理科数学函数单调和周期
2021届高三高考数学理科一轮复习知识点专题2-2 函数的单调性与最值【含答案】

2021届高三高考数学理科一轮复习知识点专题2.2 函数的单调性与最值【核心素养分析】1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
【重点知识梳理】知识点一函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.知识点二函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(3)对于任意的x∈I,都有f(x)≥M;(2)存在x 0∈I ,使得f (x 0)=M(4)存在x 0∈I ,使得f (x 0)=M 结论M 为最大值M 为最小值【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].【典型题分析】高频考点一 确定不含参函数的单调性(区间)例1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【举一反三】(2020·山东青岛二中模拟)函数y =x 2+x -6的单调递增区间为________,单调递减区间为________.【答案】[2,+∞) (-∞,-3] 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数, 所以y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞)。
2020届高考高中理科数学一轮专题复习第二章 2.2函数的单调性与最值

§2.2 函数的单调性与最值1.函数的单调性 (1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间A 上是增加的或是减少的,那么就称A 为单调区间. 2.函数的最值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示 对任意x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的递增区间.提示 (-∞,-a ]和[a ,+∞).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.( × ) (2)函数y =f (x )在[1,+∞)上是增函数,则函数的递增区间是[1,+∞).( × ) (3)函数y =1x的递减区间是(-∞,0)∪(0,+∞).( × )(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( × )(5)所有的单调函数都有最值.( × ) 题组二 教材改编2.函数f (x )=x 2-2x 的递增区间是 . 答案 [1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是 .答案 24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是 . 答案 (-∞,2]解析 由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2. 题组三 易错自纠5.函数y =12log (x 2-4)的递减区间为 .答案 (2,+∞)6.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2,满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为 .答案 ⎝⎛⎦⎤-∞,138 解析 由题意知函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138. 7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是 . 答案 [-1,1)解析 由条件知⎩⎪⎨⎪⎧-2≤a +1≤2,-2≤2a ≤2,a +1>2a ,解得-1≤a <1.8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为 .答案 2解析 当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.题型一 确定函数的单调性命题点1 求函数的单调区间例1 (1)函数y =12log (2x 2-3x +1)的递减区间为( )A.(1,+∞)B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞答案 A解析 由2x 2-3x +1>0,得函数的定义域为⎝⎛⎭⎫-∞,12∪(1,+∞). 令t =2x 2-3x +1,x ∈⎝⎛⎭⎫-∞,12∪(1,+∞). 则y =12log t ,∵t =2x 2-3x +1=2⎝⎛⎭⎫x -342-18, ∴t =2x 2-3x +1的递增区间为(1,+∞). 又y =12log t 在(1,+∞)上是减函数,∴函数y =12log (2x 2-3x +1)的递减区间为(1,+∞).(2)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是 .答案 [0,1)解析 由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数图像如图所示,其递减区间是[0,1).命题点2 讨论函数的单调性例2 判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解 函数f (x )=ax 2+1x (1<a <3)在[1,2]上是增加的.证明:设1≤x 1<x 2≤2,则 f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1 =(x 2-x 1)⎣⎡⎦⎤a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3, 所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上是增加的. 引申探究如何用导数法求解本例?解 f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3, 所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x(其中1<a <3)在[1,2]上是增加的.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图像法,图像不连续的单调区间不能用“∪”连接.(4)具有单调性函数的加减.跟踪训练1 (1)下列函数中,满足“任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A.f (x )=2x B.f (x )=|x -1| C.f (x )=1x -xD.f (x )=ln(x +1)答案 C解析 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上是减少的,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上是增加的,则函数g (x )=a |x -2|的递减区间是 .答案 (-∞,2]解析 因为f (x )在R 上是增加的,所以a -1>0,即a >1,因此g (x )的递减区间就是y =|x -2|的递减区间(-∞,2].(3)函数f (x )=|x -2|x 的递减区间是 . 答案 [1,2]解析 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f (x )图像,由图知f (x )的递减区间是[1,2]. 题型二 函数的最值1.函数y =x 2-1x 2+1的值域为 .答案 [-1,1)解析 由y =x 2-1x 2+1,可得x 2=1+y1-y .由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为 . 答案2解析 由1-x 2≥0,可得-1≤x ≤1. 可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4,θ∈[0,π], 所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为 . 答案 [3,+∞)解析 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图像如图所示.根据图像可知,函数y =|x +1|+|x -2|的值域为[3,+∞). 4.当-3≤x ≤-1时,函数y =5x -14x +2的最小值为 .答案 85解析 由y =5x -14x +2,可得y =54-74(2x +1).∵-3≤x ≤-1,∴720≤-74(2x +1)≤74,∴85≤y ≤3.∴所求函数的最小值为85. 5.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为 . 答案 3解析 由于y =⎝⎛⎭⎫13x 在[-1,1]上是减少的,y =log 2(x +2)在[-1,1]上是增加的,所以f (x )在[-1,1]上是减少的,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( ) A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 答案 B解析 方法一 设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b . ∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关. 故选B.方法二 由题意可知,函数f (x )的二次项系数为固定值,则二次函数图像的形状一定.随着b 的变动,相当于图像上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图像左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华 求函数最值的五种常用方法及其思路 (1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三 函数单调性的应用命题点1 比较函数值的大小例3 已知函数f (x )的图像向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.c >a >b B.c >b >a C.a >c >b D.b >a >c答案 D解析 根据已知可得函数f (x )的图像关于直线x =1对称,且在(1,+∞)上是减函数,因为a=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,且2<52<3,所以b >a >c . 命题点2 解函数不等式例4 已知函数f (x )=ln x +2x ,若f (x 2-4)<2,则实数x 的取值范围是 . 答案 (-5,-2)∪(2,5)解析 因为函数f (x )=ln x +2x 在定义域上是增加的,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得f (x 2-4)<f (1),所以0<x 2-4<1,解得-5<x <-2或2<x < 5. 命题点3 求参数的取值范围例5 (1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是( ) A.π4 B.π2 C.3π4 D.π答案 C解析 ∵f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, ∴当x -π4∈⎣⎡⎦⎤-π2,π2, 即x ∈⎣⎡⎦⎤-π4,3π4时, y =sin ⎝⎛⎭⎫x -π4是增加的, f (x )=-2sin ⎝⎛⎭⎫x -π4是减少的, ∴⎣⎡⎦⎤-π4,3π4是f (x )在原点附近的递减区间, 结合条件得[0,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴a ≤3π4,即a max =3π4.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上是增加的,则实数a 的取值范围为 . 答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则实数a 的取值范围为 . 答案 ⎣⎡⎭⎫-12,+∞ 解析 若函数f (x )=ln(ax 2+x )在区间(0,1)上是增加的,则函数g (x )=ax 2+x 在(0,1)上是增加的且g (x )>0恒成立.当a =0时,g (x )=x 在(0,1)上是增加的且g (x )>0,符合题意;当a >0时,g (x )图像的对称轴为x =-12a <0,且有g (x )>0,所以g (x )在(0,1)上是增加的,符合题意;当a <0时,需满足g (x )图像的对称轴x =-12a ≥1,且有g (x )>0,解得a ≥-12,则-12≤a <0.综上,a ≥-12.思维升华 函数单调性应用问题的常见类型及解题策略 (1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图像或单调性定义,确定函数的单调区间,与已知单调区间比较; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2 (1)如果函数f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是 . 答案 ⎣⎡⎭⎫32,2解析 对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数. 所以⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是⎣⎡⎭⎫32,2.(2)定义在R 上的奇函数y =f (x )在(0,+∞)上是增加的,且f ⎝⎛⎭⎫12=0,则不等式19(log )f x >0的解集为 . 答案 ⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3 解析 由题意知,f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, f (x )在(-∞,0)上也是增加的.∴19(log )f x >f ⎝⎛⎭⎫12或19(log )f x >f ⎝⎛⎭⎫-12, ∴19log x >12或-12<19log x <0,解得0<x <13或1<x <3.∴原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫0<x <13或1<x <3.1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y =ln(x +2) B.y =-x +1 C.y =⎝⎛⎭⎫12xD.y =x +1x答案 A解析 函数y =ln(x +2)的递增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数y =12log (-x 2+x +6)的递增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12 C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫-∞,12 答案 A解析 由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =12log t ,易知其为减函数,由复合函数的性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的递减区间为⎝⎛⎭⎫12,3,故选A. 3.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A.f (π)>f (-3)>f (-2) B.f (π)>f (-2)>f (-3) C.f (π)<f (-3)<f (-2) D.f (π)<f (-2)<f (-3)答案 A解析 因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数, 所以f (π)>f (3)>f (2), 即f (π)>f (-3)>f (-2).4.已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,则a 的取值范围是( ) A.⎝⎛⎦⎤0,13 B.⎣⎡⎦⎤13,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎦⎤14,13答案 A解析 当x 1≠x 2时,f (x 1)-f (x 2)x 1-x 2<0,∴f (x )是R 上的减函数.∵f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1,∴⎩⎪⎨⎪⎧0<1-2a <1,0<a <1,1-2a ≥13,∴0<a ≤13.5.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为( )A.[-1,2]B.[-1,0]C.[1,2]D.[0,2]答案 D解析 ∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知定义在R 上的奇函数f (x )在[0,+∞)上是减少的,若f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,则实数a 的取值范围为( ) A.⎝⎛⎭⎫-∞,134 B.(-∞,-3) C.(-3,+∞) D.⎝⎛⎭⎫134,+∞ 答案 D解析 依题意得f (x )在R 上是减函数,所以f (x 2-2x +a )<f (x +1)对任意的x ∈[-1,2]恒成立,等价于x 2-2x +a >x +1对任意的x ∈[-1,2]恒成立,等价于a >-x 2+3x +1对任意的x ∈[-1,2]恒成立.设g (x )=-x 2+3x +1(-1≤x ≤2),则g (x )=-⎝⎛⎭⎫x -322+134(-1≤x ≤2),当x =32时,g (x )取得最大值,且g (x )max =g ⎝⎛⎭⎫32=134,因此a >134,故选D. 7.已知奇函数f (x )在R 上是增函数.若a =-f ⎝⎛⎭⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为 . 答案 a >b >c解析 ∵f (x )在R 上是奇函数, ∴a =-f ⎝⎛⎭⎫log 215=f ⎝⎛⎭⎫-log 215=f (log 25). 又f (x )在R 上是增函数, 且log 25>log 24.1>log 24=2>20.8, ∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是增加的,则实数a 的取值范围是 . 答案 ⎣⎡⎦⎤-14,0 解析 当a =0时,f (x )=2x -3在定义域R 上是增加的,故在(-∞,4)上是增加的;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上是增加的,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 9.记min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为 .答案 6解析 由题意知,f (x )=⎩⎪⎨⎪⎧x +2,0≤x ≤4,10-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上是增加的,则实数a 的取值范围是 . 答案 (-∞,1]∪[4,+∞) 解析 作函数f (x )的图像如图所示,由图像可知f (x )在(a ,a +1)上是增加的,需满足a ≥4或a +1≤2, 即a ≤1或a ≥4. 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上是增加的; (2)若a >0且f (x )在(1,+∞)上是减少的,求a 的取值范围. (1)证明 当a =-2时,f (x )=xx +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上是增加的. (2)解 设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0, 所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立, 所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1, 由g (x )在[-2,2]上是单调函数, 知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1) 答案 D解析 ∵当x =0时,两个表达式对应的函数值都为0,∴函数的图像是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a的取值范围是 . 答案 (-∞,-2)解析 二次函数y 1=x 2-4x +3的对称轴是x =2, ∴该函数在(-∞,0]上是减少的,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上是减少的, ∴-x 2-2x +3<3,∴f (x )在R 上是减少的, ∴由f (x +a )>f (2a -x )得到x +a <2a -x , 即2x <a ,∴2x <a 在[a ,a +1]上恒成立, ∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2 020x +ln(x 2+1+x )-2 020-x +1,则不等式f (2x -1)+f (2x )>2的解集为 . 答案 ⎝⎛⎭⎫14,+∞ 解析 由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上是增加的,∴2x -1>-2x ,∴x >14,∴原不等式的解集为⎝⎛⎭⎫14,+∞. 16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1. (1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解 (1)由⎩⎪⎨⎪⎧x 2-1>0,1<x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2). (2)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立. 设g (a )=-2ma +m 2,a ∈[-1,1],∴需满足⎩⎪⎨⎪⎧g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0, 即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
2020高考数学考点突破·理科 2.3 函数的奇偶性与周期性

1.奇、偶函数的概念
(1)偶函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有
________________,那么函数 f(x)就叫做偶函数.
(2)奇函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有
4Байду номын сангаасx2
4-x2
(4)由9x2--x92≥ ≥00, 得 x=±3.
所以 f(x)的定义域为{-3,3},关于原点对称.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.
所以 f(x)=±f(-x). 所以 f(x)既是奇函数,又是偶函数.
(5)由11- +xx>0,得-1<x<1,即 f(x)=ln11- +xx的定义域为(-1,
则函数 f(x)是周期函数,且周期 T=2(b-a)(不一定是最小正周期,下同).
(2)如果函数 f(x)(x∈D)在定义域内有两个对称中心 A(a,0),B(b,
0)(a<b),那么函数 f(x)是周期函数,且周期 T=2(b-a).
(3)如果函数 f(x),x∈D 在定义域内有一条对称轴 x=a 和一个对称
验证,但比较繁琐,且容易判断错误,通常是用图象法
来判断.③对于含有 x 的对数式或指数式的函数常用
(1)(2017·肇庆三模)在函数 y=xcosx,y=ex
+ x2 , y = lg x2-2 , y = xsinx 中 , 偶 函 数 的 个 数 是
()
A.3
B.2
C.1
D.0
解:y=xcosx 为奇函数,y=ex+x2 为非奇非偶函
高等数学(理工科)课件第3章导数的应用

0
0
极
f (x) ↗ 大
值
极大值 f (1) 10,
极
↘
小
↗
值
极小值 f (3) 22.
高等数学应用教程 3.2.1 函数的极值及其求法
解法2 f ( x) 3x2 6x 9 3( x 1)(x 3) f (x) 6x 6 6(x 1)
令 f ( x) 0, 得驻点 x1 1, x2 3. 由于 f (1) 12 0, 则 f (1) 10为极大值 由于 f (3) 12 0, 则 f (3) 22为极小值
1、求出函数 f(x)所有的临界点(驻点和不可导点);
2、计算各临界点的函数值和区间端点的函数值;
3、比较各函数值的大小,其中最大的就是函数 f(x)在区 间[a, b]上的最大值,最小的就是函数 f(x)在区间[a, b] 的最小值.
高等数学应用教程 3.2.2 函数的最大值与最小值 例3
高等数学应用教程 3.2.2 函数的最大值与最小值
2
arctan
1 n
n
( n 为正整数)?
高等数学应用教程
二、 型未定式
定理3.3.2 如果函数 f (x)和g (x)满足:
2)
f
( x)、g ( x)
,在
o
U(x0 )
内可导,且
f (x)
3) lim
A
xx0 g(x)
则 lim f (x) lim f (x) A
xx0 g(x) xx0 g(x)
高等数学应用教程
3.1 函数的单调性与凹凸性
3.1 函数的单调性与凹凸性
上面图形的形状可以通过导数的知识加以 研究解决,为此先介绍拉格朗日中值定理
高考数学常考知识点总结

高考数学常考知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考数学常考知识点总结高中数学在学习的过程中,有很多知识点常考点。
专题2.2 函数的单调性与最值(重难点突破)(解析版)

专题2.2 函数的单调性与最值(重难点突破)(理科)一、考纲要求1.理解函数的单调性、最大(小)值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.3.培养学生数学抽象、逻辑推理、直观想象能力。
二、考情分析三、考点梳理【基础知识梳理】1、函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述1/ 112 / 11自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2、函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足 条件(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得()0f x M =(3)对于任意的x I ∈,都有()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论 M 为最大值 M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值. 【知识拓展】1、函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; (2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; (3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; (4)函数()()()0y f x f x =≥在公共定义域内与()y f x =(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反; (6)一些重要函数的单调性: ①1y x x =+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减; ②b y ax x=+(0a >,0b >)的单调性:在,b a ⎛-∞-⎝和,b a ⎫+∞⎪⎪⎭上单调递增,在,0b a ⎛⎫ ⎪ ⎪⎝⎭和b a ⎛ ⎝3 / 11上单调递减.四、题型分析(一) 判断函数的单调性 1.判断函数单调性的方法:(1)定义法,步骤为:取值,作差,变形,定号,判断.利用此方法证明抽象函数的单调性时,应根据所给抽象关系式的特点,对1x 或2x 进行适当变形,进而比较出()1f x 与()2f x 的大小.(2)利用复合函数关系,若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数,简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,则单调递增;图象逐渐下降,则单调递减. (4)导数法:利用导函数的正负判断函数的单调性.(5)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,判断函数的单调性.2.在利用函数的单调性写出函数的单调区间时,首先应注意函数的单调区间应是函数定义域的子集或真子集,求函数的单调区间必须先确定函数的定义域;其次需掌握一次函数、二次函数等基本初等函数的单调区间.例1.(2020·安徽省池州一中模拟)下列四个函数中,在x ∈(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |【答案】C【解析】当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.【变式训练1】.(2020届陕西省咸阳市高三第一次模拟)函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是( )A .132,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z B .372,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z C .312,244k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z D .152,244k k ⎡⎤++⎢⎥⎣⎦()k ∈Z4 / 11【答案】C【解析】令()224k x k k Z πππππ-≤-≤∈,解得()312244k x k k Z -≤≤+∈, 因此,函数cos 4y x ππ⎛⎫=-⎪⎝⎭的单调递增区间是()312,244k k k Z ⎡⎤-+∈⎢⎥⎣⎦,故选C 。
高考数学知识点整理

高考数学知识点整理高考数学知识点整理在平日的学习中,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。
为了帮助大家掌握重要知识点,以下是店铺精心整理的高考数学知识点整理,希望能够帮助到大家。
高考数学知识点整理1一、函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0?f(x)在(a,b)上为增函数.f′(x)≤0?f(x)在(a,b)上为减函数.1、f′(x)>0与f(x)为增函数的关系:f′(x)>0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)>0是f(x)为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.二、函数的极值1、函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0 f="" x="">0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2、函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.三、函数的最值1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.四、求可导函数单调区间的一般步骤和方法1、确定函数f(x)的定义域;2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.五、求函数极值的步骤1、确定函数的定义域;2、求方程f′(x)=0的根;3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.六、求函数f(x)在[a,b]上的最大值和最小值的步骤1、求函数在(a,b)内的极值;2、求函数在区间端点的函数值f(a),f(b);3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.高考数学知识点整理2一、直线方程.1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3. ⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4. 直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5. 过两直线的交点的直线系方程为参数,不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1. 两点P1(x1,y1)、P2(x2,y2)的距离公式:.特例:点P(x,y)到原点O的距离:2. 定比分点坐标分式。
高考周期函数知识点

高考周期函数知识点高考是每一个学生都会经历的一场考试,对于理科生来说,数学是其中最重要的一科。
而在数学中,周期函数是一个非常常见且重要的知识点。
周期函数与生活息息相关,不仅在自然界中存在,也在我们的日常生活中表现出来。
下面将对高考中常见的周期函数知识点进行探讨和总结。
一、正弦函数与余弦函数正弦函数和余弦函数是最常见的周期函数。
它们的图像呈现出类似波浪形的起伏。
通过观察它们的图像,我们可以发现它们都是周期为2π的周期函数。
在高考中,我们常常会遇到一些与正弦函数和余弦函数相关的问题,例如求解方程、证明恒等式等。
在求解方程时,我们需要利用正弦函数和余弦函数的特点,如周期性、奇偶性、对称性等。
同时,我们还需要掌握正弦函数和余弦函数的性质,如角度变化、图像变化等。
掌握这些知识点,在解题中才能游刃有余。
二、正切函数与余切函数正切函数和余切函数是另外两种常见的周期函数。
它们的图像呈现出一条条射线状的线段。
正切函数的周期是π,余切函数的周期是π。
在高考中,我们常常会遇到一些与正切函数和余切函数相关的问题,例如求解方程、证明恒等式等。
正切函数和余切函数的图像在数轴上有着明显的对称性,我们可以利用这一特点在解题过程中简化计算。
同时,我们还需要掌握正切函数和余切函数的性质,如角度变化、图像变化等。
只有深入理解这些性质,我们才能在解题中灵活运用。
三、周期函数的图像性质周期函数的图像有一些特殊的性质。
首先,周期函数在一个周期内是重复的。
此外,周期函数的图像通常具有对称性,如正弦函数和余弦函数的图像关于原点对称,正切函数和余切函数的图像关于x轴对称。
这些性质在解题时常常会派上用场。
另外,周期函数的图像还会出现平移、伸缩和翻转等变化。
平移是指将图像沿x轴或y轴的方向移动,伸缩是指改变图像的振幅和周期,而翻转是指将图像关于x轴或y轴翻转。
在解题时,我们通过观察图像的变化,可以得到更多的信息,从而解决问题。
四、周期函数的应用周期函数的应用非常广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解(1)∵f(x)R∴f(-a +2a-5)=f(a -2a+5) 2 2 f(a -2a+5)<(2a +a+1), 2 2 2 ∵a -2a+5=(a-1) +4>0,2a +a+1= 12 7 2(a+ ) + >0∵f(x)在区间(-∞,0)上单调递增, 4 8 ∴f(x)在(0,+∞)递减,∴a -2a+5>2a +a+1 ∴-4<a<1∴a 的取值范围是(-4,1)
1 [解](Ⅰ)对任意的 x1,x 2∈[0, ], 2 都有 (x1+x2)=(x1)(x2)所以 x x 1 (x)=( )( )≥0,x∈[0, ] 2 2 2 1 1 1 1 2 1 (1)=( + )=( )( )= ( )=a , 2 2 2 2 2 1 ( )= a 2
1 2
1 同理 ( )= a 4
2 2
2
2
(2)令 x=y=0,得 f(0)=f(0)+f(0), ∴f(0)=0,令 y=-x,f(0)=f(x)+f(-x) ∴f(-x)=-f(x)∴f(x)为奇函数.任取 x1, x2∈R,x1<x2∴x2-x1>0,f(x2-x1)<0, x x 0,f x x ∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0 ∴f(x)在 R 上为减函数。
8函数的奇偶性与周期性
1.奇(偶)函数:对于函数y=(x)定义域 内的任意x都有(-x)=-(x),((-x)=(x)则y =(x)为奇(偶)函数 [注]奇偶函数定义域关于原点对称 2.周期函数:对于函数y=(x),如果存在一 个非零常T,使x取定义域内任一值时,(x+T)= (x)都成立,那么函数y=(x)叫周期函数。
2
[练 2]已知 (x)=ax +bx +cx+5(a、b、c 为 常数,若 (-7)=-7 求 (7)
解[练 2]设 g(x)=ax5+bx3+cx 为奇函数 (x)=g(x)+5 …① (-x)=-g(x)+5 …② ①+②且 x 换为 7 (7)+(-7)=10 (7)=17
5
3
3.奇函数 (x)上任一点(a,(a))关于原点的 对称点(-a,-(a))也在 (x)上,奇函数的图象关 于(原点成中心对)称图形,偶函数的图象关于 (y 轴)成轴对称图形, 4.定义在 R 上的函数 y=(x)若对任意 x∈R,都有 (a+x)=(a-x)那么函数 y=(x) 的图象关于 x=a 对称。(想想怎样关于点(a, 0)对称) 5.(x)是定义在 R 上的奇函数,则 f(0)=0
例 1.选择题(有且仅有一个正确答案) (1)定义在(-∞,+∞)上的任意函数 (x)都可 以表示成一个奇函数 g(x)和上个偶函数 h(x)之和, 如果 (x)=lg(10x+1),x∈(-∞,+∞),那么( ) - A.g(x)=x,h(x)=lg(10x+10 x+2) 1 1 x B.g(x)= [lg(10 +1)+ x],h(x)= [lg(10x+1)-x] 2 2 x x x C.g(x)= ,h(x)=lg(10 +1)- 2 2 x x x D.g(x)=- ,h(x)=lg(10 +1)- 2 2
1 4
证明(Ⅱ) 依题意设 y=(x)关于直线 x=1 对 称,∴(x)=(2-x),x∈R ∵(-x)=(x)∴(x)=(x+2) (x)是 R 上的周期函数且 2 是它的一个周期
例 4.解答下列问题:(1)设 f(x)是定义在 R 上的 偶函数,在区间(-∞,0)上单调递增,且满足 f(-a2+ 2 2a-5)<f(2a +a+1),求实数 a 的取值范围. (2)设定义在 R 上的函数 f(x)满足 f(x+y)=f(x)+f(y), 且当 x>0 时, <0, f(x) 求证 f(x)为奇函数且在定义 域为单调递减。
解:(1)(x)=g(x)+h(x)∴(-x)=-g(x)+h(x) 1 ∴h(x)= [(x)+(-x)] 2 1 1 ∴g(x)= [(x)-(-x)]= x 2 2 x ∴h(x)=(x)-g(x)=lg(10 +1)- .选 C 2
x
(2)设 (x)是(-∞,+∞)上的奇函数,(x+2) =-(x),当 0≤x≤1,(x)=x,则 (7.5)= A.0.5 B。-0.5 C。1.5 D。-1.5
2 +1 ∴(-x)=-x x =(x)∴(x)为偶函数。 2(1-2 )
-x-1(-x<0) (2)(-x)=0(-x=0) -x+1(-x>0) -(x-1)(x<0) (x=0)=-(x) =0 -(x+1)(x>0)
(-x)=-(x) ∴(x)为奇函数
例 2. 已知函数 (x)的定义域在 R 上, 对任意 x, y∈R 有 (x+y)+(x-y)=2(x)(y)且 (0)≠0 (1)求证:(0)=1; (2)求证:(x)为偶函数; c (3)若存在常数 c,使 ( )=0 2 解: (1)(x+y)+(x-y)=2(x)(y) 令 x=y=0,∵(0)≠0∴(0)=1 (2)x=0,(y)+(-y)=2(0)(y) =2 (y),∴(-y)=(y)为偶函数
[点评]1.奇偶函数的以下性质有利于解题 (1)两奇函数的和是奇函数,积商是偶数; (2)两偶函数的和与积、商都是偶数; (3)一奇一偶的两个函数积商都是奇函数; 2.函数的奇偶性是对整个定义域而言,因 此讨论奇偶性首先看定义域, 它关于原点对称是 它具有奇偶性的必要而不充分条件 3.解题中要注意以下性质的灵活运用, (1)(x)为偶函数 (x)=(|x|) (2)若奇函数 (x)的义定域包含 0 则 (0)=0
c c (3)①以 x+ , 分别代换 x,y 2 2 c c 则 (x+c)+(x)=2(x+ )( ) 2 2 c ∵ ( )=0,∴( x +c)=-(x) 2 ②[(x+c)+c]=-(x+c)=(x) ∴ y=(x)是以 2c 为周期的函数。
例 3.(2001 高考题)设 (x)是定义在 R 上的偶函 1 数,其图象关于直线 x=1 对称,对任意 x1,x2∈[0, ]都 2 有 (x1+x2)=(x1)(x2)且 (1)=a>0. 1 1 (Ⅰ)求 ( )及 ( ) 2 4 (Ⅱ)证明 (x)是周期函数
(2)(x+4)=-(x+2)=(x) ∴T=4,(7.5)=(7.5-8)=(-0.5) =-(0.5)=-0.5。故选 B
例 2:判断下列函数的奇偶性。
2x+1 解(1)定义域{x|x≠0}, (x)=x x 2(2 -1)
x
x-1(x<0) 1 1 (1)(x)=x x>0)
[练 1] 判断下列函数的奇偶性。 (1)(x)= 1-x + x -1, 2 (2)(x)=lg( x +1+x)
2 2
解: 1] 1) [练 ( (x)的定义域为{- 1,1}且 (1)=(1)=0,所以 (x)既 奇又偶
(2)(x)+(-x)=lg( x +1+x) 2 +lg( x +1-x)=lg1=0 ∴(x)为奇函数 [点评] (x)+(-x)=0(x)=-(-x)