B={y|1≤y≤2},∁R A={x|x<0或x>1},∴(∁R A)∩B={x|1<x≤2}.7.设集合S n={1,2,3,…,n},n∈N*,若X⊆S n,把X的所有元素的乘积称为X的容量(若X中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.若n=4,则S n的所有奇子集的容量之和为() A.7 B.8C.9 D.10解析:选A若n=4,则S n的所有奇子集为{1},{3},{1,3},故所有奇子集的容量之和为7.8.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3B.2C.1 D.0解析:选B因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.9.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.10.下列关于命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”的逆命题、否命题、逆否命题的结论中成立的是()A.都为真命题B.都为假命题C.否命题为真命题D.逆否命题为真命题解析:选D对于原命题:“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x|ax2+bx+c<0}≠∅,则抛物线y=ax2+bx+c的开口向下”是一个假命题,因为当不等式ax2+bx+c<0的解集非空时,可以有a>0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.二、填空题11.已知集合U ={1,2,3,4,5,6},S ={1,3,5},T ={2,3,6},则S ∩(∁U T )=________,集合S 共有________个子集.解析:由题意可得∁U T ={1,4,5},则S ∩(∁U T )={1,5}.集合S 的子集有∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5},共8个.答案:{1,5} 812.(2017·南通模拟)给出下列三个命题: ①“a >b ”是“3a >3b ”的充分不必要条件;②“α>β”是“cos α<cos β”的必要不充分条件;③“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件. 其中正确命题的序号为________.解析:“a >b ”是“3a >3b ”的充要条件,①错误;“α>β”是“cos α<cos β”的既不充分也不必要条件,②错误;“a =0”是“函数f (x )=x 3+ax 2(x ∈R)为奇函数”的充要条件,③正确.故正确命题的序号为③.答案:③13.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x 2x <1,N ={y |y =x -1+1},则N ∩(∁R M )=________,M ∪(∁R N )=________.解析:M =⎩⎨⎧⎭⎬⎫x 2x <1={x |x <0或x >2},N ={y |y =x -1+1}={y |y ≥1}, ∁R M ={x |0≤x ≤2},∁R N ={y |y <1},∴N ∩(∁R M )={x |1≤x ≤2},M ∪(∁R N )={x |x <1或x >2}. 答案:{x |1≤x ≤2} {x |x <1或x >2}14.若“4x +p <0”是“x 2-x -2>0”的充分条件,则实数p 的取值范围是________. 解析:由x 2-x -2>0,得x >2或x <-1. 由4x +p <0得x <-p4.故-p 4≤-1时,“x <-p4”⇒“x <-1”⇒“x 2-x -2>0”.∴p ≥4时,“4x +p <0”是“x 2-x -2>0”的充分条件. 答案:[4,+∞)15.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =________,(∁R A )∩B =________.解析:∵A ={x |-2≤x ≤0},∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2},∴A ∪B ={x |-2≤x ≤2},∴(∁R A )∩B ={x |0<x ≤2}.答案:{x |-2≤x ≤2} {x |0<x ≤2}16.(2017·四川南山模拟)已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________.解析:由题意知,13<x <12是不等式|x -m |<1成立的充分不必要条件,所以⎩⎨⎧⎭⎬⎫x 13<x <12是{x ||x -m |<1}的真子集.而{x ||x -m |<1}={x |-1+m <x <1+m },所以有⎩⎨⎧-1+m ≤13,1+m ≥12(两个不等式不能同时取等号),解得-12≤m ≤43,所以m 的取值范围是⎣⎡⎦⎤-12,43. 答案:⎣⎡⎦⎤-12,43 17.设全集U =R ,集合A ={x |x 2-3x -4<0},B ={x |log 2(x -1)<2},则A ∩B =______,A ∪B =________,∁R A =________.解析:∵A ={x |-1<x <4},B ={x |1<x <5},∴A ∩B ={x |1<x <4},A ∪B ={x |-1<x <5},∁R A ={x |x ≤-1或x ≥4}.答案:{x |1<x <4} {x |-1<x <5} {x ≤-1或x ≥4} [选做题]1.已知集合A ={(x ,y )|x =n ,y =na +b ,n ∈Z},B ={(x ,y )|x =m ,y =3m 2+12,m ∈Z},若存在实数a ,b 使得A ∩B ≠∅成立,称点(a ,b )为“£”点,则“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为( )A .0B .1C .2D .无数个解析:选A A ={(x ,y )|x =n ,y =na +b ,n ∈Z}={(x ,y )|y =ax +b ,x ∈Z},B ={(x ,y )|x=m ,y =3m 2+12,m ∈Z}={(x ,y )|y =3x 2+12,x ∈Z},联立⎩⎪⎨⎪⎧y =ax +b ,y =3x 2+12,故3x 2-ax +12-b =0,①因为A ∩B ≠∅,故Δ=a 2-12(12-b )=a 2+12b -144≥0,即a 2+12b ≥144,联立⎩⎪⎨⎪⎧a 2+12b ≥144,a 2+b 2≤108,解得a =±62,b =6,代入①中可知x =±2,这与x ∈Z 矛盾,故“£”点在平面区域C ={(x ,y )|x 2+y 2≤108}内的个数为0,故选A.2.对于非空数集A ,B ,定义A +B ={x +y |x ∈A ,y ∈B },下列说法: ①A +B =B +A ;②(A +B )+C =A +(B +C ); ③若A +A =B +B ,则A =B ;④若A +C =B +C ,则A =B . 其中正确的是( ) A .① B .①② C .②③D .①④解析:选B 对于①,A +B ={x +y |x ∈A ,y ∈B }={y +x |x ∈A ,y ∈B }=B +A ,①正确;对于②,(A +B )+C ={(x +y )+z |x ∈A ,y ∈B ,z ∈C }=A +(B +C ),②正确;对于③,当A ={奇数},B ={偶数}时,A +A ={偶数}=B +B ,显然A ≠B ,③错误,对于④,当A ={奇数},B ={偶数},C ={整数}时,A +C ={整数}=B +C ,显然A ≠B ,④错误.综上所述,正确的为①②,故选B.3.已知命题p :对数log a (-2t 2+7t -5)(a >0,a ≠1)有意义;q :关于实数t 的不等式t 2-(a +3)t +(a +2)<0.若命题p 是命题q 的充分不必要条件,则实数a 的取值范围是________.解析:由题意知,-2t 2+7t -5>0,解得1<t <52.∵命题p 是命题q 的充分不必要条件,∴1<t <52是不等式t 2-(a +3)t +(a +2)<0解集的真子集.因为方程t 2-(a +3)t +(a +2)=0两根为1,a +2,故只需a +2>52,解得a >12.即实数a 的取值范围是⎝⎛⎭⎫12,+∞. 答案:⎝⎛⎭⎫12,+∞。
2018届浙江高三数学二轮专题复习 集合与命题

解析
答案
Ⅱ
真题押题精练
真题体验
1.(2016·浙 江 改 编 ) 已 知 集 合 P = {x∈R|1≤x≤3} , Q = {x∈R|x2≥4} ,则 (- 2,3]P∪(∁RQ)=________. 解析 由已知得Q={x|x≥2或x≤-2}. ∴∁RQ=(-2,2).又P=[1,3], ∴P∪∁RQ=[1,3]∪(-2,2)=(-2,3].
A={2,3},集合B={1,2,4},则(∁UB)∩A等于 A.{2} C.{5,6} B.{3}
√ D.{3,5,6}
解析 由题意得∁UB={3,5,6},则(∁UB)∩A={3}, 故选B.
解析
答案
CA-CB,CA≥CB, (2)用C(A)表示非空集合A中的元素个数,定义 A*B= CB-CA,CA<CB, 若A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且A*B=1,设实数a
解析
答案
(2)(2017· 温州九校协作体联考)已知实数a,b,则“|a+b|+|a- b|≤1”是“a2+b2≤1”的 A.充分不必要条件
√ B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
思维升华
解析
答案
跟踪演练2
(1)(2017· 绍兴模拟)已知平面α⊥平面β,且α∩β=b, B.必要不充分条件 D.既不充分也不必要条件
√
A.(2,3] C.(-∞,0)∪(0,2] 押题依据
B.[2,3] D.(-∞,-1)∪[0,3]
集合的运算在历年高考中的地位都很重要,已成为
送分必考试题.集合的运算常与不等式(特别是一元一次不等式、
一元二次不等式 )的求解、函数的定义域、函数的值域等知识相 交汇. 解析 A=[0,3].又log2(x2-x)>log22,即x2-x>2, 解得x<-1或x>2,所以B=(-∞,-1)∪(2,+∞). 所以A∩B=(2,3].
2018浙江高考(理)二轮《集合与常用逻辑用语》专题能力训练含答案.doc

专题能力训练 1 集合与常用逻辑用语(时间:60 分钟满分:100 分)一、选择题(本大题共8小题,每小题5分,共40分)1. 若集合A={x卜2vx<1}, B={x|x<- 1,或x>3},则A H B= )A. { x|- 2<x<-1}B. { x|- 2vxv3}C. { x|- 1vxv1}D. { x| 1vxv3}2. (2017 浙江镇海中学5 月模拟)设集合A={x|x<- 2,或x>1,x€ R},B={x|x<0,或x>2,x € R}, 则(?刈H B是()A. (-2,0)B. (-2,0]C. [ -2,0)D. R3. 原命题为“若va n, n€ N,则数列{a n}是递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下, 正确的是()A. 真,真,真B. 假,假,真C. 真,真,假D. 假,假,假4. 直线I与平面a内的两条直线都垂直”是"直线l与平面a垂直”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件5. 已知a , 3 € (0, n ),贝厂'sin a +sin 3 <” 是“ sin(a + 3 )<”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 已知集合A={1,2,3,4}, B=2,4,6,8}, 定义集合A X B={(x,y)|x € Ay€ B},则集合A XB 中属于集合{( x, y) | log x y€ N}的元素个数是()A. 3B.4C.8D.97. (2018浙江“超级全能生”8月联考)设A, B是有限集合,定义:d(A B)=,其中card( A)表示有限集合A中的元素个数,则下列不一定正确的是()Ad (A B) > card( A A E)B. d(AC d(A B) wD d (A B) =[card( A) +card( B) +| card( A) - card( B) | ]2 __________________________________________________________________________________________8. 已知集合Apx€R x -2x-3<0}, Bpx€R|- 1<x<m,若x €A是x€ B的充分不必要条件,则实数m的取值范围为()A. (3, +8)B. (-1,3)C. [3, +8)D. (-1,3]二、填空题(本大题共6小题,每小题5分,共30分)9. 已知集合A={3,吊}, B={-1,3,2 m-1}.若A? ________ B,则实数m的值为.210. 已知集合A={x| (x-2)( x+5)<0}, B={x|x - 2x- 3>0}, 全集U=R, 则A A B= ______________ , A U ( ?U B) = ______________ .11. ____________ 设全集U=R集合A={x|x (x- 2) <0}, B={x|x<a},若A与B的关系如图所示,则实数a的取值范围是.12.设集合P={t|数列{n2+tn(n€ N*)}单调递增},集合Q=t|函数f(x)=kx2+tx在区间[1, +8)上单调递增},若“ t € P”是“t € Q'的充分不必要条件,则实数k的最小值为__________ .13. 给出下列四个命题:①在△ ABC中,若A>B 则sin A>sin B;②若0<a<1,则函数f(x)=x2+a x-3只有一个零点;③函数y=2sin x cos x在上是单调递减函数;④若lg a+g b=lg( a+b),则a+b的最小值为4.其中真命题的序号是___________ .14. 若X是一个集合,T是一个以X的某些子集为元素的集合,且满足:①X属于T ,空集?属于T ;②T中任意多个元素的并集属于T ;③T中任意多个元素的交集属于T .则称T是集合X上的一个拓扑.已知集合X={ a, b, c},对于下面给出的四个集合T :①T ={? ,{ a},{ c},{ a, b, c}};②T ={? ,{ b},{ c},{ b, c},{ a, b, c}};③T ={? ,{ a},{ a, b},{ a, c}};④T ={? ,{ a, c},{ b, c},{ c},{ a, b, c}}.其中是集合X上的一个拓扑的集合T的所有序号是 ___________ .三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15. (本小题满分15 分)已知集合A={x| 2<x<7}, B={x| 2<x<10}, C={x| 5-a<x<a}.(1)求A U B( ?R A) n B;⑵若C? B求实数a的取值范围.16. (本小题满分15 分)已知p: -x +16x- 60>0, q: > 0, r:关于x 的不等式x - 3ax+2a <0(x € R).(1) 当a>0时,是否存在a使得r是p的充分不必要条件?(2) 若r是p的必要不充分条件,且r是q的充分不必要条件,试求a的取值范围.参考答案专题能力训练 1 集合与常用逻辑用语1. A 解析A H B={x|- 2vxv-1}.故选A2. C解析•••集合A={x|x<- 2 或x>1,x € R},•••?R A={X|- 2 w x< 1}.T 集合B={ x|x< 0 或x>2, x€ R},•(?R A)H B={x|- 2w x<0}=[-2,0) . 故选C.3. A 解析由<a n, 得a n+a n+1<2 a n, 即a n+1<a n.所以当<a n 时, 必有a n+1<a n,则数列{a n} 是递减数列.反之, 若数列{a n} 是递减数列, 必有a n+1<a n,从而有<a n. 所以原命题及其逆命题均是真命题, 从而其否命题及其逆否命题也均是真命题.4. B解析根据线面垂直的判定:l与a内的两条相交直线垂直?I丄a ,故是必要不充分条件, 应选B.5. A 解析当a =3 =时,sin a =sin 3 =1,sin a +sin 3 =2,sin( a + 3 ) =0<,所以后不能推前,又sin( a + 3 ) =sin a cos 3 +cos a sin 3 <sin a +sin 3 ,所以前推后成立.故选A.6. B 解析由给出的定义得A X B={(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)} .其中log 22=1,log 24=2,log 28=3,log 44=1,因此一共有4 个元素,应选B.7. C 解析■/ card( A U B) > card( A H B),•d( A B) > card( A H B),选项A 正确;T d( A, B) =J•选项B 正确;T d(A,B)=,•••选项C错误;又| card( A)-card( B) | > 0, ."(A B) < [card( A)+card( B) +|card( A)-card( B) | ],选项 D 正确.故选C.8. A 解析A={x € R|x 2- 2x- 3<0} ={ x|- 1<x<3}, ■/x€ A 是x € B 的充分不必要条件,二A? B,二m:3.故选A.9. 1 解析■/ A? B 二m=2m-1 或m=-1(舍).由m=2m-1得m=.经检验m=l时符合题意.10. {x|- 5<x< -1} {x|- 5<x<3} 解析由题意知集合2A={ x| (x- 2)( x+5) <0} ={ x|- 5<x<2}, B={x|x - 2x- 3> 0} ={ x|x > 3 或x< -1},所以?u B={x|- 1<x<3},A n B={x|- 5<x<-1}, A U (?U B)={X|- 5<x<3}.11. a > 2 解析因为A={ x|x (x- 2) <0} ={ x| 0<x<2},又Venn图表达的集合关系是A? B, B={ x|x<a},所以a> 2.12. 解析因为数列{ n2+tn(n€ N*)}单调递增,2 2 __________________________________________________ *所以(n+1) +t( n+1) >n +tn,可得t>- 2n-1,又n € N,所以t>- 3.因为函数f (x) =kx2+tx在区间[1, +s)上单调递增,所以其图象的对称轴x=- < 1,且k>0, 所以t >-2k,又“ t € P是“ t € Q的充分不必要条件,所以-2k w-3,即k>.故实数k的最小值为.13. ①④ 解析在厶ABC中,A>田a>b? 2R sin A>2R sin B? sin A>sin B故①为真命题.v . , . ,在同一直角坐标系内作出函数y1=3-x ,y2=a(0<a<1)的图象如图所示.由图知两函数图象有两个交点,故②为假命题.由y=2sin x cos x=sin 2 x,又x €时,2 x € ,可知y=2sin x cos x在上是增函数,因此③为假命题.④中由lg a+lg b=lg( a+b 知ab=a+b 且a>0, b>0.2 又ab w ,所以令a+b=t(t>0),则4t < t ,即t > 4,因此④为真命题.14.②④解析① T ={? ,{ a},{ c},{ a, b, c}},但是{a} U {c}={a, c}?T ,所以①错;②④ 都满足集合X上的一个拓扑的集合T的三个条件,所以②④正确;③{a, b} U {a.c} ={ a, c, b} ? T ,故错.所以答案为②④.15. 解(1) A U B={x|2vxv10}, ?R A={X|X < 2 或x> 7},( ?R A) n B=>|7W x<10}.(2)①当C=?时,满足C? B,此时5-a > a,得a< ;②当C M ?时,若C? B,则解得<a w 3.故由①②得实数a的取值范围是a w 3.2 2 216. 解(1)由-x +16x-60>0,解得6vxv10,当a>0 时,由x-3ax+2a <0,解得a<x<2a.若r 是p的充分不必要条件,则(a,2 a) ? (6,10)且两集合不相等,则a无解,不存在.2(2)由-x +16x- 60>0,解得6VXV10,由>0,解得x>1.2 2当a>0 时, 由x2-3ax+2a2<0, 解得a<x<2a.若r是p的必要不充分条件,则(6,10) ? (a,2 a),此时5 w a< 6.①若r是q的充分不必要条件,则(a,2 a)? (1, +^),此时a> 1.②由①②得5w a w 6.22当a<0时,由x -3ax+2a <0,解得2a<x<a<0,而右r是p的必要不充分条件,(6,10) ? (a,2 a) 不成立,(a,2 a) ? (1, )也不成立,不存在a值.22当a=0时,由x - 3ax+2a <0,解得r为? ,(6,10) ? ?不成立,不存在a值.综上,5 w a w 6为所求.。
【高三数学试题精选】2018届高考数学集合与常用逻辑用语、函数、导数考点突破测试题及答案

5
c
专题检测卷(二) 集合与常题(本大题共12小题,每小题5分,共计60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2018 标全国)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=
A.f(0)<f(-1)<f(2) B.f(-1)<f(0)<f(2)
c. f(-1)<f(2)<f(0) D.f(2)<f(-1)<f(0)
【解析】 由f(x-2)在[0,2]上单调递减,
∴f(x)在[-2,0]上单调递减.
∵=f(x)是偶函数,
∴f(x)在[0,2]上单调递增.
又f(-1)=f(1),∴f(0)<f(-1)<f(2).
15+2b+2c≤0 b+c≤-152
【答案】 B
7.(2018 东聊城摸底)函数f(x)的图象如下图所示,下列数值排序正确的是
A.0 f′(2) f′(3) f(3)-f(2)B.0 f′(3) f(3)-f(2) f′(2)
c.0 f′(3) f′(2) f(3)-f(2)D.0 f(3)-f(2) f′(2) f′(3)
【答案】 B
11.(2018 东泰安联考)已知函数f(x)的定义域为[-2,+∞),部分对应值如下表,f′(x)为f(x)的导函数,函数=f′(x)的图象如图所示.若两正数a、b满足f(2a+b)<1,则b+3a+3的取值范围是
x-204
f(x)1-11
A67,43 B35,73
c23,65 D-13,3
【解析】 由f(2a+b)<1及a>0,b>0得f(2a+b)<f(4).
又f(x)在(0,+∞)上单增,
【理科专题一 】集合与常用逻辑用语(带答案)

理科专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则A B =A .{0,1}B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}2.(2018全国卷Ⅰ)已知集合2{20}=-->A x x x ,则A =R ðA .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<-> x x x xD .{|1}{|2}- ≤≥x x x x3.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}4.(2018天津)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<5.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}6.(2018全国卷Ⅱ)已知集合22{(,)|3}=+∈∈Z Z ≤,,A x y x y x y ,则A 中元素的个数为A .9B .8C .5D .47.(2017新课标Ⅰ)已知集合{|1}A x x =<,{|31}x B x =<,则A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅8.(2017新课标Ⅱ)设集合{1,2,4}A =,2{|40}B x x x m =-+=,若A B = {1}, 则B =A .{1,3}-B .{1,0}C .{1,3}D .{1,5}9.(2017新课标Ⅲ)已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则A B 中元素的个数为A .3B .2C .1D .010.(2017山东)设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = A .(1,2) B .(1,2] C .(2,1)- D .[2,1)-11.(2017天津)设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤12.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)13.(2017北京)若集合{|21}A x x =-<<,{|13}B x x x =<->或,则A B =A .{|21}x x -<<-B .{|23}x x -<<C .{|11}x x -<<D .{|13}x x <<14.(2016年北京)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-15.(2016年山东)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞16.(2016年天津)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4} 17.(2016年全国I)设集合2{|430}A x x x =-+<,{|230}B x x =->,则=A BA .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)218.(2016年全国II)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = A .{1} B .{12}, C .{0123},,, D .{10123}-,,,,19.(2016年全国III )设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =A .[2,3]B .(-∞ ,2]U [3,+∞)C .[3,+∞)D .(0,2]U [3,+∞)20.(2015新课标2)已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则A B =A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}21.(2015浙江)已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q = ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]22.(2015四川)设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A B =A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<23.(2015福建)若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于 A .{}1- B .{}1 C .{}1,1- D .∅24.(2015重庆)已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .A B ÜD .B A Ü25.(2015湖南)设,A B 是两个集合,则“A B A = ”是“A B ⊆”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件26.(2015广东)若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =A .{}1,4B .{}1,4--C .{}0D .∅27.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = A .[0,1] B .(0,1] C .[0,1) D .(,1]-∞28.(2015天津)已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B = ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,829.(2015湖北)已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3030.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B ⋂=A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)31.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N ⋂=A .{1}B .{2}C .{0,1}D .{1,2}32.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B ⋂=A . ∅B .{}2C .{}0D .{}2-33.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA . [0,2]B .(1,3)C . [1,3)D . (1,4)34.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则A B =A .(0,2]B .(1,2)C .[1,2)D .(1,4) 35.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A .{0,1}B .{1,0,2}-C .{1,0,1,2}-D .{1,0,1}-36.(2014福建)若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤37.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅ B . }2{ C . }5{ D . }5,2{38.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则A B =A .{0}B .{0,1}C .{0,2}D .{0,1,2}39.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<40.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则M N =A .[0,1]B .[0,1)C .(0,1]D .(0,1)41.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =A .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-42.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<43.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-44.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ðA .{1,3,5,6}B .{2,3,7}C .{2,4,7}D . {2,5,7} 45.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“∅=B A ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件46.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 47.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =A .{}14,B .{}23,C .{}916,D .{}12,48.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,3 49.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---50.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B = ðA .{3}B .{4}C .{3,4}D .∅51.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .952.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,153.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则A .()01,B .(]02,C .()1,2D .(]12, 54.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-55.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-56.(2013广东)设整数4n ≥,集合{}1,2,3,,X n = ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉57.(2013陕西)设全集为R , 函数()f x M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-58.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0 D .0或459.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C . {}|024x x x ≤<>或D .{}|024x x x <≤≥或60.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U61.(2012浙江)设全集{}1,2,3,4,5,6U = ,设集合{}1,2,3,4P = ,{}3,4,5Q =,则U P Q ⋂ð=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,262.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =C .M N N =D .{2}M N =63.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB Ü B .B A ÜC .A B =D .A B =∅64.(2012安徽)设集合A={|3213x x --剟},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]65.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5 B.4 C.3 D.266.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆67.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个68.(2011北京)已知全集U R =,集合2{|1}P x x =≤,那么U C PA .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)69.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂70.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}71.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .172.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}73.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若P M P = ,则a 的取值范围是A .(-∞,-1]B .[1, +∞)C .[-1,1]D .(-∞,-1] [1,+∞)74.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]75.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N MA .MB .NC .ID .∅76.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N =77.(2010陕西)集合A={}|12x x -≤≤,B={}|1x x <,则()R A C B ⋂=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤78.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆ðD .R Q P ⊆ð79.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð A.(,0]2⎛⎫-∞+∞ ⎪ ⎪⎝⎭ B.2⎛⎫+∞ ⎪ ⎪⎝⎭C.(,0])-∞+∞ D.)+∞ 80.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}A B = ,{9}U B A = ð,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题81.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = .82.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}A B = ,则实数a 的值为_. 83.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为__.84.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .85.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U C A B ⋂= .86.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.87.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= .88.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.89.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}A B = ,则实数a =__.三、解答题90.(2018北京)设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈= .对于集合A 中的任意元素12(,,,)n x x x α= 和12(,,,)n y y y β= ,记(,)M αβ= 111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++-- . (1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B = ,故选A .2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð{|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B = .故选C .4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<ð,因为{02}A x x =<<,所以()=R I A B ð{|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .6.A 【解析】通解 由223+≤x y知,xy又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}A B x x =< ,选A .8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-< ≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.12.A 【解析】由题意可知{|12}P Q x x =-<< ,选A .13.A 【解析】{}21A B x x =-<<- ,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}A B =- . 15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞ .故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B = .17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2A B = .选D .18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,, ∴{}01B =,,∴{}0123A B = ,,,,故选C .19.D 【解析】(,2][3,)S =-∞+∞ ,所以(0,2][3,)S T =+∞ ,故选D .20.A 【解析】由于{|21}B x x =-<<,所以{1,0}A B =- .21.C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q=x x ð.22.A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<< .23.C 【解析】由已知得{},1,,1A i i =--,故A B = {}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.25.C 【解析】∵A B A = ,得A B Í,反之,若A B Í,则A B A = ;故“A B A = ”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅ M N .27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤, 所以[]0,1M N = ,故选A .28.A 【解析】{2,5,8}U B =ð,所以{2,5}U A B = ð,故选A.29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B = [1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以=A C U {|2x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B = ={}0,2. 39.C 【解析】A B = {|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴M N = {}|01x x <≤,故选B .41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或,∴()R A C B = {}|31x x --≤≤42.D 【解析】由已知得,{=0A B x x ≤ 或}1x ≥,故()U C A B = {|01}x x <<.43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =ð.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A ”,选C . 46.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B = ,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B = ð{}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-55.A 【解析】∵{}2,0S =-,{}0,2T =,∴S T = {}0.56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[-1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R A C B ∴=+∞ .60.A 【解析】U C M ={,,}24661.D 【解析】 {}3,4,5Q =,∴U Q ð={}1,2,6,∴ U P Q ⋂ð={}1,2. 62.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=65.C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N == ,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞ .69.D 【解析】因为{1,2,3,4}M N = ,所以()()n n C M C N ⋂=()U C M N ={5,6}.70.B 【解析】因为U C M N ⊂,所以()()()U U U U N N C M C C N C M ===[()]U U N M 痧={1,3,5}. 71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y = 或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}M N =- .73.C 【解析】因为P M P = ,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N = .75.A 【解析】根据题意可知,N 是M 的真子集,所以M N M = .76.C 【解析】{}{}{}1,2,32,3,42,3M N == 故选C.77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤痧78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x …, 所以R A ð=(,0]⎫-∞+∞⎪⎪⎝⎭.80.D 【解析】因为{3}A B = ,所以3∈A ,又因为{9}U B A = ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B = {1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B == ,5个元素.84.{}1,3-【解析】=B A {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð, {}()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B ð={6,8}{2,6,8}{6,8}= .88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅ .对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-).令1211(,,,)n n n B e e e S S -+=⋅⋅⋅ ,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.专题一 集合与常用逻辑用语第二讲 常用逻辑用语一、选择题1.(2018北京)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.(2018天津)设x ∈R ,则“11||22x -<”是“31x <”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(2018上海)已知a R ∈,则“1a >”是“11a<”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.(2018浙江)已知平面α,直线m ,n 满足m α⊄,n α⊂,则“m ∥n ”是“m ∥α”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p6.(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“465+2S S S >”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D .既不充分也不必要条件7.(2017天津)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件8.(2017山东)已知命题p :0x ∀>,ln(1)0x +>;命题q :若a b >,则22a b >,下列命题为真命题的是A .p q ∧B .p q ⌝∧C .p q ⌝∧D .p q ⌝⌝∧9.(2017北京)设m , n 为非零向量,则“存在负数λ,使得λ=m n ”是“0⋅<m n ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件10.(2016年北京)设,a b 是向量,则“||=||a b ”是“||||+=-a b a b ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.(2016年山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(2016年天津)设{}n a 是首项为正数的等比数列,公比为q ,则“0q <”是“对任意的正整数n ,2120n n a a -+<”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件13.(2015新课标)设命题p :n N ∃∈,22n n >,则p ⌝为A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2n n N n ∀∈≤D .2,2n n N n ∃∈=14.(2015安徽)设p :12x <<,q :21x >,则p 是q 成立的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件15.(2015重庆)“1x >”是“12log (2)0x +<”的A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件16.(2015天津)设x R ∈ ,则“21x -< ”是“220x x +-> ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件17.(2015浙江)命题“**N ,()N n f n ∀∈∈ 且()f n n ≤的否定形式是A .**N ,()N n f n ∀∈∉且()f n n >B .**N ,()N n f n ∀∈∉或()f n n >C .**00N ,()N n f n ∃∈∉且00()f n n >D .**00N ,()N n f n ∃∈∉或00()f n n >18.(2015北京)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件19.(2015陕西)“sin cos αα=”是“cos 20α=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要20.(2014新课标2)函数()f x 在0=x x 处导数存在,若()00p f x '=:,0:q x x =是()f x的极值点,则A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件21.(2014广东)在ABC ∆中,角A ,B ,C 所对应的边分别为,,,c b a 则“b a ≤”是“B A sin sin ≤”的A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件22.(2014福建)命题“[)30,.0x x x ∀∈+∞+≥”的否定是 A .()30,.0x x x ∀∈+∞+< B .()3,0.0x x x ∀∈-∞+≥ C .[)30000,.0x x x ∃∈+∞+< D .[)30000,.0x x x ∃∈+∞+≥ 23.(2014浙江)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件24.(2014湖南)已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④25.(2014陕西)原命题为“若12n n n a a a ++<,n N +∈,则{}n a 为递减数列”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是A .真,真,真B .假,假,真C .真,真,假D .假,假,假26.(2014江西)下列叙述中正确的是A .若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤B .若,,a b c R ∈,则22""ab cb >的充要条件是""a c >C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”D .l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ27.(2013安徽)“0a ≤”是“函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件28.(2013北京)“ϕπ=”是“曲线()sin 2y x ϕ=+过坐标原点的”A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件29.设z 是复数, 则下列命题中的假命题是A .若20z ≥, 则z 是实数B .若20z <, 则z 是虚数C .若z 是虚数, 则20z ≥D .若z 是纯虚数, 则20z <30.(2013浙江)已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件31.(2013重庆)命题“对任意x R ∈,都有20x ≥”的否定为A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x <32.(2013四川)设x Z ∈,集合A 是奇数集,集合B 是偶数集,若命题p :,2x A x B ∀∈∈,则 A .p ⌝:,2x A x B ∀∈∉ B .p ⌝:2x A x B ∀∉∉,C .p ⌝:2x A x B ∀∉∈,D .p ⌝:2x A x B ∀∈∉, 33.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()()p q ⌝∨⌝B . ()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨ 34.(2012湖北)命题“0x ∃∈R Q ð,30x ∈Q ”的否定是A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q 35.(2012湖南)命题“若4πα=,则tan 1α=”的逆否命题是 A .若4πα≠,则tan 1α≠ B .若4πα=,则tan 1α≠C .若tan 1α≠,则4πα≠ D .若tan 1α≠,则4πα=36.(2012安徽)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的A .充分不必要条件B .必要不充分条件C .充要条件D . 即不充分不必要条件37.(2012福建)下列命题中,真命题是A .00,0x x R e ∃∈…B .2,2x x R x ∀∈>C .0a b +=的充要条件是1a b=- D .1a >,1b >是1ab >的充分条件 38.(2012北京)设,a b ∈R ,“0a =”是“复数i a b +是纯虚数”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件39.(2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数40.(2012山东)设0>a 且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件41.(2012山东)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真42.(2011山东)已知,,a b c R ∈,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是A .若3a b c ++≠,则222a b c ++<3B .若3a b c ++=,则222a b c ++<3C .若3a b c ++≠,则222a b c ++≥3D .若222a b c ++≥3,则3a b c ++=43.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈ 13:||1[0,)3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈ 其中真命题是A .14,p pB .13,p pC .23,p pD .24,p p44.(2011陕西)设,a b 是向量,命题“若=-a b ,则=a b ”的逆命题是A .若≠a b ,则≠a bB .若=-a b ,则≠a bC .若≠a b ,则≠a bD .若=a b ,则=-a b45.(2011湖南)设集合{}{}21,2,,M N a ==则 “1a =”是“N M ⊆”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件46.(2011安徽)命题“所有能被2整聊的整数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的数都是偶数D .存在一个能被2整除的数都不是偶数47.(2010新课标)已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是A .1q ,3qB .2q ,3qC .1q ,4qD .2q ,4q48.(2010辽宁)已知a >0,则0x 满足关于x 的方程ax b =的充要条件是A .220011,22x R ax bx ax bx ∃∈-≥- B .220011,22x R ax bx ax bx ∃∈-≤- C .220011,22x R ax bx ax bx ∀∈-≥- D .220011,22x R ax bx ax bx ∀∈-≤- 二、填空题49.(2018北京)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.50.(2015山东)若“x ∀[0,]4π∈,tan x m ≤”是真命题,则实数m 的最小值为 .51.(2013四川)设n P P P ,,,⋯⋯21为平面a 内的n 个点,在平面a 内的所有点中,若点P 到点n P P P ,,,⋯⋯21的距离之和最小,则称点P 为点12n P P P ⋅⋅⋅,,,的一个“中位点”,例如,线段AB 上的任意点都是端点A ,B 的中位点,现有下列命题:①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是________________(写出所有的真命题的序号).52.(2011陕西)设n N +∈,一元二次方程240x x n -+=有正数根的充要条件是n = .53.(2010安徽)命题“存在x R ∈,使得2250x x ++=”的否定是 .专题一 集合与常用逻辑用语第二讲 常用逻辑用语答案部分1.C 【解析】∵33-=+a b a b ,∴22(3)(3)-=+a b a b ,∴2269-⋅+=a a b b 2296+⋅+a a b b ,又||||1==a b ,∴0⋅=a b ,∴⊥a b ;反之也成立,故选C .2.A 【解析】通解 由11||22x -<,得01x <<,所以301x <<;由31x <, 得1x <,不能推出01x <<.所以“11||22x -<”是“31x <”的充分而不必要条件,故选A .优解 由11||22x -<,得01x <<,所以301x <<,所以充分性成立; 取14x =-,则1131||4242--=>,311()1464-=-<,所以必要性不成立.故选A . 3.A 【解析】由1>a 可得11<a 成立;当11<a ,即1110--=<a a a , 解得0<a 或1>a ,推不出1>a 一定成立;所以“1a >”是“11a<”的充分非必要条件.故选A .5.B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .6.C 【解析】∵655465()()S S S S a a d ---=-=,当0d >,可得465+2S S S >;当465+2S S S >,可得0d >.所以“0d >”是“465+2S S S >” 充分必要条件,选C .7.A 【解析】由ππ||1212θ-<,得06πθ<<,所以1sin 2θ<,反之令0θ=,有1sin 2θ< 成立,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件.选A .8.B 【解析】0x ∀>,11+>x ,所以ln(1)0x +>,所以p 为真命题;若0a b >>,则22a b >,若0b a <<,则0a b <-<-,所以22a b <,所以q 为假命题.所以p q ⌝∧为真命题.选B .9.A 【解析】因为,m n 为非零向量,所以||||cos ,0⋅=<><m n m n m n 的充要条件是cos ,0<><m n .因为0λ<,则由λ=m n 可知,m n 的方向相反,,180<>= m n ,所以cos ,0<><m n ,所以“存在负数λ,使得λ=m n ”可推出“0⋅<m n ”;而0⋅<m n 可推出cos ,0<><m n ,但不一定推出,m n 的方向相反,从而不一定推得“存在负数λ,使得λ=m n ”,所以“存在负数λ,使得λ=m n ”是“0⋅<m n ”的充分而不必要条件.10.D 【解析】取0-≠a =b ,则||||0=≠a b ,|||0|0+==a b ,|||2|0-=≠a b a ,所以||||+≠-a b a b ,故由||||=a b 推不出||||+=-a b a b .由||||+=-a b a b , 得22||||+=-a b a b ,整理得0⋅=a b ,所以⊥a b ,不一定能得出||||=a b ,故由||||+=-a b a b 推不出||||=a b ,故“||||=a b ”是“||||+=-a b a b ”的既不充分也不必要条件,故选D .11.A 【解析】若直线,a b 相交,设交点为P ,则,P a P b ∈∈,又,a b αβ⊂⊂,所以,P P αβ∈∈,故,αβ相交.反之,若,αβ相交,则,a b 可能相交,也可能异面或平行.故“直线a 和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选A .12.C 【解析】由题意得,111(0)n n a a q a -=>,222121211n n n n a a a q a q ---+=+=221(1)n a q q -+,若0q <,因为1q +得符号不定,所以无法判断212n n a a -+的符号; 反之,若2120n n a a -+<,即2(1)1(1)0n a q q -+<,可得10q <-<,故“0q <”是“对任意的正整数n ,2120n n a a -+<”的必要不充分条件,故选C.13.C 【解析】命题p 是一个特称命题,其否定是全称命题.14.A 【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q成立的充分不必要条件,选A .15.B 【解析】12log (2)0211x x x +<⇔+>⇔>-,因此选B .。
2018届浙江省基于高考试题的复习资料——集合

一、集合与常用逻辑用语(一)集合一、高考考什么?[考试说明]1.了解集合、元素的含义及其关系。
2.理解集合的表示法。
3.理解集合之间包含、相等的关系。
4. 理解全集、空集、子集的含义。
5。
会求简单集合间的并集、交集.6。
理解补集的含义并会求补集.[全面解读]集合是现代数学的基础,也是高中数学最基本的概念,因而是每年高考数学的必考内容。
主要考查集合的含义、元素的特点、表示的方法等基本概念,子集、补集的概念,以及交集、并集的运算,并要求能结合其他知识的正确应用,有时也以集合为背景创设新的情景来考查学生的数学能力。
[难度系数] ★☆☆☆☆二、高考怎么考?[原题解析][2004年](1)若{1,2,3,4},{1,2},{2,3}U M N ===,则()U C M N = ( )A .{1,2,3}B .{2}C .{1,3,4}D .{4}[2005年](9)设()21f n n =+(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |()f n ∈P },Q ∧={n ∈N |()f n ∈Q },则(P ∧∩N C Q ∧)∪(Q ∧∩N C P ∧)=( )A . {0,3}B .{1,2}C . (3,4,5}D .{1,2,6,7}[2006年](1)设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=( )A .[0,2]B .[1,2]C .[0,4]D .[1,4][2008年](2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A ⋂⋃⋂= ( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >≤-或[2009年](1)设U=R,{|0}{|1}u A x x B x x C B =>=>⋂=,,则A ( )A .{|01}x x ≤<B .{|01}x x <≤C .{|0}x x <D .{|1}x x >[2010年](1) 设2{|4},{|4}P x x Q x x =<=<,则( )A .p Q ⊆B .Q P ⊆C .R p C Q ⊆D .R Q C P ⊆(10)设,,a b c 为实数,22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++.记集合{|()0,},{|()0,}.S x f x x R T x g x x R ==∈==∈若{},{}S T 分别为集合,S T 的元素个数,则系列结论不可能的是( )A .{}1S =且 {}0T =B .{}1S = 且 {}1T =C .{}2S = 且{}2T =D .{}2S =且{}3T =[2012年](1)设集合{|14}A x x =<<,集合2{|230}B x x x =--≤,则()A B R =( )A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)[2013年](2)设集合2{|2},{|340}S x x T x x x =>-=+-≤,则()R C S T =( ) A .(2,1]- B .(,4]-∞- C .(,1]-∞ D .(1,]+∞[2014年] (1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A .∅ B. }2{ C. }5{ D. }5,2{[2015年](1)已知集合2{20}P x x x =-≥,{12}Q x x =<≤,则R C P Q ⋂=( )A 。
2018年高考数学考试大纲解读 专题02 集合与常用逻辑用语 文

专题02 集合与常用逻辑用语(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算(3)能使用韦恩(Venn)图表达集合的关系及运算.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. p q (3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.1.涉及本专题的题目一般考查集合间的基本关系及运算,四种命题及其关系,结合概念考查充分条件、必要条件及全称命题、特称命题的否定及真假的判断等.2.从考查形式来看,涉及本专题知识的考题通常以选择题、填空题的形式出现,考查集合之间的关系以及概念、定理、公式的逻辑推理等.3.从考查难度来看,考查集合的内容相对比较单一,试题难度相对容易,以通过解不等式,考查集合的运算为主,而常用逻辑用语则重点考查概念的理解及推理能力.4.从考查热点来看,不等式的解法和概念、定理、公式之间的相互推理是本专题主要考查的内容,其要求不高,重在理解.考向一 元素、集合之间的关系样题1 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .10【答案】D考向二 集合的基本运算样题2(2017新课标Ⅰ文科)已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭ D .AB=R 【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 样题3 (2017新课标Ⅱ文科)设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A3样题4 (2017新课标Ⅲ文科)已知集合A ={1,2,3,4},B ={2,4,6,8},则A B 中元素的个数为 A .1 B .2 C .3 D .4【答案】B【解析】由题意可得{}2,4A B =,故A B 中元素的个数为2,所以选B.考向三 充要条件的判断样题5 (2017年高考天津卷)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 【答案】A 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分而不必要条件,故选A . 【名师点睛】本题考查充要条件的判断,从定义来看,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分而不必要条件,若B 是A 的真子集,则A 是B 的必要而不充分条件.样题6 已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则k 的取值范围是A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]【答案】B【解析】由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B.考向四 命题真假的判断样题7 (2017年高考北京卷)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________.【答案】−1,−2,−3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题.【名师点睛】解答本题时利用赋值的方式举反例进行验证,答案不唯一.样题8 已知命题021x p x ∀≥≥:,;命题q :若x y >,则22x y >.则下列命题为真命题的是A . p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨ 【答案】B考向五 特称命题与全称命题样题9 (2016浙江卷)命题“*x n ∀∈∃∈,R N ,使得2n x ≥”的否定形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x <C .*x n ∃∈∃∈,R N ,使得2n x <D .*x n ∃∈∀∈,R N ,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D .样题10 若“[0,]tan 4x x m π∀∈≤,”是真命题,则实数m 的最小值为__________________.【答案】15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题限时集训(十七) 集合与常用逻辑用语
(对应学生用书第151页)
[建议A、B组各用时:45分钟]
[A组高考题、模拟题重组练]
一、集合
1.(2015·浙江高考)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q =( )
A.[3,4) B.(2,3]
C.(-1,2) D.(-1,3]
A [P={x|x2-2x≥3}={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1},∴P∩Q={x|x≥3或x≤-1}∩{x|2<x<4}={x|3≤x<4},即P∩Q=[3,4).]
2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q =( )
A.(-1,2) B.(0,1)
C.(-1,0) D.(1,2)
A [∵P={x|-1<x<1},Q={x|0<x<2},
∴P∪Q={x|-1<x<2}.
故选A.]
3.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )
A.(-1,1) B.(0,1)
C.(-1,+∞) D.(0,+∞)
C [由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.故选C.]
4.(2016·浙江高考)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪
(∁R Q)=( )
A.[2,3] B.(-2,3]
C.[1,2) D.(-∞,-2]∪[1,+∞)
B [∵Q={x∈R|x2≥4},
∴∁R Q={x∈R|x2<4}={x|-2<x<2}.
∵P={x∈R|1≤x≤3},
∴P∪(∁R Q)={x|-2<x≤3}=(-2,3].]
5.(2015·浙江高考)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁
P)∩Q=
R
( )
A.[0,1) B.(0,2]
C.(1,2) D.[1,2]
C [由x2-2x≥0,得x≤0或x≥2,即P={x|x≤0或x≥2},所以∁R P={x|0<x<2}=(0,2).又Q={x|1<x≤2}=(1,2],所以(∁R P)∩Q=(1,2).]
6.(2014·浙江高考)设全集U={x∈N|x≥2),集合A={x∈N|x2≥5},则∁U A =( )
A.∅B.{2}
C.{5} D.{2,5}
B [因为A={x∈N|x≤-5或x≥5},
所以∁U A={x∈N|2≤x<5),故∁U A={2}.]
二、命题及其关系、充分条件与必要条件
7.(2015·浙江高考)设a ,b 是实数,则“a +b>0”是“ab>0”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
D [特值法:当a =10,b =-1时,a +b>0,ab<0,故a +b>0D ⇒/ab>0;当a =-2,b =-1时,ab>0,但a +b<0,所以ab>0D ⇒/a +b>0.故“a +b>0”是“ab>0”的既不充分也不必要条件.]
8.(2017·湖州市高三第一学期期末调研测试)已知{a n }是等比数列,则“a 2<a 4”是“{a n }是单调递增数列”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
B [若a n =(-2)n ,是等比数列,且a 2=4<a 4=16,但该数列不具有单调性,所以充分性不成立;若{a n }是单调递增的等比数列,则必有a 2<a 4,所以必要性成立,即“a 2<a 4”是“{a n }是单调递增数列”的必要不充分条件,故选B.]
9.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧
y ≥x -1,y ≥1-x ,
y ≤1,则p 是q 的( )。