2011年中考数学模拟卷(6)
备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案

备考2022年中考数学一轮复习-图形的变换_平移、旋转变换_平移的性质-单选题专训及答案平移的性质单选题专训1、(2017南山.中考模拟) 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A . 2B . 3C . 4D . 52、(2017河西.中考模拟) 如图,菱形ABCD的对角线AC=3cm,把它沿对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形ENCM的面积之比为()A . 9:4B . 12:5C . 3:1D . 5:23、(2019山西.中考模拟) 若将抛物线先向左平移1个单位长度,再向下平移2个单位长度,则所得抛物线的解析式为()A .B .C .D .4、(2017巴彦淖尔.中考模拟) 如图,将△ABE向右平移2cm得到△DCF,如果△ABE 的周长是16cm,那么四边形ABFD的周长是()A . 16cmB . 18cmC . 20cmD . 21cm5、(2019瑞安.中考模拟) 如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)和(1,3),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A在直线y=x﹣1上,则点B与点O′之间的距离为()A . 3B . 4C . 3D .6、(2019鄞州.中考模拟) 如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A . 4,30°B . 2,60°C . 1,30°D . 3,60°7、(2017嘉兴.中考真卷) 如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A . 向左平移1个单位,再向下平移1个单位B . 向左平移个单位,再向上平移1个单位 C . 向右平移个单位,再向上平移1个单位 D . 向右平移1个单位,再向上平移1个单位8、(2017安徽.中考模拟) 把抛物线y=﹣经()平移得到y=﹣﹣1.A . 向右平移2个单位,向上平移1个单位B . 向右平移2个单位,向下平移1个单位C . 向左平移2个单位,向上平移1个单位D . 向左平移2个单位,向下平移1个单位9、(2015宁德.中考真卷) 如图,将直线沿着AB的方向平移得到直线,若∠1=50°,则∠2的度数是()A . 40°B .50°C . 90°D . 130°10、(2019惠民.中考模拟) 如图,一条抛物线与x轴相交于M、N两点(点M在点N 的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(一2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A . -1B . -3C . -5D . -711、(2017莱西.中考模拟) 如图,面积为6cm2的△ABC纸片沿BC方向平移至△DEF 的位置,平移的距离是BC长的2倍,则△ABC纸片扫过的面积为()A . 18cm2B . 21cm2C . 27cm2D . 30cm212、(2017青岛.中考模拟) 已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为()A . 6B . 9C . 12D . 1813、(2017冠.中考模拟) 已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′与点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A . (3,0)B . (3,﹣3)C . (3,﹣1)D . (﹣1,3)14、(2017天桥.中考模拟) 如图,△DEF是由△ABC通过平移得到,且点B,E,C,F 在同一条直线上.若BF=14,EC=6.则BE的长度是()A . 2B . 4C . 5D . 315、(2016济南.中考真卷) 如图,在6×6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()A . 向右平移2个单位,向下平移3个单位B . 向右平移1个单位,向下平移3个单位C . 向右平移1个单位,向下平移4个单位D . 向右平移2个单位,向下平移4个单位16、(2018濮阳.中考模拟) 如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为( )A .B .C .D .17、(2017洛宁.中考模拟) 已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A . (1,2)B . (2,9)C . (5,3)D . (﹣9,﹣4)18、(2017城.中考模拟) 如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A . 5B . 10C . 15D . 2019、(2011茂名.中考真卷) 如图,⊙O1、⊙O2相内切于点A,其半径分别是8和4,将⊙O2沿直线O1O2平移至两圆相外切时,则点O2移动的长度是()A . 4B . 8C . 16D . 8或1620、(2018柳北.中考模拟) 如图,是由沿BD所在的直线平移得到的,AE,BF的延长线交于点C,若,则的度数是A .B .C .D .21、(2013海南.中考真卷) 如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A . AB=BCB . AC=BC C . ∠B=60°D . ∠ACB=60°22、(2019乐山.中考真卷) 下列四个图形中,可以由下图通过平移得到的是()A .B .C .D .23、(2018宜宾.中考真卷) 如图,将沿边上的中线平移到的位置,已知的面积为9,阴影部分三角形的面积为4.若,则等于()A . 2B . 3C .D .24、(2020湖州.中考模拟) 如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A . 3B . 4C .D . 225、(2020津南.中考模拟) 如图,将沿方向平移得到,使点B 的对应点E恰好落在边的中点上,点C的对应点F在的延长线上,连接.下列结论一定正确的是()A .B .C .D . 平分26、(2020菏泽.中考真卷) 在平面直角坐标系中,将点向右平移3个单位得到点,则点关于x轴的对称点的坐标为()A .B .C .D .27、(2020龙华.中考模拟) 下列命题中,是真命题的是()A . 三角形的外心到三角形三边的距离相等B . 顺次连接对角线相等的四边形各边中点所得的四边形是菱形C . 方程x²+2x+3=0有两个不相等的实数根D . 将抛物线y=2x²-2向右平移1个单位后得到的抛物线是y=2x²-328、(2020温州.中考模拟) 在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL 交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。
初中数学 北京市中考模拟数学考试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图所示,点到直线的距离是()A.线段的长度 B.线段的长度C.线段的长度 D.线段的长度试题2:若代数式有意义,则实数的取值范围是()A. B. C. D.试题3:右图是某个几何题的展开图,该几何体是()评卷人得分A.三棱柱 B.圆锥 C.四棱柱 D.圆柱试题4:实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.试题5:下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C. D.试题6:若正多边形的一个内角是150°,则该正多边形的边数是()A. 6 B. 12 C. 16 D.18试题7:如果,那么代数式的值是()A. -3 B. -1 C. 1 D.3试题8:下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多试题9:小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15跑过的路程大于小林前15跑过的路程D.小林在跑最后100的过程中,与小苏相遇2次试题10:下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③试题11:写出一个比3大且比4小的无理数:______________.试题12:某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________.试题13:如图,在中,分别为的中点.若,则.试题14:如图,为的直径,为上的点,.若,则.试题15:如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由得到的过程:.试题16:下图是“作已知直角三角形的外接圆”的尺规作图过程已知:,求作的外接圆.作法:如图.(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点;(2)作直线,交于点;(3)以为圆心,为半径作.即为所求作的圆.请回答:该尺规作图的依据是.试题17:计算:.试题18:解不等式组:试题19:如图,在中,,平分交于点.求证:.试题20:数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:,(____________+____________).易知,,_____________=______________,______________=_____________.可得.试题21:关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求的取值范围.试题22:如图,在四边形中,为一条对角线,,为的中点,连接.(1)求证:四边形为菱形;(2)连接,若平分,求的长.试题23:如图,在平面直角坐标系中,函数的图象与直线交于点.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,过点作平行于轴的直线,交函数的图象于点.①当时,判断线段与的数量关系,并说明理由;②若,结合函数的图象,直接写出的取值范围.试题24:如图,是的一条弦,是的中点,过点作于点,过点作的切线交的延长线于点.(1)求证:;(2)若,求的半径.试题25:某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩人数部门甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:.估计乙部门生产技能优秀的员工人数为____________;.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)试题26:如图,是所对弦上一动点,过点作交于点,连接,过点作于点.已知,设两点间的距离为,两点间的距离为.(当点与点或点重合时,的值为0)小东根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了与的几组值,如下表:0 1 2 3 4 5 60 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当为等腰三角形时,的长度约为____________.试题27:在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),与轴交于点. (1)求直线的表达式;(2)垂直于轴的直线与抛物线交于点,与直线交于点,若,结合函数的图象,求的取值范围.试题28:在等腰直角中,,是线段上一动点(与点不重合),连接,延长至点,使得,过点作于点,交于点.(1)若,求的大小(用含的式子表示).(2)用等式表示线段与之间的数量关系,并证明.试题29:在平面直角坐标系中的点和图形,给出如下的定义:若在图形上存在一点,使得两点间的距离小于或等于1,则称为图形的关联点.(1)当的半径为2时,①在点中,的关联点是_______________.②点在直线上,若为的关联点,求点的横坐标的取值范围.(2)的圆心在轴上,半径为2,直线与轴、轴交于点.若线段上的所有点都是的关联点,直接写出圆心的横坐标的取值范围.试题1答案:B试题2答案:D试题3答案:A试题4答案:C试题5答案:A试题6答案:B试题7答案:C试题8答案:B试题9答案:D试题10答案:B试题11答案:(答案不唯一)试题12答案:试题13答案:3试题14答案:25°试题15答案:试题16答案:试题17答案:=3 试题18答案:试题19答案:试题20答案:试题21答案:试题22答案:试题23答案:试题24答案:试题25答案:试题26答案:试题27答案:试题28答案:试题29答案:。
2011全国中考数学模拟汇编一13.一元一次不等式(组)的应用

一元一次不等式(组)的应用一、选择题1.(河北省中考模拟试卷)某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元 B .100元 C .120元D .160元答案:C2.(2011广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( ) A 、b >3 B 、b <3 C 、b >-3 D 、b <-3 答案:D二、填空题1、(2011山西阳泉盂县月考)如果点P (x,y )关于原点的对称点为(-2,3)则x+y= . 【答案】x+y=2+(—3)=-1三、解答题1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元? 答案:(1)设动漫公司第一次购进x 套玩具,由题意得:6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以动漫公司两次共购进这种玩具600套 (2)设每套玩具的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套玩具的售价至少是200元.2、(2011年北京四中模拟26)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.问:(1)该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值?)(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年平均盈利额(精确0.1万元)答案:(1)设该船厂运输X年后开始盈利,72X-(120+40X)﹥0,X﹥154,因而该船运输4年后开始盈利(2)()()157********25.315⨯---≈(万元)[来源:Z*xx*]3、(2011年浙江省杭州市模拟)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个………1分依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx…………………………………………3分解得:7≤ x≤ 9 ………………………………………………………………4分∵x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+60 ………………………………………………6分∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元) …………………………………7分∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个, 总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱. …………………………………………… 8分4. (2011武汉调考模拟)已知△ABC 在平面直角坐标系中的位置如图所示.点A 和点C 坐标;②画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ③求点A 旋转到点A ′所经过的路线长.(结果保留π).【答案】.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π5(北京四中模拟)解不等式组:⎩⎨⎧-≥->+.410)35(3,425x x x x 并把解集在数轴上表示出来.解: 解不等式x x 425>+,得2->x .解不等式x x 410)35(3-≥-,得1≤x 把不等式的解集在数轴上表示出来.12≤<-∴x6 (2011湖北省天门市一模)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
备考2023年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换

备考2023年中考数学二轮复习-函数_一次函数_一次函数图象与几何变换一次函数图象与几何变换专训单选题:1、(2018东胜.中考模拟) 关于直线y=﹣2x+1,下列叙述正确的是()A . 图象过点(1,0)B . 图象经过一,二,四象限C . y随x的增大而增大D . 是正比例函数y=﹣2x的图象向右平移一个单位得到的2、(2011.中考真卷) 如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A . y=x﹣2B . y=﹣x+2C . y=﹣x﹣2D . y=﹣2x﹣13、(2018毕节.中考模拟) 在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A . y=2x+1B . y=2x﹣1C . y=2x+2D . y=2x﹣24、(2020西安.中考模拟) 在平面直角坐标系中,将直线y=3x的图象向左平移m 个单位,使其与直线y=﹣x+6的交点在第二象限,则m的取值范围是()A . m>2 B . m<2 C . m>6 D . m<65、(2020沈阳.中考模拟) 将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A .B .C .D .6、(2020温州.中考模拟) 将直线y=-x+a的图象向右平移2个单位后经过点A(3,3),则a的值为( )A . 4B . -4C . 2D . -27、(2020青山.中考模拟) 直线y=kx沿y轴向下平移4个单位长度后与x轴的交点坐标是(-3,0),以下各点在直线y=kx上的是()A . (-4,0)B . (0,3)C . (3,-4)D . (-4,3)8、(2021陕西.中考模拟) 平面直角坐标系中,直线沿轴向右平移个单位后恰好经过,则()A . -1B . 2C . -4D . -39、(2021新华.中考模拟) 把直线向上平移m个单位后,与直线的交点在第二象限,则m可以取得的整数值有()A . 4个B . 5个C . 6个D . 7个10、将直线向下平移2个单位长度,所得直线的表达式为()A . B . C . D .填空题:11、(2017路南.中考模拟) 如图,在平面直角坐标系中,直线y=2x与反比例函数y= 在第一象限内的图象交于点A(m,2),将直线y=2x向下平移4个单位后与反比例函数y= 在第一象限内的图象交于点P,则k=________;△POA的面积为________.12、(2019丹阳.中考模拟) 如图,在平面直角坐标系中,A(1,0),B(3,0),点C在第一象限,∠ABC=90°,AC= ,直线l的关系式为:.将△ABC沿x轴向左平移,当点C落在直线l上时,线段AC扫过的面积为________平方单位.13、(2017深圳.中考模拟) 将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为________.14、(2019永康.中考模拟) 将函数y=2x+1的图象向左平移2个单位所得图象的函数解析式为________.15、(2019荆州.中考模拟) 将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是________.16、(2016益阳.中考真卷) 将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第________象限.17、(2017深圳.中考模拟) 将函数(b为常数)的图象位于轴下方的部分沿轴翻折至其上方后,所得的折线是函数(b为常数)的图象.若该图象在直线y=2下方的点的横坐标满足,则b的取值范围为________.18、(2019白云.中考模拟) 把抛物线向上平移个单位,再向左平移个单位,得到的抛物线的顶点坐标是________.解答题:19、(2017河西.中考模拟) 如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P 点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.20、(2015厦门.中考真卷) 如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB的面积是2.求证:四边形ABCD是矩形.21、(2015武汉.中考模拟) 已知等边△ABC.(1)如图①,P为等边△ABC外一点,且∠BPC=120°,试猜想线段BP、PC、AP 之间的数量关系,并证明你的猜想;(2)如图②,P为等边△ABC内一点,且∠APD=120°,求证:PA+PD+PC>BD;(3)在(2)的条件下,若∠CPD=30°,AP=4,CP=5,DP=8,求BD的长22、(2019吉林.中考模拟) 在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是.(2)当t=时,原函数为y=x2﹣2x①图象G所对应的函数值y随x的增大而减小时,x的取值范围是.②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.23、(2020郑州.中考模拟) 如图所示,直线与反比例函数的图象交于点,,与坐标轴交于A、B两点.(1)求一次函数与反比例函数的解析式;(2)观察图象,当时,直接写出不等式的解集;(3)将直线向下平移个单位,若直线与反比例函数的图象有唯一交点,求的值.一次函数图象与几何变换答案1.答案:B2.答案:B3.答案:C4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:。
2011年浙江省宁波市中考数学试卷(含参考答案)

2011年宁波市中考数学试卷试 题 卷 Ⅰ一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中是正整数的是( )A.1-B. 2C.0.5D.2 2.下列计算正确的是( ) A.632)(a a =B. 422a a a =+C.a a a 6)2()3(=⋅D.33=-a a3.不等式1x >在数轴上表示正确的是( ) A.B.C.D.4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为( ) A.5106057.7⨯人 B.6106057.7⨯人C. 7106057.7⨯人D. 71076057.0⨯人5.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是( ) A.)2,3(- B.)2,3(- C.)3,2(- D.)3,2( 6.如图所示的物体的俯视图是( )7.一个多边形的内角和是720°,这个多边形的边数是( ) A.4 B. 5 C. 6 D. 78.如图所示,AB ∥CD ,∠E =37°,∠C =20°,则∠EAB 的度数为( ) A. 57° B. 60° C. 63° D.123°(第6题) A. B. C.D.主视方向9.如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为( )A.sin h αB.tan h αC.cos hαD.αsin ⋅h10.如图,Rt △ABC 中,∠ACB =90°,22==BC AC ,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为( )A.4πB.42πC.8πD.82π11.(2011宁波)如图,⊙O 1 的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2 =8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现( )A.3次B.5次C.6次D.7次12.(2011宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A.4m cmB.4n cmC. 2(m +n ) cmD.4(m -n ) cm试 题 卷 Ⅱ二、填空题(每小题3分,共18分) 13.实数27的立方根是 . 14.因式分解:y xy -= .15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:选手 甲 乙 丙 平均数 9.3 9.3 9.3 方差 0.026 0.015 0.032则射击成绩最稳定的选手是 . (填“甲”、“乙”、“丙”中的一个)16.将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为 .17.(2011宁波)如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = cm .18.(2011宁波)如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2(0)y x x=>的图象上,顶点1A 、1B 分别在x 轴、y 轴的正半轴上,再在其右侧作正方形2232B A P P ,顶点3P 在反比例函数2(0)y x x=>的图象上,顶点2A 在x 轴的正半轴上,则点3P 的坐标为 .三、解答题(本大题有8小题,共66分)19.(本题6分)先化简,再求值:)1()2)(2(a a a a -+-+,其中5=a .20.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回..,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.21.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图不能重复)(第21题)图① 图② 图③22.(本题8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整. (2)商场服装部...5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.23.(本题8分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过A 点作AG ∥BD 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.ABCDG E F(第23题)22% 17% 14% 12%16%5% 10% 15% 20%25% 123 45月份商场服装部...各月销售额占商场当月销售 总额的百分比统计图百分比 10090658020 40 60 80100 商场各月销售总额统计图12345销售总额(万元) 月份(第22题)图②图①24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用.25.(2011宁波)(本题10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b a,若Rt△ABC是奇异三角形,求::a b c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点, C、D在直径AB两侧,若在⊙O内存在点E,使得AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.26.(2011宁波)(本题12分)如图,平面直角坐标系xOy中,点A的坐标为,点B的坐标为(6,6),抛物线经过A、O、B三点,连结OA、OB、AB,(2,2)线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连结AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.2011年宁波市中考数学试卷参考答案及评分标准一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、(2011浙江宁波,1,3)下列各数中是正整数的是( )A 、-1B 、2C 、0.5D 、2【考点】实数。
徐州市2011年中考数学模拟试题及答案

徐州市2011年初中毕业、升学模拟考试(1)本卷满分:120分 考试时间:120分钟一、选择题(本大题共8小题,每小题2分,共16分,在每小题给出的四个选项中,有且只有一项是正确的,请把正确选项的字母代号填在题后的括号内). 1. 15-的相反数是( ) A .5B .5-C .15-D .152.据新华社2010年2月9日报道:受特大干旱天气影响,我国西南地区林地受灾面积达到43050000亩.用科学计数法可表示为( ) A.810305.4⨯亩; B. 610305.4⨯亩; C. 71005.43⨯亩; D. 710305.4⨯亩 3.计算23()ab 的结果是( )A .5abB .6abC .35a bD .36a b4.2的平方根是( )A .4B .2C .2-D .2±5.函数11y x =-的自变量x 的取值范围是( ) A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1 6.下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.7.下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程1312112-=+--x x x 的解是0=x ;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有( ) A.1个 B.2个 C.3个 D.4个BO(第16题)CA8.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A.Q P > B. Q P = C. Q P < D.不能确定二、填空题(每小题2分,共20分) 9.数据-1,0,2,-1,3的众数为 . 10.分解因式:2ax ax -= 11. 计算123-的结果是 . 12.若代数式3x+7的值为-2,则x= .13.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为 ▲ . 14.不等式组2110x x >-⎧⎨-⎩,≤的解集是 。
中考数学模拟试题及答案8

2011年中考模拟题数 学 试 卷(八)*考试时间120分钟 试卷满分120分一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac <2.一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是( )A .AB=CDB .AB ≤CDC .CD AB > D .AB ≥CD3.如图,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点 C ,则AB 的长为( ) A .4cm B .5cm C .6cm D .8cm4.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是 双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会A .逐渐增大B .不变C .逐渐减小D7.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A . 甲B . 乙C . 丙AD.不能确定8.如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是()A833m B.4 mC.43D.8 m9.在同一直角坐标系中,函数y mx m=+和函数222y mx x=-++(m是常数,且0m≠)的图象可能..是()10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是()A.20 B.22C.24 D.2611.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()12.小强从如图所示的二次函数2y ax bx c=++的图象中,观察得出了下面五条信息:(1)0a<;(2)1c>;(3)0b>;(4)0a b c++>;(5)0a c-+>.你认为其中正确信息的个数有()A.2个 B.3个C.4个D.5个xOyx-2- 4A DCBO42yO 2- 4yxO4- 2yx取相反数×2+4输入x输出yC D150°hx1y21O-1二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:体温(℃) 36.1 36.2 36.3 36.4 36.5 36.6 36.7 次 数2346312则这些体温的中位数是 ℃.16.观察下列等式: 221.4135-=⨯;222.5237-=⨯; 223.6339-=⨯ 224.74311-=⨯;…………则第n (n 是正整数)个等式为________.17.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为 _.三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分) 先化简,再求值:232224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.AB CDE A ′电视机月销量扇形统计图第一个月 15%第二个月 30%第三个月 25%第四个月图11-120.(本小题满分8分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1、2、3、4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ; (2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)月图11-2第一 第二 第三 第四电视机月销量折线统计图某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的路程.......S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?23.(本小题满分10分)已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 上的点O 为圆心,OB 的长为半径的圆与AB 交于点E ,与AC 切于点D .(1)求证:BC =CD ; (2)求证:∠ADE =∠ABD ;(3)设AD =2,AE =1,求⊙O 直径的长.•ABCD EO24.(本小题满分10分)在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE 的中点是M.(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM = MH,FM⊥MH;(2)将图-1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)图1AHC(M) D E BF G(N)G图2AHCDEBF NMAHCD图3BF GMN25.(本小题满分12分)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,26.(本小题满分12分)如图,平行四边形ABCD 中,AB =5,BC =10,BC 边上的高AM =4,E 为BC 边上的一个动点(不与B 、C 重合).过E 作直线AB 的垂线,垂足为F . FE 与DC 的延长线相交于点G ,连结DE ,DF . (1) 求证:ΔBEF ∽ΔCEG . (2)当点E 在线段BC 上运动时,△BEF 和△CEG 的周长之间有什么关系?并说明你的理由. (3)设BE =x ,△DEF 的面积为y ,请你求出y 和x 之间的函数关系式,并求出当x 为何值时,y 有最大值,最大值是多少?MBDCEF Gx A2011年中考模拟题(八) 数学试题参考答案及评分标准一、选择题二、填空题13.>; 14.64; 15.36.4; 16.22(3)3(23)n n n +-=⨯+; 17.3; 18. 三、解答题 19.解:322xx x x ⎛⎫-⎪-+⎝⎭÷224x x -=()()()()()()32222222x x x x x x x x x +---+-+. ······················· 3分 =x +4 ·························································································· 5分 当x =3时,原式=3+4 =7 ······························································································· 8分20.解:抽中一等奖的概率为161, ···································································· 3分抽中二等奖的概率为163, ·········································································· 5分抽中三等奖的概率为43. ··········································································· 8分21.解:(1)30%; (2)如图1; (3)8021203=; (4)由于月销量的平均水平相同,从折线的走势看, A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.22.解:(1)解法一:从图象可以看出:父子俩从出发到相遇时花费了15分钟 1分电视机月销量折线统计图设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分 依题意得:15x+45x =3600. ·························· 2分 解得:x =60.所以两人相遇处离体育馆的距离为 60×15=900米.所以点B 的坐标为(15,900). ···················· 3分 设直线AB 的函数关系式为s =kt+b (k ≠0). ······· 4分由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,.∴直线AB 的函数关系式为:1803600S t =-+. ·········································· 6分 解法二:从图象可以看出:父子俩从出发到相遇花费了15分钟. ·································· 1分 设父子俩相遇时,小明走过的路程为x 米. 依题意得:360031515x x-=····································································· 2分 解得x =900,所以点B 的坐标为(15,900) ·················································· 3分以下同解法一.(2)解法一:小明取票后,赶往体育馆的时间为:9005603=⨯ ·································· 7分 小明取票花费的时间为:15+5=20分钟. ∵20<25∴小明能在比赛开始前到达体育馆.················································ 9分解法二:在1803600S t =-+中,令S =0,得01803600t =-+. 解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆. ··································· 9分23.解:(1)∵∠ABC =90°,∴OB ⊥BC . ·················································· 1分 ∵OB 是⊙O 的半径,∴CB 为⊙O 的切线. ········································ 2分 又∵CD 切⊙O 于点D ,∴BC =CD ; ·················································· 3分 (2)∵BE 是⊙O 的直径,∴∠BDE =90°.∴∠ADE +∠CDB =90°. ································ 4分 又∵∠ABC =90°,∴∠ABD +∠CBD =90°. ································································ 5分 由(1)得BC =CD ,∴∠CDB =∠CBD .∴∠ADE =∠ABD ; ······································································· 6分 (3)由(2)得,∠ADE =∠ABD ,∠A =∠A .•ABCD EO∴△ADE ∽△ABD . ······································································· 7分 ∴AD AB =AEAD . ············································································· 8分 ∴21BE +=12,∴BE =3,······························································· 9分 ∴所求⊙O 的直径长为3. ······························································ 10分24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形.(3)是.25.解:(1) M (12,0),P (6,6). ····································································· 2分 (2) 设抛物线解析式为:6)6(2+-=x a y . ························································· 3分∵抛物线6)6(2+-=x a y 经过点(0,0), ∴6)60(02+-=a ,即61-=a 4分 ∴抛物线解析式为:x x y x y 261,6)6(6122+-=+--=即 . 5分(3)设A (m ,0),则B (12-m ,0),)261,12(2m m mC +--,)261,(2m m m D +-. ······························ 7分 ∴“支撑架”总长AD+DC+CB = )261()212()261(22m m m m m +-+-++-图2AHCDEBFG N MP=15)3(311223122+--=++-m m m . ·························································· 10分 ∵ 此二次函数的图象开口向下.∴ 当m = 3米时,AD+DC+CB 有最大值为15米. ··················································· 12分 26. (1) 因为四边形ABCD 是平行四边形, 所以AB DG ································ 1分 所以,B GCE G BFE ∠=∠∠=∠所以BEF CEG △∽△ ················································································· 3分 (2)BEF CEG △与△的周长之和为定值.······················································ 4分 理由一:过点C 作FG 的平行线交直线AB 于H ,因为GF ⊥AB ,所以四边形FHCG 为矩形.所以 FH =CG ,FG =CH 因此,BEF CEG △与△的周长之和等于BC +CH +BH由 BC =10,AB =5,AM =4,可得CH =8,BH =6, 所以BC +CH +BH =24 ·················································································· 6分 理由二:由AB =5,AM =4,可知在Rt △BEF 与Rt △GCE 中,有:4343,,,5555EF BE BF BE GE EC GC CE ====,所以,△BEF 的周长是125BE , △ECG 的周长是125CE又BE +CE =10,因此BEF CEG 与的周长之和是24. ······································ 6分(3)设BE =x ,则43,(10)55EF x GC x ==- 所以21143622[(10)5]2255255y EF DG x x x x ==-+=-- ································ 8分 配方得:2655121()2566y x =--+. 所以,当556x =时,y 有最大值. ·································································· 10分最大值为1216.····························································································· 12分A M xH GFED CB。
2011年北京中考数学试题+答案+解析

2011年北京中考暂时告一段落。
网校老师对今年的北京中考试题与初三强化提高班的课程、模拟题进行了一些分析和对比。
对比发现:网校课程及讲义与今年中考的考查知识点完全契合,95%左右的题目与课程讲义中给出的题目所考查的知识点完全相同,约有65%的题目与讲义中老师给出的题目只差一些具体数字(解题方法完全相同)。
这其中,函数图像的交点问题、常见辅助线的构造问题、平移旋转问题、中心对称与轴对称问题、二次函数图像与解析式、函数(二次函数)与圆综合题等都结合近年的中考真题做了专题讲解与复习。
可以这样说,学过这个班级的同学,对考题中90%的题目不陌生,甚至个别题目老师还"讲过"。
下面是网校老师对2011年北京中考数学试卷的分析及原题解析,供大家参考。
一、题型、题量及分值比例分布基本涵盖了《考试说明》所要求的所有知识点,如:数与代数、函数、三角形、圆、统计与概率等等。
真题与考试说明相比,题量上有所减少。
共25道题目,共72分。
难度比约为:5:3:2填空题选择题解答题4道16分8道32分13道72分二、总体特点1、重视基础,紧扣教材和考试说明。
绝大多说题目都非常注重对基本知识、方法、思想等的考查,很多题目源于书本或者以书本为基础;此类题目分值约占总分的75%2、理论与实际生活相结合。
真题中出现了人口普查、温度统计、京通公交快速通道、汽车保有量与尾气排放等问题。
3、出现新题型。
第12题是新出现的一个找规律的题目,难度不是很大;4、压轴题相对较难,与2010年相比难度有所下降。
但对同学抽象思维能力、分类讨论思想等的能力要求较高。
里面出现了一个容易被忽略的问题--半圆应该不包括直径。
三、真题详解及讲义相似度对比一、选择题(本题共32分,每小题4分)下面各题均有4个选项,其中只有一个是符合题意的.1、﹣的绝对值是()A、﹣B、C、﹣D、【考点】绝对值。
【难度】容易【解析】解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是.故本题答案选D.【点评】本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.本题在北京近年中考一般会考相反数或者绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考数学模拟卷(6)南昌市育新学校 骆文娟(时间:120分 满分:120分)一、选择题(本大题共8小题,每小题3分,共24分) 1.在1、-1、-2这三个数中,任意两个数之和的最大值是 ( )A .-3B .-1C .0D .22.实数a 、b 在数轴上的位置如图所示,则 ( ) A. b > 0 B. 0>a C. b >a D. a >b3.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( ) A .50° B .30° C .20° D .15°4.下列几何体,主视图是三角形的是( )A .B .C .D .5.下列计算中,正确的是 ( )A .3262()a b a b =B .2323a a a -=- C .221a a a a÷⨯= D .()236a a --= 6.某学校有1100名初三学生,想要知道他们在学业水平考试中成绩为A 等、B 等、C 等、D 等的人数各是多少,则需要做的工作是 ( )A .求平均成绩B .进行频数分布C .求极差D .计算方差 7.下列关于二次函数2y x =的说法不.正确的是( ) A .开口向上 B.顶点在原点 C.对称轴是y 轴D.把抛物线2y x =向右平移1个单位所得抛物线是2(1)y x =+8. 某班级为准备毕业联欢会,想购买价格分别为2元、4元和10元的三种物品,每种物品至少购买一件,共16件,恰好用50元,若2元的奖品购买x 件,4元的奖品购买了5件,则符合要求的x 的值为﹙ ﹚. A .10 B .1 1 C . 12 D . 13 二、填空题 (本大题共8小题,每小题3分,共24分)9. 据有关部门统计,去年我省大约有40.10万名考生参加了中考,40.10万这个数用科学记数法可表示为10.请你写 一个一元二次方程,使它满足如下两个条件:(1)二次项系数为1;(2)方程有一个根为零.这个方程可以是___________11.( 在下面(Ⅰ)、(Ⅱ)两题中任选一题,若两题都做按第(Ⅰ)题计分) (Ⅰ). 化简= .(Ⅱ).(可用计算器) .第2题1 2 3第3题12.如图是小明、小丽家与学校位置的示意图,如果以学校和小明家所在位置分别为(-1,0),(-4,0),则小丽家所在位置是 .13.一副三角板如图所示放置,(点E 、F 分别落在AB 、AC 边上,顶点A 在△EFD 的外部),则∠DFA-∠AED= 度.14. 方程31144x x x-+=--的解为;15. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则S =16.如图,将等腰直角三角形按图示方式翻折,若DE =2,下列说法正确的序号是 (多填或错填得0分,少填酌情给分)① △BC ′D 是等腰三角形;②△CED 的周长等于BC 的长;③DC ′平分∠BDE ; ④A B长为2.三、(本大题共3小题,第17题6分,第18、19均为7分,共20分). 17.计算:0( 3.14)π- 26018. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨<⎪⎩ 并写出它的整数解.19. 阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校全校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表(1)是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题: (1)求该校九年级的人数占全校总人数的百分率.(2)求出表(1)中A B ,的值.(3)该校学生平均每人读多少本课外书?表(1)四、(本大题共2小题,每小题8分,共16分)20.如图,将一个转盘3等份,并在每一份内注上“红、蓝、黄”标记. 小明和小亮用这个转盘进行“配紫色”游戏. 游戏规则如下:连续转动两次转盘,如果两次转盘转出的颜色相同或配成紫色(若其中一次转盘转出蓝色,另一次转出红色,则可配成紫色),那么小明赢,否则小亮赢.⑴若仅转动转盘两次,两次转出的颜色恰好配成紫色,则该事件属于 事件;(填“必然”或“随机”)⑵你认为谁获胜的概率大?请通过“画树状图”或“列表”的方法加以分析说明.21.如图,每个小方格都是边长为1个单位的小正方形,B ,C ,D 三点都是格点(每个小方格的顶点叫格点). (1)找出格点A ,连接AB ,AD 使得四边形ABCD 为菱形; (2)画出菱形ABCD 绕点A 逆时针旋转90°后的菱形AB 1C 1D 1,并求点C 旋转到点C 1所经过的路线长.五、(本大题共2小题,第22题8分,第23题9分,共17分)22.如图,图甲中在等边△ABC 的三边上各取一点D 、E 、F ,该内接△DEF 的周长记为a ,△ABC 的周长的一半记为b .(1)乙图是甲图通过哪种变换得到的?(2)在图乙中,连结4FF ,折线12234FED F E D F 之长与线段F 4F 之长 分别是多少(用含a 或b 的代数式表示)?(3)请你指出a 与b 的大小关系?并说说你的理由.23. 已知AB 两地相距1000米,甲、乙二人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度x 米/分钟与y 米/BC D分钟)(y x >,甲先以x 米/分钟的速度行驶前一半路程,然后以y 米/分钟的速度行完后一半路程;乙先以y 米/分钟的速度行驶前一半时间,然后以x 米/分钟的速度行完后一半时间.(1)甲从A 地到达B 地的时间为 分钟,乙从A 地到达B 地的时间为 分钟(用含有x 和y 的代数式表示).(2)甲、乙二人谁先到达B 地?为什么?(3)如图是甲从A 地到达B 地所行驶的路程s 与时间t 函数图象,请你在图中画出相应的乙从A 地到达B 地所行驶的路程s 与时间t 函数图象. 六、(本大题共2小题,第24题9分,第25题10分,共19分)24. 如图,在⊙O 中,∠AOB=120°,P 是弧AB 上一动点(P 不与A 、B 重合),PM ⊥OA 于M ,PN ⊥OB 于N ,(1)当P 是 AB 的中点(如下图)时,分别延长PM ,PN 交⊙O 于C 、D ,连结CD ,试判断△CPD 的形状并用等式表示CD 与MN 之间的数量关系(不要证明); (2)如下图,当P 不一定为 AB 的中点,线段MN的长度是否发生变化?请证明你的结论.25.如图,一张∠CAB=30°的直角△ABC 纸片,如图所示放在直角坐标系中,直角边AB 与y 轴重合,中位线OD 与x轴重合,D(-1,0),并有抛物线2y x x m =+经过B 点. (1).求m 的值;(2).试探究直角△ABC 纸片绕点B 顺时针旋转多少度时,纸片的三个顶点都落在抛物线上?并在备用图中添画抛物线和旋转后的纸片位置(设点A 、D 、O 、C 旋转后分别落在点F 、G 、P 、E 位置上),然后说明其理由;(3).在(2)中,若沿GP 剪开,四边形BEGP 不动,△FGP 经过怎样的变换,纸片被剪开的两部分可以组成一个菱形?并问菱形共有几个顶点落在抛物线上?请在回答以上两问题后,再分别给予证明.参考答案一、选择题(本大题共8小题,每小题3分,共24分) 1.C ,2.D ,3.C .4.C ,5.A ,6.B ,7.D ,8.A. 二、填空题 (本大题共8小题,每小题3分,共24分) 9.4.010×10510.如: 2x +x=0,11.(Ⅰ).Ⅱ).4, 12.(3 ,2)13.45,14.x=3 15.4, 16.①②④三、(本大题共3小题,第17题6分,第18、19均为7分,共20分). 17.解:原式23(1122=-⨯+-+91122=-+-+7=- 18.解:解不等式①得:1x ≥- 解不等式②得:3x <∴不等式组的解集为:13x -≤< ∴整数解为:-1,0,1,219.(1)38% (2)A =0.25 B =840 (3)2本 四、(本大题共2小题,每小题8分,共16分)20. ⑴随机;⑵列表如下:或树状图(略)由表或图可知,共有9种可能的结果,其中同色或配成紫色的结果出现5次,∴P (小明赢)=59, P (小亮赢)=49,∴P (小明赢)>P (小亮赢) , ∴小明获胜的概率大. 21.解:(1)画图. (2)画图. AC=4 2 ,21题答案BCDAB 1C 1DC 旋转到C 1所经过的路线长等于2 2 π.五、(本大题共2小题,第22题8分,第23题9分,共17分) 22.解:(1)图乙是将图甲通过五次(对称变换)翻折而得到; (2)由于翻折(对称变换)是全等变换,故EF=EF 1=E 1F 2=E 2F 2=E 2F 3=E 3F 4,可得E 2F 2=EF , 同理:DE= E 1D =E 2D 3,FD=1D F 2=D 3F 4;故折线FED 1F 2E 2D 3F 4=EF+ED 1+D 1F 2+E 2F 2+ E 2D 3+D 3F 4 =2(EF+DE+FD )=a 2; 同理:利用翻折(对称)的性质可知:CF= C 2F 4 又∵CF ∥C 2F 4,∴四边形FCC 2F 4为平行四边形, 故FF 4=CC 2=AB+BC+AC=b 2; (3)综上所述,可得b a >,∵连结F 、F 4两点之间的线中,线段最短. ∴EF+ED 1+D 1F 2+E 2F 2+ E 2D 3+D 3F 4>FF 4, 即b a b a >>,22.23.解:(1)500500x y +,2000x y+ (2).500500x y +-2000x y +=500(4x y xy x y +-+)=2500()()x y x y xy -+∵X >0,y >0, ∴2500()()x y x y xy-+>0, 即:500500x y +>2000x y +方法2,∵甲、乙平均速度分别为:yx xy +2;2y x +.∵)(2)(222y x y x y x y x xy +--=+-+ 又∵y x >∴022<+-+y x y x xy 即22yx y x xy +<+∴乙先到达B 地.(3)如图所示:(只要两对平行线,乙图象的拐点处所用时间为总时间的一半.) 六、(本大题共2小题,第24题9分,第25题10分,共19分) 24.解: (1)△CPD 为等边三角形,CD=2MN ; (2)MN 的长度不发生变化.证明:分别延长PN 、PM 与⊙O 分别交D 、C ,∵PN ⊥OB ,PM ⊥OA ,∠NOM=120°,∴在四边形OMPN 中,∠NOM+∠P=180°则∠P=60°,∠COD=2∠P=120°,劣弧CD 长度和所对圆心角度数不变.即:弦CD 长度不变, ∵PM ⊥OA ,PN ⊥OB , ⇒MC=PM , PN=ND ⇒MN=12CD ,∴MN 边不变. 25.解:(1)在Rt △ABC 中,OD 是中位线,OD=1.则BC=2,D (-1,0).又∵∠CAB=30°∴AC=2BC=4,=∴B (0,,即:m=(2).将直角△ABC 纸片绕点B 顺或逆时针旋转60°后,纸片的三个顶点(E 、F 、B )都在抛物线上.如图1所示.理由:连结BD ,∵BD=12AC=BC=DC , △CDB 是等边三角形 ∴当旋转60°时,C 与原D 点位置重合, 即BC 落在BE 的位置,又∵∠OEB=60° ∴CA 与x 轴重合,即CA 落在EF 的位置, EF=AC=4,∴F(3,0).又∵当x=3时,2330y == ; 当x=-1时,2(1)0y =-+=∴点F (3,0)、E (-1,0)在抛物线上,∴旋转60°后的纸片三个顶点都在抛物线上.(3)如图2,将△FGP 绕P 点顺时针旋转180°时,由于P 是BF 的中点,则点F 与B 重合,设点G 落上1G 上,则四边形EG 1G B 是菱形.并有E 、B 、1G 三个顶点落在抛物线上.证明:由操作可知:变换后PF 与PB 重合,1180GPF FPG ∠+∠= ,11GG GP PG =+=2GF=B 1G =2,∴112GG BG BE EG ==== ∴四边形1EBG G 是菱形.又∵B 1G ∥x 轴, B (0,,B 1G =2∴1G 的坐标为(2,∴当x=2时,42y =-∴1G 也在抛物线上.。