北师大版八年级上学期第一次阶段考试数学试卷及参考答案(共4套)
北师大版初中数学八年级上册第一章综合测试试卷-含答案02

第一章综合测试一、选择题(每题4分,共40分)1.观察下列各组数:①7,24,25;②9,16,25;③8,15,17;④12,15,20.其中能作为直角三角形边长的组数为( ) A .4B .3C .2D .12.若正整数a ,b ,c 是直角三角形三边,则下列各组数一定还是直角三角形三边的是( ) A .1a +,1b +,1c + B .2a ,2b ,2c C .2a ,2b ,2cD .1a −,1b −,1c −3.如果三条线段a 、b 、c 满足()()2a c b c b =+−,那么这三条线段组成的三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .不能确定4.如图,在ABC △中,6AB =,10AC =,BC 边上的中线4AD =,则ABC △的面积为( )A .30B .24C .20D .485.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .106.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )A .16B .25C .144D .1697.将一个直角三角形两直角边同时扩大到原来的两倍,则斜边扩大到原来的( ) A .4倍 B .2倍 C .不变D .无法确定8.如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了( )A .0.9米B .1.3米C .1.5米D .2米9.如图,在Rt ABC △中,90B ∠=︒,以AC 为直径的圆恰好过点B ,8AB =,6BC =,则阴影部分的面积是( )A .10024π−B .10048π−C .2524π−D .2548π−10.有两棵树,一棵高10m ,另一棵高4m ,两树相距8m .一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( ) A .8m B .10m C .12mD .14m二.填空题(每题4分,共20分)11.如图,已知90C ∠=︒,12AB =,3BC =,4CD =,13AD =,则ABD ∠=________.12.已知ABC △的三边的长分别是5AB =、4BC =、3AC =,那么C ∠=________. 13.如图,一根长20cm 的吸管置于底面直径为9cm ,高为12cm 的圆柱形水杯中,吸管露在杯子外面的长度最短是________cm .14.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a ,较长的直角边长为b ,那么a b +的值为________.15.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若2AD =,4BC =,则22AB CD +=________.三.解答题(每题8分,共40分)16.如图,CD 是ABC △的中线,CE 是ABC △的高,若9AC =,12BC =,15AB =. (1)求CD 的长. (2)求DE 的长.17.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C 处,过了2秒后,小汽车行驶到B 处,测得小汽车与车速检测仪间距离为50米. (1)求BC 的长;(2)这辆小汽车超速了吗?18.如图所示,已知ABC △中,CD AB ⊥于D ,4AC =,3BC =,95DB =. (1)求CD 的长; (2)求AD 的长;(3)求证:ABC △是直角三角形.19.已知:在Rt ABC △中,90C ∠=︒,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,设ABC △的面积为S ,周长为l . (1)填表:(2)如果a b c m +−=,观察上表猜想:SL=________(用含有m 的代数式表示). (3)证明(2)中的结论.20.观察、思考与验证.(1)如图1是一个重要公式的几何解释,请你写出这个公式________;(2)如图2所示,90B D ∠=∠=︒,且B ,C ,D 在同一直线上.试说明:90ACE ∠=︒; (3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.第一章综合测试 答案解析一. 1.【答案】C【解析】解:①72242252625+==,∴能作为直角三角形边长; ②92162337252625+=≠=,∴不能作为直角三角形边长; ③82152172289+==,∴能作为直角三角形边长;④122152369202400+=≠=,∴不能作为直角三角形边长. 其中能作为直角三角形边长的组数为2. 故选:C . 2.【答案】C【解析】解:222a b c +=,()()()222222a b c ∴+=也成立,其它三个不成立,故选:C . 3.【答案】C【解析】解:()()2a c b c b =+−,222a c b ∴=−, 222a b c ∴+=,∴这三条线段组成的三角形是直角三角形. 故选:C . 4.【答案】B【解析】解:延长AD 到E ,使DE AD =,连接CE , ∵D 为BC 的中点, ∴DC BD =,在ADB △与EDC △中,AD DE ADB EDC CD BD =⎧⎪∠=∠⎨⎪=⎩, ()ADB EDC SAS ∴△≌△,6CE AB ∴==.又28AE AD ==,6AB CE ==,10AC =,222AC AE CE ∴=+,90E ∴∠=︒,则11682422ABC ACE S S CE AE ==⋅=⨯⨯=△△. 故选:B .5.【答案】A【解析】解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,即229a b +=,a-b=1,所以11[(22)()2](91)422ab a b a b =+−−=−=,即4ab =. 解法2,4个三角形的面积和为918−=; 每个三角形的面积为2; 则122ab =; 所以4ab = 故选:A . 6.【答案】B【解析】解:两个阴影正方形的面积和为13212225−=. 故选:B . 7.【答案】B【解析】解:设两直角边分别为a 、b ,由勾股定理得,斜边=扩大后的直角三角形的斜边= 故选:B . 8.【答案】B【解析】解:在Rt ACB △中,222 6.25 2.254AC AB BC =−=−=,2AC ∴=,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
八年级上学期第一次阶段考试数学试卷及参考答案(共3套,北师大版)

北师大新版八年级数学上册第一次月考试题满分:120分 考试时间:90分钟一、 选择题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A 、2,3,4 B 、1,1,2 C 、6,6,6 D 、0.3,0.4,0.52、下列二次根式中,属于最简二次根式的是( )A3、下列各式中,正确的是( )A4、若将直角三角形的三边长扩大到原来的2倍,所得到的三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、等腰三角形5、若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或8 6、以下列各组数为边长,能组成直角三角形的是( )A .8,15,17B .4,5,6C .5,8 ,7D .8,39,407、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( )A 、13B 、5C 、13或5D 、无法确定 8、4的平方的倒数的算术平方根是( )A .4B .18C .-14D .149、如果一个数的立方根是这个数本身,那么这个数是( )A 、1B 、1-C 、1±D 、0,1±10.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角的是( )72425207152024257252024257202415(A)(B)(C)(D)二、 填空题11、直角三角形两直角边分别是3cm 、4cm ,则斜边上的高的长度是 .12.13 已知05|1|=-++y x ,则y x += 。
14 直角三角形的一条直角边长为5,斜边长为13,则这个直角三角形的另一条直角边长为______________15.如果a 的平方根等于2±,那么_____=a ;16. 64 __ ____ 三、 解答题17、计算:554-516420163---+-.18、已知(a -2)的平方根是±2,(2a +b +7)的立方根是3,求(a ²+b ²)的算术平方根.19、(1)在图(120、如图,在Rt △ABC 中,∠C =90°,BC =12cm ,AB =20cm ,BD 平分∠ABC ,交AC 边于点D ,过D 作DE ⊥AB ,垂足为E ,求DE 的长.21、如图,四边形ABCD 中,DA ⊥AB , DA =AB ==1. 则∠ADC 的度数是 ,说明理由.22…如果两个含有二次根式的非零利用这种方法,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化.例如:21=222⨯=22, 231-=()()232323+-+=()222323-+=123-+=23-- (1)35分母有理化的结果是 ,761+分母有理化的结果是 ;11++n n 分母有理化的结果是 .(2)利用以上知识计算:201520141 (4)31321211++++++++八年级第一次月考(数学)试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共6小题,共18分) 1.化简:16的值为( ) A.4 B.-4 C.±4 D.162.下列四个数中,是无理数的是( )A.2πB.227 C.3-8 D.23.“1649的平方根是±47”用数学式表示为( )=±47 B.= 47 =±47 474.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A 的面积是( ) A.360 B.164 C.400 D.605.已知直角三角形两边的长分别为5、12,则第三边的长为( )A.13B.60C.17D.136.如图数轴上有O ,A ,B ,C ,D哪一线段上( )A.OAB.ABC.BCD.CD二、填空题(本大题共6小题,共18分)7.试写出两个无理数 ______ 和 ______ ,使它们的和为-6. 8.化简:|3.14-π|=____________.9.面积为37cm 2的正方体的棱长为 ______ cm .10. ______ 时,这三条线段能围成一个直角三角形.11.观察下列各式:…,则依次第五个式子是 ______ .12.如图,在长方形ABCD 中,边AB 的长为3,AD 的长为2,AB 在数轴上,以原点A 为圆心,AC 的长为半径画弧,交负半轴于一点,则这个点表示的实数是______ .三、计算题(本大题共5小题,共30分)13.14.计划用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?16.如图所示是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.19.如图所示,一根长2.5m的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.如果木棍的顶端A沿墙下滑0.4m,那么木棍的底端B向外移动多少距离?20、如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直接跳跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树高.21. 在边长为1五、解答题(本大题共1小题,共10分)22. a,b,c为三角形ABC的三边,且满足a2+b2+c2-10a-24b-26c +338=0,试判别这个三角形的形状.六、解答题(本大题共1小题,共12分)23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(2)如果a+b-c=m,观察上表猜想:S= ______ ,(用含有m的代数式表示);l(3)说出(2)中结论成立的理由.初二年级第一次月考(数学)试卷答案和解析【答案】1.A2.A3.C4.A5.D6.C7.π-2;-π-48.π-3.149.10.2或411.6×=12.1-13.解:原式=2-8+=-.14.解:设所需要的正方形地板砖的边长为a米,依题意,得100a2=16,即a2=0.16,解得a=0.4.答:所需要的正方形地板砖的边长为0.4米.15.解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cm CD=12m,D A=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).16.解:如右图所示,连接AC,∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD=S△ABC-S△ACD=(24×10-6×8)=96.答:这块地的面积是96平方米.17.解:∵每一块地砖的长度为20cm∴A、B所在的长方形长为20×4=80cm,宽为20×3=60cmAB==100又B、C所在的长方形长为20×12=240cm,宽为20×5=100cmBC==260,AB+BC=100+260=360cm.18. 解:根据题意得3a+b﹣1=27,2a+1=25,解得a=12,b=﹣8,所以a+b=12﹣8=4,而4的平方根为±=±2,所以a+b的平方根为±2.19.解:在直角△ABC中,已知AB=2.5m,BO=0.7m,则由勾股定理得:AO==2.4m,∴OC=2m,∵直角三角形CDO中,AB=CD,且CD为斜边,∴由勾股定理得:OD==1.5m,∴BD=OD-OB=1.5m-0.7m=0.8m;20. 解:由题意知,BC+CA=BD+DA,∵BC=10m,AC=20m∴BD+DA=30m,设BD=x,则AD=30-x,在直角三角形ADC中,(10+x)2+202=(30-x)2,解得x=5,10+x=15.答:这棵树高15m.21.解:如图所示,S△ABC=2×4-×1×2-×1×3-×1×4=8-1--2=.22. 解:由a2+b2+c2-10a-24b-26c +338=0,得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,即:(a-5)2+(b-12)2+(c-13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.23. 解:(1)∵Rt△ABC的面积S=ab,周长l=a+b+c,故当a、b、c三边分别为3、4、5时,S=×3×4=6,l=3+4+5=12,故=,同理将其余两组数据代入可得为1,.∴应填:,1,(2)通过观察以上三组数据,可得出.(3)∵l=a+b+c,m=a+b-c,∴lm=(a+b+c)(a+b-c)=(a+b)2-c2=a2+2ab+b2-c2.∵∠C=90°,∴a2+b2=c2,s=ab,∴lm=4s.即.(1)Rt△ABC的面积S=ab,周长l=a+b+c,分别将3、4、5,5、12、13,8、15、17三组数据代入两式,可求出的值;(2)通过观察以上三组数据,可得出:=;(3)根据lm=(a+b+c)(a+b-c),a2+b2=c2,S=ab可得出:lm=4s,即=.本题主要考查勾股定理在解直角三角形面积和周长中的运用.八年级数学上册第一次月考试题一、选择题(10小题,每题3分,共30分)1.在实数722-、0、8-、-1、2-π、∙3.0中,无理数的个数是( )A.2个B.3个C.4个D.5个2.以直角三角形的两直角边为边长所作正方形的面积分别是9和16,则斜边长为( )A .25B .5C .15D .225 3.如果三角形的三边5,m ,n 满足()()25m n m n +-=,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定4、下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C. 16的立方根是316D. 0.01的立方根是0.000001 5.若一个数的立方根等于这个数的算术平方根,则这个数是( ) A .0 B .0和1 C .1 D .±1和06. 下列计算正确的是( )A 、20=102B 、632=⋅C 、224=- D3=- 7. 若a a =-2)3(-3,则a 的取值范围是( ). A. a >3 B. a ≥3 C. a <3 D. a ≤3 8. 若代数式21--x x 有意义,则x 的取值范围是 ( ) A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且9、 如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( ) A 、11 B 、1.4 C 、3 D 、2 10.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于( ) A.9 B.25 C.50 D.16 一、 填空题(共10小题,每小题3分,共30分) 11、81的算数平方根是 ,(第10题)CABS 1S 212、1-2的相反数是_______,绝对值是__________.13、一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________. 14、计算:(1)94= ,(2)36427-= .15、比较213-________31(填“<”“>”“=”).16、如果3+x =2,那么(x +3)2=______.17、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= .18、把一根12厘米长的铁丝,从一端起顺次截下3厘米和5厘米的两根铁 丝,用这三条铁丝摆成的三角形是 .19、一个三角形三边分别为8,15,17,那么最长边上的高为 .20、已知2|6||8|(10)0x y z -+-+-=,则由x ,y ,z 为三边的三角形是 . 四、解答题(共40分)21、计算题(每小题5分,共15分) 1)3612⨯ 2)()()131381672-++-3) 10101540+- 22、(本小题6分)如图3,在四边形ABCD 中,∠BAD =∠DBC =90°,若AD =4cm ,AB =3cm ,BC =12cm ,求CD 的长及四边形ABCD 的面积.AC23、(本小题6分)已知a 是19的整数部分,b 是19的小数部分,求b a 2的值。
2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。
2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
北师大版八年级上册数学 第1-4章 单元测试卷 4套(Word版,含答案)

北师大版八年级上册数学第一章勾股定理单元测试卷(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 以下列各组数据为边长作三角形,其中能组成直角三角形的是()A.7、24、25B.36、12、13C.4、6、8D.3、5、32. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或253. 如图所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.1B.0.5C.0.6D.0.84. 用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2B.c2=a2+2ab+b2C.c2=a2−2ab+b2D.c2=(a+b)2.5. 如图,以Rt△ABC的三边分别向外作正方形,则以AC为边的正方形的面积S2等于()A.6B.26C.4D.246. 下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,107. 如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cmB.14cmC.20cmD.24cm8. 如图,在一块平地上,停在一辆大客车前9m处有一棵大树.在一次强风中,这棵树从离地面6m处正对大客车方向折断倒下,若倒下部分的长是10m,则大树倒下时会碰到客车吗?()A.不会B.可能会C.一定会D.无法确定9. 有长度分别为5,7,9,12,13,15,16,20,24,25的木棒,用它来摆成直角三角形,可以重复使用,问可摆成不同的直角三角形的个数为()A.2个B.3个C.4个D.5个10. 如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x−y=2,③2xy+4=49,④x+y=9.其中说法正确的是()A.①②B.①②③C.①②④D.①②③④二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 在△ABC中,若a2=b2−c2,则△ABC是________三角形,________是直角;若a2<b2−c2,则∠B是________.12. 一个圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠绕一圈彩带回到A点,则彩带最少用________厘米.(接口处重合部分忽略不计)13. 如图,把长、宽、对角线的长分别是a、b、c的矩形沿对角线剪开,与一个直角边长为c的等腰直角三角形拼接成右边的图形,用面积割补法能够得到的一个等式是________.14. 如图,一个上方无盖的长方体盒子紧贴地面,一只蚂蚁由盒外A处出发,沿着盒子面爬行到盒内的点B处,已知,AB=9,BC=9,BF=6,这只蚂蚁爬行的最短距离是________.15. 如图,起重机吊运物体,∠ABC=90∘.若BC=5m,AC=13m,则AB=________m.16. 如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm.17. 如图.是用4个全等的直角三角形和一个小正方形镶嵌而成的正方形图案,已知大正方形的面积是49,小正方形的面积为1,若用a、b表示直角三角形的两条直角边(a> b),则(a+b)2=________.18. 如图,长方体的长、宽、高分别是3cm、1cm、6cm,如果一只小虫从点A开始爬行,经过2个侧面爬行到另一个侧棱的中点B处,则所爬行的最短的长度为________.三、解答题(本题共计7 小题,共计66分,)19. 如图,一只蚂蚁沿边长是3的正方体表面从顶点A爬到顶点B,求它走过的最短路程,并画出示意图.20. 如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9.(1)求CD,AB的长;(2)求证:△ABC是直角三角形.21. 已知,如图,在四边形ABCD中,∠ABC=90∘,CD⊥AD,AD2+CD2=2AB2,求证:AB=BC.22. 如图,两个直角三角形的直角边a,b在同一直线上,斜边为c,请利用三角形和梯形面积公式验证勾股定理.23. 如图,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)24. 消防队员进行消防演练,在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12m,如图,即AD=BC=12m,此时建筑物中距地面12.8m高的P处有一被困人员需要救援,已知消防云梯车的车身高AB是3.8m,问此消防车的云梯至少应伸长多少米?25. 如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:A、72+242=252,能构成直角三角形;B、122+132≠362,不能构成直角三角形;C、42+62≠82,不能构成直角三角形;D、32+32≠52,不能构成直角三角形;故选A.2.【答案】D【解答】解:分两种情况:①3,4都为直角边,由勾股定理得,第三边长是√42+32=5,∴ 第三边长的平方为25.②3为直角边,4为斜边,由勾股定理得,第三边长是√42−32=√7,∴ 第三边长的平方是7.故选D.3.【答案】B【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC=√AB2−BC2=√2.52−1.52=2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC=√DE2−CD2=√2.52−22=1.5米,故AE=AC−CE=2−1.5=0.5米.故选B.4.【答案】A【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b−a,则有c2=1ab×4+(b−a)2,整理得:c2=a2+b2.故选A.5.【答案】C【解答】∴ △ABC是直角三角形,∴ AC2+BC2=AB2,即S1+S2=S3,∴ S2=S3−S1=5−1=4.6.【答案】A【解答】解:A,22+32≠42,不能构成直角三角形,所以不是勾股数,故符合题意;B,32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C,52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D,62+82=102,能构成直角三角形,所以是勾股数,故不符合题意.故选A.7.【答案】D【解答】解:将圆柱侧面展开,如图,过ED作A的对称点A′,连接A′B,则A′B即为最短距离,则AD=A′D=4cm.由题意得EF=16cm,BF=CG=4cm,A′B=20cm∴ A′C=16−4+4=16(cm),∴ BC=√A′B2−A′C2=√202−162=12(cm),∴ 底面周长=2BC=24(cm).故选D.8.【答案】A【解答】如图所示,AB=10米,AC=6米,根据勾股定理得,BC=√AB2−AC2=√102−62=8米<9米.9.【答案】D【解答】解:∴ 52+122=132,72+242=252,92+122=152,122+162=202,152+202= 252,∴ 可摆成不同的直角三角形5个.故选D.10.【答案】B【解答】解:①大正方形的面积是49,则其边长是7,显然,利用勾股定理可得x2+y2=49,故选项①正确;②小正方形的面积是4,则其边长是2,根据图可发现y+2=x,即x−y=2,故选项②正确;③根据图形可得四个三角形的面积+小正方形的面积=大正方形的面积,即4×12xy+4= 49,化简得2xy+4=49,故选项③正确;④{x2+y2=492xy+4=49,则x+y=√94,故此选项不正确.故选B.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】直角,∠B,钝角【解答】解:∴ a2=b2−c2,∴ a2+c2=b2,∴ 这个三角形是直角三角形,b是最长边,∴ b边所对的∠B为直角.故答案为:直角;∠B;在△ABC中,∴ a2<b2−c2,∴ a 2+c 2<b 2, 由余弦定理可得:cos B =a 2+c 2−b 22ac<0,∴ ∠B 为钝角, 故答案为:钝角. 12. 【答案】10√2【解答】解:由两点间直线距离最短可知,圆锥侧面展开图AA′最短, 由题意可得出:OA =OA′=10cm , AA ′̂=nπ×10180=5π, 解得:n =90∘, ∴ ∠AOA′=90∘,∴ AA′=√OA 2+OA ′2=10√2(cm),故答案为:10√2.13. 【答案】a 2+b 2=c 2【解答】解:此图可以这样理解,有三个Rt △其面积分别为 12ab ,12ab 和 12c 2.还有一个直角梯形,其面积为 12(a +b)(a +b).由图形可知:12(a +b)(a +b)=12ab +12ab +12c 2,整理得(a +b)2=2ab +c 2,a 2+b 2+2ab =2ab +c 2, ∴ a 2+b 2=c 2.故答案为:a 2+b 2=c 2.14.【答案】15【解答】解:如图所示,AB′=√92+(6+6)2=15.故答案为:15.15.【答案】12【解答】解:由题意可得:AB=√AC2−BC2=12(m).故答案为:12.16.【答案】15【解答】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连结A′C交EH于P,连结AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∴ AE=A′E,A′P=AP,∴ AP+PC=A′P+PC=A′C.×18cm=9cm,A′Q=12cm−4cm+4cm=12cm,∴ CQ=12在Rt△A′QC中,由勾股定理得:A′C=√122+92=15(cm),故答案为:15.17.【答案】97【解答】利用勾股定理得a2+b2=49;利用小正方形的边长得到a−b=1,则(a−b)2=1,可得:2ab=48,所以(a+b)2=49+48=97,18.【答案】5cm【解答】解:分为三种情况:①如图将正面与右面展开在同一平面,连接AB,由勾股定理得:AB=√(3+1)2+32=5(cm);②如图将下底面与后面展开在同一平面,连接AB,由勾股定理得:AB=√(3+1)2+32=5(cm);③如图将下底面与右面展开在同一平面,连接AB,由勾股定理得:AB=√(3+3)2+12=√37cm>5cm,即从A处爬到B处的最短路程是5cm.故答案为5cm.三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:如图所示:将正方体展开,连接A、B,根据两点之间线段最短,AB=√32+62=3√5.【解答】解:如图所示:将正方体展开,连接A、B,根据两点之间线段最短,AB=√32+62=3√5.20.【答案】(1)解:∴ 在Rt△BCD中,BC=15,BD=9,∴ CD=√BC2−BD2=√152−92=12.在Rt△ADC中,AC=20,CD=12,∴ AD=√AC2−CD2=√202−122=16.∴ AB=AD+DB=16+9=25.(2)证明:∴ AB=25,AC=20,BC=15,∴ AB2=252=625,AC2+BC2=202+152=625,∴ AB2=AC2+BC2,∴ △ABC是直角三角形.【解答】(1)解:∴ 在Rt△BCD中,BC=15,BD=9,∴ CD=√BC2−BD2=√152−92=12.在Rt△ADC中,AC=20,CD=12,∴ AD=√AC2−CD2=√202−122=16.∴ AB=AD+DB=16+9=25.(2)证明:∴ AB=25,AC=20,BC=15,∴ AB2=252=625,AC2+BC2=202+152=625,∴ AB2=AC2+BC2,∴ △ABC是直角三角形.21.【答案】证明:∴ ∠ABC=90∘,∴ AB2+BC2=AC2,∴ CD⊥AD,∴ ∠ADC=90∘,∴ AD2+CD2=AC2,∴ AD2+CD2=2AB2,∴ AC2=2AB2,∴ AB2+BC2=2AB2,∴ AB2=BC2,∴ AB=BC.【解答】证明:∴ ∠ABC=90∘,∴ AB2+BC2=AC2,∴ CD⊥AD,∴ ∠ADC=90∘,∴ AD2+CD2=AC2,∴ AD2+CD2=2AB2,∴ AC2=2AB2,∴ AB2+BC2=2AB2,∴ AB2=BC2,∴ AB=BC.22.【答案】解:由图可得,12×(a+b)(a+b)=12ab+12c2+12ab,整理得,a 2+2ab+b22=2ab+c22,∴ a2+2ab+b2=2ab+c2,∴ a2+b2=c2.【解答】解:由图可得,12×(a+b)(a+b)=12ab+12c2+12ab,整理得,a 2+2ab+b22=2ab+c22,∴ a2+2ab+b2=2ab+c2,∴ a2+b2=c2.23.【答案】解:将圆柱体展开,连接A、B,根据两点之间线段最短,根据题意可得:BC=24cm,AC是圆周的一半,∴ AC=12×2×π×6=18cm,∴ AB=√AC2+BC2=30cm,∴ 它需爬行的最短路程约是60cm.【解答】解:将圆柱体展开,连接A、B,根据两点之间线段最短,根据题意可得:BC=24cm,AC是圆周的一半,∴ AC=12×2×π×6=18cm,∴ AB=√AC2+BC2=30cm,∴ 它需爬行的最短路程约是60cm.24.【答案】解:由题意可知:AB=CD=3.8m,AD=12m,PC=12.8m,∠ADP=90∘,∴ PD=PC−CD=9m,在Rt△ADP中,AP=√AD2+PD2=15m.答:此消防车的云梯至少应伸长15米.【解答】解:由题意可知:AB=CD=3.8m,AD=12m,PC=12.8m,∠ADP=90∘,∴ PD=PC−CD=9m,在Rt△ADP中,AP=√AD2+PD2=15m.答:此消防车的云梯至少应伸长15米.25.【答案】解:(1)△ABC是直角三角形;理由如下:∴ AC2+BC2=1602+1202=40000,AB2=2002=40000,∴ AC2+BC2=AB2,∴ △ABC是直角三角形,∠ACB=90∘;(2)甲方案所修的水渠较短;理由如下:∴ △ABC是直角三角形,∴ △ABC的面积=12AB⋅CH=12AC⋅BC,∴ CH=AC⋅BCAB =160×120200=96(m),∴ CH⊥AB,∴ ∠AHC=90∘,∴ AH=√AC2−CH2=√1602−962=128(m),∴ BH=AB−AH=72m,∴ AC+BC=160m+120m=280m,CH+AH+BH=96m+200m=296m,∴ AC+BC<CH+AH+BH,∴ 甲方案所修的水渠较短.【解答】解:(1)△ABC是直角三角形;理由如下:∴ AC2+BC2=1602+1202=40000,AB2=2002=40000,∴ AC2+BC2=AB2,∴ △ABC是直角三角形,∠ACB=90∘;(2)甲方案所修的水渠较短;理由如下:∴ △ABC是直角三角形,∴ △ABC的面积=12AB⋅CH=12AC⋅BC,∴ CH =AC⋅BC AB=160×120200=96(m),∴ CH ⊥AB , ∴ ∠AHC =90∘,∴ AH =√AC 2−CH 2=√1602−962=128(m), ∴ BH =AB −AH =72m ,∴ AC +BC =160m +120m =280m ,CH +AH +BH =96m +200m =296m , ∴ AC +BC <CH +AH +BH , ∴ 甲方案所修的水渠较短.北师大版八年级上册数学 第二章 实数 单元测试卷一、选择题(每小题3分,共30分) 1.下列四个选项中,属于无理数的是 ( ) A .3.1415926 B .3.21C .√93D .-√1162.下列二次根式中,是最简二次根式的是 ( ) A .√8B .√10C .√16D .√273.下列说法不正确的是 ( ) A .125的平方根是±15B .(-4)3的立方根是-4C .√4的算术平方根是2D .-√273=-34.下列计算正确的是 ( ) A .√52=±5 B .√2÷√3=√63 C .2√3×2√3=4√3 D .√2+√3=√55.估计√153的大小在 ( ) A .2与3之间 B .3与4之间C .4与5之间D .5与6之间6.设a=(-√3)2,b=√(-3)2,则a ,b 的大小关系是 ( ) A .a=bB .a>bC .a<bD .a+b=07.下列各实数比较大小,其中正确的是 ( ) A .√7<2.5B .√16<2.2C .1π>√5D .√3-13<13 8.已知a ,b 互为倒数,c ,d 互为相反数,则-√ab 3+√c +d +1的平方根为 ( ) A .1B .-1C .0D .±19.若x+y=3+2√2,x-y=3-2√2,则√x 2-y 2的值为 ( ) A .4√2B .1C .6D .3-2√210.已知a ,b ,c 在数轴上的对应点的位置如图所示,则化简√a 2-|a+c|+√(c -b )2的结果是 ( )A .2c-bB .-bC .bD .-2a-b二、填空题(每小题4分,共24分) 11.计算:|√3-2|= .12.已知a=√3,则a 的倒数是 .13.已知√2.021≈1.422,√20.21≈4.496,则√2021≈ .14.√643的平方根是 .15.有边长为5厘米的正方形和长为18厘米,宽为8厘米的长方形,现要制作一个面积为这两个图形面积之和的正方形,则此正方形的边长应为 厘米.16.已知y=√(x -4)2-x+5,当x 分别取1,2,3,…,2021时,所对应y 值的总和是 . 三、解答题(共46分)17.(4分)计算:(1)√24×4√12÷√48;(2)3√20-√45+10√15.18.(4分)计算:(1)(3-√7)(3+√7)+√2(2-√2);(2)2√13×√9-√12+√78-13.19.(6分)(1)已知x=√3+1,y=√3-1,求x2+2xy+y2的值;(2)已知x=√2-1,求x2+3x-1的值.20.(6分)站在海拔为h米的地方看到的水平距离为d米,它们之间的关系可近似地表示为.d=8√ℎ5(1)当h=1000时,求d的值;(2)某登山者从海拔n米处登上海拔2n米处的山顶(n>0),那么他看到的水平距离是原来的多少倍?21.(8分)阅读下面的文字,解答问题.例如:因为√4<√7<√9,即2<√7<3,所以√7的整数部分为2,小数部分为√7-2.请解答:(1)√17的整数部分是,小数部分是;(2)已知:5-√17的小数部分是m,6+√17的小数部分是n,且(x+1)2=m+n,请求出满足条件的x 的值.22.(8分)图①是由8个同样大小的正方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及边长;(3)把正方形ABCD放到数轴上,如图②,使得点A与表示-1的点重合,那么点D在数轴上表示的数为.23.(10分)先观察下列各式,再回答问题:√1+112+122=112;√1+122+132=116;√1+132+142=1112.(1)根据上面三个等式提供的信息,请猜想√1+142+152的结果,不用验证;(2)按照上面各等式反映的规律,试写出用含n(n为正整数)的式子表示的等式,不用验证.答案1.C2.B3.C4.B5.A6.A7.D8.C9.B10.A [解析] 根据数轴可以得到a<b<0<c ,且|a|>|c|,则a+c<0,c-b>0,则原式=-a+(a+c )+(c-b )=-a+a+c+c-b=2c-b. 11.2-√3 12.√3313.44.96 14.±2 15.13 16.203317.解:(1)原式=2√6×4×√22÷4√3=8√3÷4√3=2. (2)原式=6√5-3√5+2√5=5√5. 18.解:(1)原式=9-7+2√2-2=2√2. (2)原式=2×√33×3-2√3-12=-12. 19.解:(1)当x=√3+1,y=√3-1时, 原式=(x+y )2 =(√3+1+√3-1)2 =(2√3)2 =12.(2)当x=√2-1时, 原式=(√2-1)2+3(√2-1)-1 =2+1-2√2+3√2-3-1 =√2-1.20.解:(1)当h=1000时,d=8√10005=80√2.(2)因为8√2n5÷8√n5=√2,所以他看到的水平距离是原来的√2倍. 21.[解析] (1)因为√16<√17<√25, 所以4<√17<5,所以√17的整数部分是4,小数部分是√17-4.解:(1)4√17-4(2)因为5-√17的小数部分是m,6+√17的小数部分是n,所以m=5-√17,n=6+√17-10=√17-4,所以m+n=1,所以(x+1)2=1,所以x+1=1或x+1=-1,则x=0或x=-2.22.解:(1)√643=4.因此,这个魔方的棱长为4.(2)因为魔方的棱长为4,所以每个小正方体的棱长为2.所以阴影部分的面积为12×2×2×4=8,边长为√8=2 √2.因此,阴影部分的面积是8,边长是2√2.(3)-1-2√223.解:(1)观察可得√1+142+152=1120.(2)√1+1n2+1(n+1)2=1+1n(n+1)(n为正整数).北师大版八年级上册数学第三章位置与坐标单元测试卷一、选择题(每小题3分,共30分)1.下列数据不能确定物体位置的是()A.3排6号B.南大街27号C.北偏东60°D.东经120°,北纬37°2.在平面直角坐标系中,点(-3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(3,-2)关于y轴对称的点的坐标是()A.(-3,-2)B.(3,2)C.(-3,2)D.(-3,1)4.若点P位于第二象限内,且到x轴的距离为2个单位长度,到y轴的距离为3个单位长度,则点P的坐标是()A.(2,-3)B.(2,3)C.(-3,2)D.(-3,-2)5.如图是象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为()A.(-3,3)B.(3,2)C.(1,3)D.(0,3)6.如图,将正五边形ABCDE放入某平面直角坐标系中,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是()A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)7.在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(-1,4)且AB=4,则端点B的坐标是()A.(-5,4)B.(3,4)C.(-1,0)或(-5,4)D.(-5,4)或(3,4)8.已知点A(3a+5,a-3)在第一、三象限的角平分线上,则a的值为()A.-5B.-4C.-3D.-29.在平面直角坐标系中,已知点A(-2,3),B(2,-1),经过点A的直线a∥x轴,C是直线a上的一个动点,当线段BC的长度最短时,点C的坐标为()A.(0,-1)B.(-1,-2)C.(-2,-1)D.(2,3)10.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…,依次扩展下去,则P2021的坐标为()A.(505,-505)B.(504,504)C.(-506,505)D.(506,505)二、填空题(每小题4分,共24分)11.教室里,王东的座位在3排4列,简记为(3,4),张三的座位在5排2列,可简记为.12.已知第三象限内的点P(x,y)的坐标满足|x|=5和y2=9,则点P的坐标是.13.若点M(a+3,a-2)在y轴上,则点M的坐标是.14.如图,用方位角和距离表示火车站相对于仓库的位置是.15.如图所示,在直角坐标系中,已知△OBC的顶点O(0,0),B(-8,0),且∠OCB=90°,OC=BC,则点C关于y轴的对称点C'的坐标是.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②○(a,b)=(-a,-b);③Ω(a,b)=(a,-b).按照以上变换可得△(○(1,2))=(1,-2),则○(Ω(3,4))=.三、解答题(共46分)17.(6分)图是某市部分地区的示意图,请你建立适当的直角坐标系,并写出图中各地点相应的坐标.(图中每个小正方形的边长均为1)18.(6分)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1的各顶点坐标.19.(8分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位长度的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为B(-2,-1),解答以下问题:(1)在图中建立平面直角坐标系;(2)若体育馆的坐标为C(1,-3),食堂的坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.20.(8分)已知点P(2m-6,m+2).(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大6,则点P在第几象限?(3)若点P和点Q都在过点A(2,3)且与x轴平行的直线上,AQ=3,求点P和点Q的坐标.21.(8分)如图所示,在平面直角坐标系中,已知点A(0,1),B(2,0),C(4,3).(1)在平面直角坐标系中画出△ABC,△ABC的面积是;(2)若点D与点C关于y轴对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.22.(10分)对于平面直角坐标系xOy中的点A(x,y),给出如下定义:若存在点B(x±a,y±a)(a为正数),则称点B为点A的等距点.例如:如图,对于点A(1,1),存在点B(3,3),点C(-1,3),则点B,C 分别为点A的等距点.(1)若点A的坐标是(0,1),写出当a=4时,点A在第一象限内的等距点的坐标;(2)若点A的等距点B的坐标是(-3,1),求当点A的横、纵坐标相同时点A的坐标.答案1.C2.B3.A[解析] 点(a,b)关于y轴对称的点的坐标为(-a,b).4.C5.C6.C7.D[解析] 由线段AB∥x轴,端点A的坐标是(-1,4),得端点B的纵坐标是4.由AB=4,得点B的横坐标为-5或3,所以点B的坐标为(-5,4)或(3,4).故选D.8.B9.D10.C[解析] 由规律可得2021÷4=505……1,所以点P2021在第二象限.因为点P1(-1,0),点P5(-2,1),点P9(-3,2),点P13(-4,3),所以点P2021(-506,505).故选C.11.(5,2)12.(-5,-3)[解析] 因为点P在第三象限,所以x<0,y<0.又因为P(x,y)满足|x|=5,y2=9,所以x=-5,y=-3,故点P的坐标是(-5,-3).13.(0,-5)[解析] 因为点M(a+3,a-2)在y轴上,所以a+3=0,即a=-3,所以a-2=-5,所以点M的坐标是(0,-5).14.北偏东70°方向,距离仓库50 km15.(4,4)16.(-3,4)17.解:(答案不唯一)建立如图所示的直角坐标系,则各地点相应的坐标为教育局(-2,3),苏果超市(-1,1),怡景湾酒店(-4,-2),同仁医院(2,-3).18.解:由图可得A(-3,2),B(-4,-3),C(-1,-1).△A1B1C1如图所示,A1(3,2),B1(4,-3),C1(1,-1).19.解:(1)建立平面直角坐标系如图所示.(2)体育馆和食堂的位置如图所示.(3)如图所示.四边形ABCD 的面积=4×5-12×3×3-12×2×3-12×1×3-12×1×2=20-4.5-3-1.5-1=10.20.[解析] (1)因为点P 在y 轴上, 所以2m-6=0,解得m=3,所以m+2=5, 所以点P 的坐标为(0,5). 解:(1)(0,5)(2)根据题意得2m-6+6=m+2,解得m=2,所以2m-6=-2,m+2=4, 所以点P 的坐标为(-2,4), 所以点P 在第二象限.(3)因为点P 和点Q 都在过点A (2,3)且与x 轴平行的直线上, 所以点P 和点Q 的纵坐标都为3, 所以m+2=3,解得m=1,所以2m-6=-4, 所以点P 的坐标为(-4,3).因为AQ=3,所以点Q 的横坐标为-1或5, 所以点Q 的坐标为(-1,3)或(5,3). 21.解:(1)如图所示.△ABC 的面积为3×4-12×1×2-12×2×4-12×2×3=4.故填4. (2)(-4,3)(3)因为P 为x 轴上一点,△ABP 的面积为4,所以12BP ·1=4,所以BP=8,所以点P 的横坐标为2+8=10或2-8=-6. 故点P 的坐标为(10,0)或(-6,0).22.解:(1)点A 在第一象限内的等距点的坐标为(4,5). (2)设点A 的坐标为(x ,x ).根据题意,得x+a=-3,x-a=1或x-a=-3,x+a=1,则x=-1,a=-2(舍去)或x=-1,a=2,所以x=-1,所以点A 的坐标为(-1,-1).北师大版八年级上册数学第四章一次函数单元测试卷一、选择题(每小题3分,共30分)1.在下列各图象中,y不是x的函数的是()2.若关于x的函数y=(a-2)x+b是正比例函数,则a,b应满足的条件是()A.a≠2B.b=0C.a=2且b=0D.a≠2且b=03.已知正比例函数y=kx(k≠0)的图象过点(2,3),把正比例函数y=kx(k≠0)的图象平移,使它过点(1,-1),则平移后的函数图象大致是()4.若函数y=kx-4的函数值y随x的增大而增大,则k的值可能是()A.-4B.-1C.0D.325.点A(x1,y1)和点B(x2,y2)均在直线y=kx+b上,且k>0,若x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1与y2的大小不确定6.下列问题中,两个变量之间成正比例函数关系的是()A.正方形面积S与边长a之间的关系B.等腰三角形的周长为16 cm,底边长y(cm)与腰长x(cm)之间的关系C.铅笔每支2元,购买铅笔的总价y(元)与购买支数n之间的关系D.小明进行100 m短跑训练,跑完全程所需时间t(s)与速度v(m/s)之间的关系7.有一长为5 m,宽为2 m的长方形木板,现要在长边上截去长为x m的一部分(如图),则剩余木板的面积y(m2)与x(m)(0≤x≤5)之间的关系式为()A.y=2xB.y=5xC.y=10-2xD.y=10-x8.弹簧原长(不挂重物)15 cm,弹簧总长l(cm)与所挂重物质量x(kg)在弹性限度内的关系如下表所示:弹簧总长l(cm)1617181920重物质量x(kg)0.51.01.52.02.5当重物质量为5 kg(在弹性限度内)时,弹簧总长l是()A.22.5 cmB.25 cmC.27.5 cmD.30 cm9.在同一直角坐标系中,一次函数y=kx+b(k≠0)与y=-bx+k(b≠0)的图象大致是()10.甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60 km/hB.乙车的平均速度为100 km/hC.乙车比甲车先到B城D.乙车比甲车先出发1 h二、填空题(每小题4分,共24分)11.当m=时,函数y=(m+1)x m2+5是关于x的一次函数.12.将正比例函数y=2x的图象向上平移2个单位,所得直线不经过第象限.13.已知直线y=ax+b如图,则关于x的方程ax+b=1的解为x=.14.已知A地在B地正南方3千米处,甲、乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(时)之间的函数关系图象如图中射线OC,ED所示,当他们行走3小时后,他们之间的距离为千米.x+3交x轴于点A,交y轴于点B,以点A为圆心,AB 15.如图,在平面直角坐标系中,直线y=-34长为半径画弧,交x轴的负半轴于点C,则直线BC的函数表达式为.16.如图,在平面直角坐标系中,P是正比例函数y=x图象上的一点,点A的坐标为(0,1),点B 的坐标为(4,1),当PB+P A取最小值时,点P的坐标为.三、解答题(共46分)17.(6分)已知一次函数y=mx+n的图象如图所示.(1)求m,n的值;(2)在平面直角坐标系内画出函数y=nx+m的图象.18.(6分)某气象研究小组为了解某地某海拔高度处气温t(℃)与相应海拔高度h(km)的关系,测得的数据如下表:海拔高度h(km)01234…气温t(℃)20151050…(1)由表格中的规律,请写出气温t与海拔高度h之间的关系式;(2)求海拔高度6 km处的气温;(3)当海拔高度为多少时,气温是-20 ℃.19.(8分)已知直线y=(1-3k)x+2k-1.(1)当k为何值时,直线过原点?(2)当k为何值时,直线与y轴的交点坐标是(0,-2)?(3)当k为何值时,直线与直线y=-3x+5平行?(4)当k=-1时,y的值随x值的变化如何变化?20.(8分)如图是某景区每日利润y1(元)与当天游客人数x(人)的函数图象.为了吸引游客,该景区决定改革,改革后每张票价减少20元,运营成本减少800元.设改革后该景区每日利润为y2(元).(注:每日利润=票价收入-运营成本)(1)解释点A的实际意义:;(2)分别求出y1,y2关于x的函数表达式;(3)当游客人数为多少人时,改革前的日利润与改革后的日利润相等?21.(8分)某生态体验园推出了甲、乙两种消费卡,设入园次数为x(次)时所需费用为y(元),选择这两种卡消费时,y与x的函数关系如图所示,解答下列问题:(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)请根据入园次数确定选择哪种卡消费比较合算.22.(10分)如图,直线y=-x-4分别交x轴和y轴于点A和点C,点B(0,2)在y轴上,作直线AB,P 为直线AB上一动点.(1)直线AB的函数表达式为;(2)若S△APC=S△AOC,求点P的坐标;(3)当∠BCP=∠BAO时,求直线CP的函数表达式.答案1.C2.D3.D4.D5.A[解析] 因为在y=kx+b中,k>0,所以y随x的增大而增大.所以当x1>x2时,y1>y2.6.C7.C8.B9.C10.D11.112.四13.4[解析] 根据图象,知当y=1时,x=4,即ax+b=1时,x=4.所以方程ax+b=1的解为x=4.14.1.515.y=3x+316.(1,1)17.解:(1)因为此函数图象过点(0,-2)和(1,0),所以n=-2.将(1,0)代入y=mx-2中,得0=m-2,解得m=2.即m=2,n=-2.(2)把m=2,n=-2代入y=nx+m中,得y=-2x+2.图象如图所示.18.解:(1)t=-5h+20.(2)当h=6时,t=-5×6+20=-10,即海拔高度6 km处的气温是-10 ℃.(3)当t=-20时,-20=-5h+20,解得h=8,即当海拔高度为8 km时,气温是-20 ℃..19.解:(1)因为直线y=(1-3k)x+2k-1经过原点,所以2k-1=0,且1-3k≠0,解得k=12(2)因为直线y=(1-3k)x+2k-1经过点(0,-2),.所以2k-1=-2,且1-3k≠0,解得k=-12(3)因为直线y=(1-3k)x+2k-1平行于直线y=-3x+5,.所以1-3k=-3,且2k-1≠5,所以k=43(4)当k=-1时,1-3k=4>0,所以y的值随x值的增大而增大.20.解:(1)改革前某景区每日运营成本为2800元(2)设y1与x之间的函数表达式为y1=kx+b(k,b为常数,k≠0),根据题意,当x=0时,y1=-2800;当x=50时,y1=3200.所以b=-2800,50k+b=3200,解得k=120,b=-2800.所以y1与x之间的函数表达式为y1=120x-2800.根据题意,得y2与x之间的函数表达式为y2=100x-2000.(3)根据题意,得120x-2800=100x-2000.解得x=40.所以当游客人数为40人时,改革前的日利润与改革后的日利润相等.21.解:(1)设y甲=k1x,根据题意得5k1=100,解得k1=20,所以y甲=20x.设y乙=k2x+100,根据题意,得20k2+100=300,解得k2=10,所以y乙=10x+100.(2)①令y甲<y乙,即20x<10x+100,解得x<10,当入园次数小于10次时,选择甲消费卡比较合算;②令y甲=y乙,即20x=10x+100,解得x=10,当入园次数等于10次时,选择两种消费卡费用一样;③令y甲>y乙,即20x>10x+100,解得x>10,当入园次数大于10次时,选择乙消费卡比较合算.22.解:(1)因为直线y=-x-4分别交x轴和y轴于点A和点C,所以点A(-4,0),点C(0,-4).,设直线AB的函数表达式为y=kx+b,则b=2,0=-4k+b,解得k=12所以直线AB 的函数表达式为y=12x+2.故答案为12x+2. (2)由(1),可得OA=OC=4,OB=2,所以BC=6.设点P m ,12m+2. 当点P 在线段AB 上时, 因为S △APC =S △AOC ,所以S △ABC -S △PBC =S △AOC .所以12×6×4-12×6×(-m )=12×4×4, 所以m=-43,所以点P -43,43;当点P 在BA 的延长线上时,因为S △APC =S △AOC ,所以S △PBC -S △ABC =S △AOC , 所以12×6×(-m )-12×6×4=12×4×4, 所以m=-203,所以点P -203,-43.综上所述,点P 的坐标为-43,43或-203,-43.(3)如图,当点P 在线段AB 上时,设CP 与AO 交于点H.在△AOB 和△COH 中,因为∠AOB=∠COH ,AO=CO ,∠BAO=∠HCO ,所以△AOB ≌△COH (ASA).所以OH=OB=2,所以点H 的坐标为(-2,0).设直线CP 的函数表达式为y=ax+c.由题意可得c=-4,0=-2a+c,解得a=-2,所以直线CP的函数表达式为y=-2x-4.当点P'在AB延长线上时,设CP'与x轴交于点H',同理可求直线CP'的函数表达式为y=2x-4.综上所述,直线CP的函数表达式为y=-2x-4或y=2x-4.。
北师大版八年级数学上册各章测试题带答案(全册)

第一章勾股定理测试题一.填空题(每题3分,共24分)1. 如图, 在△ABC 中,∠C=︒90,已知两直角边 A b Ca 和b ,求斜边c 的关系式是__________________;已知斜边c 和一条直角边b (或a ),求另一直角边 a a (或b )的关系式是________________ 或_______________. B 2.在△ABC 中,若222BC AB AC =+,则∠B+∠C=_____°. 第1题图 3.在Rt △ABC 中,∠C=︒90,若a=40,b=9,则c=__________; A 4.如图,△ABC 中,AB=AC ,BC=16,高AD=6,则腰长AB=________________.B D C 第4题图5.木工师傅做一个宽60cm ,高80cm 的矩形木柜,为稳固起见,制作时需在对角顶点间加一根木条,则木条长为___________________cm . 6.一艘轮船以16Km /h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以12Km /h 的速度向东南方向航行,它们离开港口1小时后相距_________________Km .7.如图,已知△ABC 中,∠ACB=︒90,以△ABC 各边为边向三角形外作三个正方形, A 3S1S 、2S 、3S 分别表示这三个正方形的面积, 1S1S =81,3S =225,则2S =__________________. C 2S B8.等腰三角形的腰长为13cm ,底边上的高为5cm ,则它的面积为_____________.二.选择题(每题3分,共21分)9. 在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15,cm 则△ABC 的面积等于 ( )A.1082cm B.542cm C.1802cm D.902cm10.以下列各组数为三边的三角形中不是直角三角形的是 ( ) A .9、12、15 B .41、40、9 C .25、7、24 D .6、5、411.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食, 要爬行的最短路程(π取3)是( )A.20cm;B.10cm;C.14cm;D.无法确定.12.一个三角形三边之比为3∶4∶5,则这个三角形三边上的高之比为 ( )A.3:4:5B.5:4:3C.20:15:12D.10:8:2 13. 一个三角形的三边长为a 、b 、c,且满足等式ab c b a 2)(22=-+,则此三角形是 ( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形 14. 如图,为求出湖两岸的A 、B 两点之间的距离,一个观测者在点C 设桩,使△ABC 恰好为直角三角形,且∠B=︒90,测得AC=160米,BC=128米,则A 、B 两点间的距离为 ( )B A .96米 B .100米C .86米D .90米C A 15.一直角三角形的斜边长比直角边长大2,另一直角边长为6,则斜边长为 ( ) (A )4 (B )8 (C )10 (D )12三.解答题16.已知:如图,⊿ABC 中,∠ACB =︒90,AB = 5cm ,BC = 3 cm ,CD ⊥AB 于D , 求CD 的长及三角形的面积.(16分)17.在图中所示的长方形零件示意图中,根据所给的部分尺寸,求两孔中心A和B的距离(单位:mm )(10分)B C A D18.小强到某海岛上去探宝,登陆后先往东走10千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到4千米处往东拐,仅走1千米便找到宝藏,问登陆点到宝藏埋藏点的直线距离是多少千米?(10分)19.八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面。
北师大版2022-2023学年八年级数学上学期第一次阶段性检测卷一

2022-2023学年八年级上学期第一次阶段性检测数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章、第二章。
5.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为 A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.下列各数中,是无理数的是()A.2-B.0.458 C.π-D.1 72)A B C D3.已知三条线段的长度分别为如下数据,那么以这三条线段为边不能构成直角三角形的是()A.1,1B.13,14,15C.6,8,10 D.5,12,134.如图,在单位为1的方格中,有标号为①、②、③、④的四个三角形,其中直角三角形的个数为()A .1个B .2个C .3个D .4个5.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为6、10、24,则正方形C 的面积为( )A .4B .6C .8D .126.下列计算正确的是( )A 2BCD 11=7.函数y =x 的取值范围是( )A .2x ≠B .2x <C .2x >D .2x ≥8.按如图所示的程序计算,若开始输入的x 的值是64,则输出的y 的值是( )AB C .2 D .39.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45a ≤≤B .34a ≤≤C .23a ≤≤D .12a ≤≤10.已知:a,b a 与b 的关系是( ) A .a -b =0 B .a +b =0 C .ab =1 D .a 2=b 211.如图,一只蚂蚁从长为4cm ,宽为3cm ,高为5cm 的长方体纸箱的A 点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是( )A .12cmBCD 12.如图,△ABC 和△ECD 都是等腰直角三角形,△ABC 的顶点A 在△ECD 的斜边DE 上,下列结论正确的有( )①ACE ≌BCD △;②DAB ACE ∠=∠;③AE AC AD +=;④2222AE AD AC =+A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题)二、选择题:(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上13.已知一个正数x 的两个平方根分别是1a +和27a -,则=a ______,正数x =______.142,则a =________.15.如图,折叠直角三角形纸片ABC ,使得两个锐角顶点A 、C 重合,设折痕为DE ,若AB=4,BC=3,则△ADC 的周长是________.16.如图,线段AD ,CE 分别是△ABC中边BC ,AB 上的高.若AD =10,CE =9,AB =12,则BC的长是________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 17.计算:(11)1)⨯; (2)18.解方程:(1)2(x+1)2=8 (2)3(2x﹣1)3=﹣81四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.如图,已知△ABC.(1)请用尺规完成以下作图:延长线段BC,并在线段BC的延长线上截取CD=AC,连接AD;在BD下方,作∠DBE=∠ADB;(保留作图痕迹,不写作法)(2)若AB=AC=5,BC=6,利用(1)完成的图形,计算AD的长度.20.已知线段a,b,c,且线段a,b满足(20a b=.(1)求a,b的值;(2)若a,b,c是某直角三角形的三条边的长度,求c的值.21.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了__米.22.如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若AB=6,BC=8,求AF的长.23.阅读下面问题:1;试求:________;(2)当n________;(3)的值.24.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即12ab×4+(b-a)2,从而得到等式c2=12ab×4+(b-a)2,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题:(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.25.已知:DA⊥AB,CB⊥AB,AB=25,AD=15,BC=10,如图1,点P是线段AB上的一个动点,连接PD、PC.(1)当PD=PC时,求AP的长;(2)线段AB上是否存在点P,使PD+PC的值最小,若存在,在线段AB上标出点P,并求PD+PC的最小值;若不存在,请说明理由.(3)如图2,点M在线段AB上以2个单位每秒的速度从点B向点A运动,同时点N在线段AD上从点A以x个单位每秒的速度向点D运动(当一个点运动结束时另一个点也停止运动),点M、N运动的时间为t秒,是否存在实数x,使△AMN与△BMC全等?若存在,求出x、t的值,若不存在,请说明理由.。
八年级数学上学期第一次月考测试卷A卷(测试范围:第一、二章)(北师大版)(解析版)

2023-2024学年八年级数学上学期第一次月考(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章(勾股定理)、第二章(实数)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷--B.1-A.15【答案】A【分析】利用勾股定理求得数轴A.7B.7-A.3B.【答案】D【分析】先求出30Ð=°ACBA.2m B 【答案】A【分析】根据勾股定理进【详解】解:在Rt AB C¢¢△A.322【答案】A【分析】先利用网格计A.2B.4【答案】D【分析】根据题意和题目中的数值转换器可以写出前几次A.4B.13【答案】A【分析】设其中一个直角三角形的面答案.【点睛】本题考查了二次根式的化简,乘法公式,提公因式法因式分解等知识,关键在于熟练掌握相关运算法则和整体代入的方法.第Ⅱ卷【答案】20【分析】把中间的墙平面展开,使原来的矩形段最短,连接BD,即求出新矩形的Q,MN=1m\原图长度增加2m,\=+=,14216(m)AB【答案】BE2+ FC2= EF2,证明见解析.【分析】将△ABE逆时针旋转90度到△ACD的位置,点B、E的对应点为点C、D,首先证明∠EAF=∠FAD=45°,然后利用SAS证明△AEF≌△ADF,得到EF=DF,求出∠FCD=90°,根据勾股定理可得结论.【详解】BE2+ FC2= EF2,证明:如图,将△ABE逆时针旋转90度到△ACD的位置,点B、E的对应点为点C、D,∴AE=AD,∠BAE=∠CAD,BE=CD,∵∠EAF=45°,∴∠BAE+∠FAC=45°,∴∠CAD+∠FAC=45°,∴∠EAF=∠FAD=45°,又∵AE=AD,AF=AF,∴△AEF≌△ADF(SAS),∴EF=DF,∵∠ACD=∠ABE=∠ACB=45°,∴∠FCD=90°,∴FC2+CD2=DF2,即BE2+ FC2= EF2.【点睛】本题考查了旋转的性质、全等三角形的判定和性性质是解题的关键.(10分)20.如图1,一个梯子AB长2.5米,1.5米.①如图,我们可以构造PC x=-.则21+1x②在(1)的条件下,已知此时,AP PD +最小,即1x +由题意得:22AH AB ==,AD 则222221DH AH AD =+=+即2211(1)x x +++-的最小值为[应用拓展]如图,在矩形BEDF 的基础上,构建则2229AC BC AB x =+=+,2221(6)AD DE AE x =+=+-,当、C 、D 共线时,最大,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第一次月考(数学)试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共6小题,共18分) 1.化简:16的值为( ) A.4 B.-4 C.±4 D.162.下列四个数中,是无理数的是( )A.2πB.227 C.3-8 D.23.“1649的平方根是±47”用数学式表示为( )=±47 B.= 47 =±47 474.如图,直角三角形三边向形外作了三个正方形,其中数字表示该正方形的面积,那么正方形A 的面积是( ) A.360 B.164 C.400 D.605.已知直角三角形两边的长分别为5、12,则第三边的长为( )A.13B.60C.17D.136.如图数轴上有O ,A ,B ,C ,D哪一线段上( )A.OAB.ABC.BCD.CD二、填空题(本大题共6小题,共18分)7.试写出两个无理数 ______ 和 ______ ,使它们的和为-6. 8.化简:|3.14-π|=____________.9.面积为37cm 2的正方体的棱长为 ______ cm .10. ______ 时,这三条线段能围成一个直角三角形.11.观察下列各式:…,则依次第五个式子是 ______ .12.如图,在长方形ABCD 中,边AB 的长为3,AD 的长为2,AB 在数轴上,以原点A 为圆心,AC 的长为半径画弧,交负半轴于一点,则这个点表示的实数是______ .三、计算题(本大题共5小题,共30分)13.14.计划用100块地板砖来铺设面积为16平方米的客厅,求所需要的正方形地板砖的边长.15.如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.(1)△ACD是直角三角形吗?为什么?(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?16.如图所示是一块地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积.17.如图,在一块用边长为20cm的地砖铺设的广场上,一只飞来的鸽子落在A点处,鸽子吃完小朋友洒在B、C处的鸟食,最少需要走多远?四、解答题(本大题共4小题,共32分)18.已知3a+b﹣1的立方根是3,2a+1的算术平方根是5,求a+b的平方根.19.如图所示,一根长2.5m的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,此时OB的距离为0.7m,设木棍的中点为P.若木棍A端沿墙下滑,且B端沿地面向右滑行.如果木棍的顶端A沿墙下滑0.4m,那么木棍的底端B向外移动多少距离?20、如图,在一棵树的10m高B处有2只猴子,一只猴子爬到树下走到离树20m处的池塘A处,另一只爬到树顶D后直接跳跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树高.21. 在边长为1五、解答题(本大题共1小题,共10分)22. a,b,c为三角形ABC的三边,且满足a2+b2+c2-10a-24b-26c +338=0,试判别这个三角形的形状.六、解答题(本大题共1小题,共12分)23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(2)如果a+b-c=m,观察上表猜想:S= ______ ,(用含有m的代数式表示);l(3)说出(2)中结论成立的理由.初二年级第一次月考(数学)试卷答案和解析【答案】1.A2.A3.C4.A5.D6.C7.π-2;-π-48.π-3.149.10.2或411.6×=12.1-13.解:原式=2-8+=-.14.解:设所需要的正方形地板砖的边长为a米,依题意,得100a2=16,即a2=0.16,解得a=0.4.答:所需要的正方形地板砖的边长为0.4米.15.解:(1)在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2∴AC=5cm,在△ACD中,AC=5cm CD=12m,D A=13m,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;(2)∵S△ABC=×3×4=6,S△ACD=×5×12=30,∴S四边形ABCD=6+30=36,费用=36×100=3600(元).16.解:如右图所示,连接AC,∵∠D=90°,∴AC2=AD2+CD2,∴AC=10,又∵AC2+BC2=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC是直角三角形,∴S四边形ABCD=S△ABC-S△ACD=(24×10-6×8)=96.答:这块地的面积是96平方米.17.解:∵每一块地砖的长度为20cm∴A、B所在的长方形长为20×4=80cm,宽为20×3=60cmAB==100又B、C所在的长方形长为20×12=240cm,宽为20×5=100cmBC==260,AB+BC=100+260=360cm.18. 解:根据题意得3a+b﹣1=27,2a+1=25,解得a=12,b=﹣8,所以a+b=12﹣8=4,而4的平方根为±=±2,所以a+b的平方根为±2.19.解:在直角△ABC中,已知AB=2.5m,BO=0.7m,则由勾股定理得:AO==2.4m,∴OC=2m,∵直角三角形CDO中,AB=CD,且CD为斜边,∴由勾股定理得:OD==1.5m,∴BD=OD-OB=1.5m-0.7m=0.8m;20. 解:由题意知,BC+CA=BD+DA,∵BC=10m,AC=20m∴BD+DA=30m,设BD=x,则AD=30-x,在直角三角形ADC中,(10+x)2+202=(30-x)2,解得x=5,10+x=15.答:这棵树高15m.21.解:如图所示,S△ABC=2×4-×1×2-×1×3-×1×4=8-1--2=.22. 解:由a2+b2+c2-10a-24b-26c +338=0,得:(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0,即:(a-5)2+(b-12)2+(c-13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.23. 解:(1)∵Rt△ABC的面积S=ab,周长l=a+b+c,故当a、b、c三边分别为3、4、5时,S=×3×4=6,l=3+4+5=12,故=,同理将其余两组数据代入可得为1,.∴应填:,1,(2)通过观察以上三组数据,可得出.(3)∵l=a+b+c,m=a+b-c,∴lm=(a+b+c)(a+b-c)=(a+b)2-c2=a2+2ab+b2-c2.∵∠C=90°,∴a2+b2=c2,s=ab,∴lm=4s.即.(1)Rt△ABC的面积S=ab,周长l=a+b+c,分别将3、4、5,5、12、13,8、15、17三组数据代入两式,可求出的值;(2)通过观察以上三组数据,可得出:=;(3)根据lm=(a+b+c)(a+b-c),a2+b2=c2,S=ab可得出:lm=4s,即=.本题主要考查勾股定理在解直角三角形面积和周长中的运用.北师大新版八年级数学上册第一次月考试题满分:120分 考试时间:90分钟一、 选择题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( ) A 、2,3,4 B 、1,1,2 C 、6,6,6 D 、0.3,0.4,0.52、下列二次根式中,属于最简二次根式的是( )A3、下列各式中,正确的是( )A4、若将直角三角形的三边长扩大到原来的2倍,所得到的三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、等腰三角形5、若规定误差小于1, 那么60的估算值为( )A. 3B. 7C. 8D. 7或8 6、以下列各组数为边长,能组成直角三角形的是( )A .8,15,17B .4,5,6C .5,8 ,7D .8,39,407、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( )A 、13B 、5C 、13或5D 、无法确定 8、4的平方的倒数的算术平方根是( )A .4B .18C .-14D .149、如果一个数的立方根是这个数本身,那么这个数是( )A 、1B 、1-C 、1±D 、0,1±10.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角的是( )72425207152024257252024257202415(A)(B)(C)(D)二、 填空题11、直角三角形两直角边分别是3cm 、4cm ,则斜边上的高的长度是 .12.13 已知05|1|=-++y x ,则y x += 。
14 直角三角形的一条直角边长为5,斜边长为13,则这个直角三角形的另一条直角边长为______________15.如果a 的平方根等于2±,那么_____=a ;16. 64 __ ____ 三、 解答题17、计算:554-516420163---+-.18、已知(a -2)的平方根是±2,(2a +b +7)的立方根是3,求(a ²+b ²)的算术平方根.19、(1)在图(120、如图,在Rt △ABC 中,∠C =90°,BC =12cm ,AB =20cm ,BD 平分∠ABC ,交AC 边于点D ,过D 作DE ⊥AB ,垂足为E ,求DE 的长.21、如图,四边形ABCD 中,DA ⊥AB , DA =AB ==1. 则∠ADC 的度数是 ,说明理由.22…如果两个含有二次根式的非零利用这种方法,可以将分母中含有二次根式的代数式化为分母是有理数的代数式,这个过程称为分母有理化.例如:21=222⨯=22, 231-=()()232323+-+=()222323-+=123-+=23-- (1)35分母有理化的结果是 ,761+分母有理化的结果是 ;11++n n 分母有理化的结果是 .(2)利用以上知识计算:201520141 (4)31321211++++++++八年级数学上册第一次月考试题一、选择题(10小题,每题3分,共30分)1.在实数722-、0、8-、-1、2-π、∙3.0中,无理数的个数是( )A.2个B.3个C.4个D.5个2.以直角三角形的两直角边为边长所作正方形的面积分别是9和16,则斜边长为( )A .25B .5C .15D .225 3.如果三角形的三边5,m ,n 满足()()25m n m n +-=,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定4、下列说法正确的是( )A.064.0-的立方根是0.4B.9-的平方根是3±C. 16的立方根是316D. 0.01的立方根是0.000001 5.若一个数的立方根等于这个数的算术平方根,则这个数是( ) A .0 B .0和1 C .1 D .±1和06. 下列计算正确的是( )A 、20=102B 、632=⋅C 、224=- D3=- 7. 若a a =-2)3(-3,则a 的取值范围是( ). A. a >3 B. a ≥3 C. a <3 D. a ≤3 8. 若代数式21--x x 有意义,则x 的取值范围是 ( ) A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且9、 如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( ) A 、11 B 、1.4 C 、3 D 、2 10.如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于( ) A.9 B.25 C.50 D.16 一、 填空题(共10小题,每小题3分,共30分)(第10题)CABS 1 S 211、 81的算数平方根是 ,12、1-2的相反数是_______,绝对值是__________.13、一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________. 14、计算:(1)94= ,(2)36427-= .15、比较213-________31(填“<”“>”“=”).16、如果3+x =2,那么(x +3)2=______.17、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= .18、把一根12厘米长的铁丝,从一端起顺次截下3厘米和5厘米的两根铁 丝,用这三条铁丝摆成的三角形是 .19、一个三角形三边分别为8,15,17,那么最长边上的高为 .20、已知2|6||8|(10)0x y z -+-+-=,则由x ,y ,z 为三边的三角形是 . 四、解答题(共40分)21、计算题(每小题5分,共15分) 1)3612⨯ 2)()()131381672-++-3) 10101540+- 22、(本小题6分)如图3,在四边形ABCD 中,∠BAD =∠DBC =90°,若AD =4cm ,AB =3cm ,BC =12cm ,求CD 的长及四边形ABCD 的面积.AC23、(本小题6分)已知a 是19的整数部分,b 是19的小数部分,求b a 2的值。