高中电容与带电粒子在电场中的偏转

合集下载

高中物理【电容器与电容 带电粒子在电场中的运动】知识点、规律总结

高中物理【电容器与电容 带电粒子在电场中的运动】知识点、规律总结
3.功能关系 当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解:qUy=12mv2-12mv20, 其中 Uy=Ud y,指初、末位置间的电势差.
电容器在现代科技生活中的应用 [素养必备]
电容器在现代生活中应用十分广泛,其中作为传感器使用的有智能手机上的电容触 摸屏、电容式传声器、电容式加速度计等.
考点一 平行板电容器的动态分析 1.平行板电容器动态变化的两种情况 (1)电容器始终与电源相连时,两极板间的电势差 U 保持不变. (2)充电后与电源断开时,电容器所带的电荷量 Q 保持不变.
自主学习
2.动态分析思路
①根据 C=QU=4επrkSd,先分析电容的变化,再分析 Q 的变化.
U 不变 ②根据 E=Ud 分析场强的变化.
1.放电过程电流随时间变化如图所示,面积表示电容器减少的电荷量.
2.在分析电容器的动态变化时,要先明确电容器是与电源相接还是与电源断开; 电容器接在电源上时,电压不变,E=Ud ;断开电源时,电容器所带电荷量不变,E∝εQrS, 改变两极板距离,场强不变.
3.两个有用的结论 (1)粒子飞出偏转电场时“速度的反向延长线,通过垂直电场方向的位移的中点”. (2)不同带电粒子从同一电场加速再进入同一偏转电场,所有粒子都从同一点射出, 荧光屏上只有一个亮斑. 4.带电粒子偏转问题:离开电场时的偏移量 y=12at2=2qml2vU20d,偏转角 tan θ=vv0y= qlU mv20d.
3.平行板电容器的电容 (1)决定因素:正对面积,介电常数,两板间的距离. (2)决定式: C=4επrkSd.
二、带电粒子在电场中的运动 1.加速问题 (1)在匀强电场中:W=qEd=qU=12mv2-12mv20. (2)在非匀强电场中:W=qU=12mv2-12mv20.

高中物理精品课件:带电粒子在电场中的偏转

高中物理精品课件:带电粒子在电场中的偏转
带电粒子在交变电场中的偏转
1.带电粒子在交变电场中的运动,通常只讨论电压的大小不变、方向做 周期性变化(如方波)的情形. 当粒子垂直于交变电场方向射入时,沿初速度方向的分运动为匀速直线 运动,沿电场方向的分运动具有周期性. 2.研究带电粒子在交变电场中的运动,关键是根据电场变化的特点,利 用牛顿第二定律正确地判断粒子的运动情况.根据电场的变化情况,分段 求解带电粒子运动的末速度、位移等.
3.注重全面分析(分析受力特点和运动规律):抓住粒子运动时间上的周期 性和空间上的对称性,求解粒子运动过程中的速度、位移、做功或确定 与物理过程相关的临界条件. 4.对于锯齿波和正弦波等电压产生的交变电场,若粒子穿过板间的时间 极短,带电粒子穿过电场时可认为是在匀强电场中运动.
例6 (多选)如图甲所示,真空中水平放置的两块长度均为2d的平行金属板P、
Q的间距为d,在两板间加上如图乙所示的周期性变化的电压.在两板左侧紧靠
P板处有一个粒子源A,自t=0时刻开始连续释放初速度大小为v0、方向平行于
金属板的相同带电粒子.t=0时刻释放的粒子恰好从Q板右侧边缘离开电场.已 知电场变化的周期T=2vd0 ,粒子的质量为m, 不计粒子重力及粒子间的相互作用,则
1 2 3 4 5 6 7 8 9 10 11 12 13
根据推论,粒子速度方向的反向延长线过其水平位移
的中点,即 tan α=00..55dl =dl ,因此电子射出电场的偏转 角度可求,选项 B 正确; 电子在平行板间运动为类平抛运动,满足 l=v0t,d2=12at2,eE=ma,则 d2=2Eme (vl0)2, 该式子中,初速度、电场强度都不知道,因此无法求出射出电场的 速度,也无法求出在电场中的运动时间及偏转电压,所以选项A、C、 D均错误.

高中物理 带电粒子在电场中偏转

高中物理 带电粒子在电场中偏转
Eq
+
v0
+
+
+
+
+
-q
- - - - - 类平抛运动
处理方法:
垂直电场方向做匀速直线运动
平行电场方向做初速为零的匀加速直线运动
+ U, d
-q
+
+
+
+
+
vy
θ
v
vx
y
v
- 1)加速度 2)穿越电场的时间 3)偏转角 4)偏转的距离
0
- - - l
6)穿越电场过程中电场 力做功
5)飞离电场时的速度
示波器
偏转电极YY/:使电子束竖直偏转(加信号电压) XX/:使电子束水平偏转(加扫描电压) 荧光屏
思考:如果在yy’上加一信号电压,如 何才能在屏幕上显示这个波形?
答:在xx’上加一锯齿波的扫描电压
如果在YY’之间加如图所示的交变电压, 同时在XX’之间加锯齿形扫描电压,在荧光 屏上会看到什么图形? Y
y Y Y’ X X’
- +
荧 光 屏
X’
Y X Y’
x
偏转电极 L1 L1
L0
例7、质量为5×10-6kg的带电粒子以2m/s速度从 水平放置的平行金属板A、B中央沿水平方向飞入 板间,如图所示.已知板长L=10cm,间距d=2cm ,当UAB为1000V时,带电粒子恰好沿直线穿过板间 ,则该粒子带 负 电,电量为 10-9 C, 200-1800V 当AB间电压在__________范围内时,此带电粒子 能从板间飞出.
L=10cm + +
v0=2m/s
+ + +

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动

高中物理电容公式带电粒子在电场中的运动
下面是高中物理电容器常见公式,以及带电粒子在电场中的运动问题
1、带电粒子在电场中的加速公式是):
W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 其中(Vo=0)
2、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏
转(不考虑重力作用的情况下)
在垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
在平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
带电小球接触后,电量分配3、两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
常见电场的电场线分布要求熟记〔[第二册P98];
电容单位换算:1F=106μF=1012PF;
电子伏(eV)是能量的单位,1eV=1.60×10-19J;。

电容器,偏转粒子在电场中偏转讲解

电容器,偏转粒子在电场中偏转讲解

答案 C
解析显隐
返回目录
结束放映
规律方法
解电容器问题的常用技巧
(1)在电荷量保持不变的情况下,电场强度与板间的距 离无关.
(2)对平行板电容器的有关物理量 Q、E、U、C 进行 讨论时,关键在于弄清哪些是变量,哪些是不变量, 在变量中哪些是自变量,哪些是因变量,抓住 C=
4επrkSd、Q=CU 和 E=Ud 进行判定即可.
返回目录
结束放映
3.平行板电容器 (1)影响因素:平行板电容器的电容与 正对面积 成正比, 与介质的 介电常数 成正比,与两板间的距离成反比.
(2)决定式:C=4επrkSd,k为静电力常量.
返回目录
结束放映
带电粒子在匀强电场中的运动 (考纲要求 Ⅱ )
1.带电粒子在电场中的加速 带电粒子沿与电场线平行的方向进入电场,带电粒子将 做 加(减)速 运动.有两种分析方法: (1)用动力学观点分析:a=qmE,E=Ud ,v2-v02=2ad. (2)用功能观点分析:粒子只受电场力作用,电场力做的功 等于物体动能的变化,qU=12mv2-12mv20.
P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电
容器,并在下极板处(未与极板接触)返回.若将下极板向上平
移d/3 ,则从P点开始下落的相同粒子将( ).
A.打到下极板上
B.在下极板处返回
C.在距上极板d/2处返回 D.在距上极板2d/5处返回
1.表明平行板电容器两端电压不变.
审 题
2. 电荷的整个下落过程中受几个力作 用?各力做功情况怎样?用哪个物理
请完成对应本典例的“跟踪短训”
返回目录
结束放映
热点3 带电粒子在匀强电场中的偏转问题

电容器 带电粒子在电场中的偏转

电容器 带电粒子在电场中的偏转
(1)若将A极板向左侧水平移动d/2,此带电粒子仍从P点以速 度v0竖直射入匀强电场且仍落在A极板的M点上,则两极板间电 压应增大还是减小?电压变为原来的几倍?
(2)若将A极板向左侧水平移动d/2并保持两极板间电压为U, 此带电粒子仍从P点竖直射入匀强电场且仍落在A极板的M点上, 则应以多大的速度v′射入匀强电场?
知识梳理
一、电容器及电容 1.电容器. (1)组成:两个彼此绝缘且又相互靠近的导体组成电容器,电 容器可以容纳电荷. (2)所带电荷量:一个极板所带电荷量的绝对值,两极板所带 电荷量相等.
(3)充、放电. ①充电:把电容器接在电源上后,电容器两个极板分别 带上等量异号电荷的过程,充电后两极间存在电场,电容器 储存了电能. ②放电:用导线将充电后电容器的两极板接通,极板上 电荷中和的过程,放电后的两极板间不再有电场,同时电场 能转化为其他形式的能.
A.U1:U2=1:8 B.U1:U2=1:4 C.U1:U2=1:2 D.U1:U2=1:1
答案 A
(2016·山西运城一模)真空中的某装置如图5所示,其中平行金属板A、B 之间有加速电场,C、D之间有偏转电场,M为荧光屏。今A板从静止开 始被加速电场加速后垂直于电场方向进入偏转电场,最后打在荧光屏 上。已知质子、氘核和α粒子的质量之比为1∶2∶4,电荷量之比为 1∶1∶2,则下列判断中正确的是( )
3.平行板电容器的电容. 平行板电容器的电容与平行板正对面积S、电介质的介 电常数εr成正比,与极板间距离d成反比,即C=4επrkSd.
1.(2012·江苏)一充电后的平行板电容器保持两极板的正对 面积、间距和电荷量不变,在两极板间插入一电介质,其电容 C和两极板间的电势差U的变化情况是( )
A.C和U均增大 B.C增大,U减小 C.C减小,U增大 D.C和U均减小

(整理)电容器、带电粒子在电场中的运动问题

(整理)电容器、带电粒子在电场中的运动问题

电容器、带电粒子在电场中的运动问题二、学习目标:1、知道电容器电容的概念,会判断电容器充、放电过程中各个物理量的变化情况。

2、建立带电粒子在匀强电场中加速和偏转问题的分析思路,熟悉带电粒子在电场中的运动特点。

3、重点掌握与本部分内容相关的重要的习题类型及其解法。

考点地位:带电粒子在电场中的加速与偏转是高考的重点和难点,题型涉及全面,既可以通过选择题也可以通过计算题的形式进行考查,题目综合性很强,能力要求较高,在高考试题中常以压轴题的形式出现,知识面涉及广,过程复杂,对于电容器的考查,因其本身与诸多的电学概念联系而一直处于热点地位,考题多在电容器的决定式及电容器的动态分析上选材。

09年全国Ⅱ卷第19题、福建卷15题、天津卷第5题、08年重庆卷第21题、上海单科卷14题、海南卷第4题、07年广东卷第6题通过选择题形式进行考查,09年四川卷25题、广东卷20题、浙江卷23题、安徽卷23题、08年上海卷23题、07年重庆卷第24题、四川卷第24题、上海卷第22题均通过大型综合计算题的形式进行考查。

三、重难点解析: (一)电容和电容器: 1、电容:(1)定义:电容器所带的电荷量(是指一个极板所带电荷量的绝对值)与电容器两极板间电压的比值.(2)公式:C =Q/U. 单位:法拉,1F=.pF 10F 10126=μ(3)物理意义:电容反映电容器容纳电荷的本领的物理量,和电容器是否带电无关. (4)制约因素:电容器的电容与Q 、U 的大小无关,是由电容器本身情况决定,对一个确定的电容器,它的电容是一定的,与电容器是否带电及带电多少无关。

注意:由U QC =知,对确定的电容器,Q 与U 成正比,比值不变;对不同的电容器,U相同时,Q 越大,则C 越大,因此说C 是反映电容器容纳电荷本领的物理量。

2、平等板电容器(1)决定因素:C 与极板正对面积、介质的介电常数成正比,与极板间距离成反比。

(2)公式:kd 4/S C πε=,式中k 为静电力常量。

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转(含答案解析)

带电粒子在电场中的偏转、基础知识1 、带电粒子在电场中的偏转(1) 条件分析:带电粒子垂直于电场线方向进入匀强电场. (2) 运动性质:匀变速曲线运动.(3) 处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间la.能飞出电容器: t = .v 01 qU 2mdyy=2at=2mdt, t =qU②沿电场力方向,做匀加速直线运动F qE Uq加速度: a = = =m m md1Uql 2离开电场时的偏移量: y = at 2= 22 2mdv 2v y Uql离开电场时的偏转角: tan θ= = 2v 0 mdv 20特别提醒 带电粒子在电场中的重力问题(1) 基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外, 考虑重力 (但并不忽略质量 ).b.不能飞出电容器:般都不(2) 带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2 、带电粒子在匀强电场中偏转时的两个结论(1) 不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.1证明:由 qU 0=2mv 0211 qU 1 ly =2at 2=2·md ·(v 0)2(2) 粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点 O 为粒子水平位移l的中点,即 O 到偏转电场边缘的距离为 2.3 、带电粒子在匀强电场中偏转的功能关系U中 U y =d y ,指初、末位置间的电势差.二、练习题1 、如图,一质量为 m ,带电量为+ q 的带电粒子,以速度 v 0 垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是 ( )tanqU 1lmdv 20 U 1l 2U 1l得:y =4U 0dtan θ=2U 0d当讨论带电粒子的末速度 v 时也可以从能量的角度进行求解:1qU y =2mv 21 mv 220,其A.粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B.粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C.分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D.分析该运动,有时也可用动能定理确定其某时刻速度的大小答案BCD2 、如图所示,两平行金属板 A、B长为 L=8 cm ,两板间距离 d=8 cm ,A板比 B板电势高300 V ,一带正电的粒子电荷量为 q=1.0×10-10 C,质量为 m = 1.0 ×10 -20 kg,沿电场中心线 RO垂直电场线飞入电场,初速度 v0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS间的无电场区域,然后进入固定在O 点的点电荷 Q 形成的电场区域(设界面 PS右侧点电荷的电场分布不受界面的影响).已知两界面 MN 、PS相距为12 cm ,D 是中心线 RO与界面 PS的交点, O 点在中心线上,距离界面 PS为9 cm ,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k=9.0 ×109 N·m 2/C2,粒子的重力不计)(1) 求粒子穿过界面 MN 时偏离中心线 RO的距离多远?到达 PS界面时离 D 点多远?(2) 在图上粗略画出粒子的运动轨迹.(3) 确定点电荷 Q 的电性并求其电荷量的大小.解析(1)粒子穿过界面 MN 时偏离中心线 RO的距离(侧向位移):1y= at22F qU a==m dmL=v0t1 qU L则y=2at2=2md(v0)2=0.03 m =3 cm粒子在离开电场后将做匀速直线运动,其轨迹与 PS 交于 H,设 H 到中心线的距离为 Y,则有1L2y=,解得 Y=4y=12 cm1YL+12 cm2(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略)(3) 粒子到达 H 点时,其水平速度 v x= v0 =2.0 ×10 6 m/s竖直速度 v y= at= 1.5 ×10 6 m/s则 v 合=2.5 ×10 6 m/s该粒子在穿过界面 PS后绕点电荷 Q 做匀速圆周运动,所以 Q带负电根据几何关系可知半径 r=15 cmqQ v2合k2=mr2r解得 Q≈1.04 ×10 -8 C答案(1)12 cm (2)见解析(3)负电 1.04 ×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L、电场强度为 E 的匀强电场,在与右侧虚线相距也为 L 处有一与电场平行的屏.现有一电荷量为+q 、质量为 m 的带电粒子(重力不计),以垂直于电场线方向的初速度 v0 射入电场中, v0 方向的延长线与屏的交点为 O.试求:(1) 粒子从射入电场到打到屏上所用的时间;(2) 粒子刚射出电场时的速度方向与初速度方向间夹角的正切值(3) 粒子打在屏上的点 P到 O 点的距离 x.2L qEL 3qEL2答案(1) (2) 2 (3) 2v0 mv 022mv20tan α;解析(1) 根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入场中的加速度为: a = E m qmL qEL 所以 v y = a = v 0 mv 0(3) 解法一 设粒子在电场中的偏转距离为 y ,则又 x = y + L tan α,4 、如图所示,虚线 PQ 、 MN 间存在如图所示的水平匀强电场,一带电粒子质量为 m = 2.0×10 -11 kg 、电荷量为 q =+ 1.0 ×10 -5 C ,从 a 点由静止开始经电压为 U =100 V 的 电场加速后, 垂直于匀强电场进入匀强电场中, 从虚线 MN 的某点 b (图中未画出 )离开 匀强电场时速度与电场方向成 30 °角.已知PQ 、MN 间距为 20 cm ,带电粒子的重力 忽略不计.求:电场到打到屏上所用的时间 2Lt = .v 0(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tanv y α=v 0qELmv 021 qEL 22·mv 2解得: x = 3qEL 22mv 20解法Lx =v y · + y = v 03qEL 2 2mv 20 解法三L L + x 2 由= 得: yLx =3y = 3qEL 22mv 201L(1) 带电粒子刚进入匀强电场时的速率 v1 ;(2) 水平匀强电场的场强大小;(3) ab 两点间的电势差.答案(1)1.0 ×104 m/s (2)1.732 ×103 N/C(3)400 V1解析(1)由动能定理得: qU =2mv 21代入数据得 v1= 1.0 ×10 4 m/s(2) 粒子沿初速度方向做匀速运动: d=v1t粒子沿电场方向做匀加速运动: v y= atv1由题意得:tan 30 °=v y由牛顿第二定律得: qE= ma联立以上各式并代入数据得:E=3×103 N/C ≈1.732 ×103 N/C1(3) 由动能定理得: qU ab= m(v21+v y2)-0联立以上各式并代入数据得: U ab=400 V .5 、如图所示,一价氢离子(11H) 和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A.同时到达屏上同一点B.先后到达屏上同一点C.同时到达屏上不同点 D .先后到达屏上不同点答案B解析一价氢离子(1 H)和二价氦离子(24He) 的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选 B.6 、如图所示,六面体真空盒置于水平面上,它的 ABCD 面与 EFGH 面为金属板,其他面为绝缘材料. ABCD 面带正电, EFGH 面带负电.从小孔 P沿水平方向以相同速率射入三个质量相同的带正电液滴 a、b 、 c,最后分别落在1、2、3 三点.则下列说法正确的A .三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间不一定相同C.三个液滴落到底板时的速率相同D.液滴 c 所带电荷量最多答案D解析三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项 A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项 B 错误;在相同的运动时间内,液滴 c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项 D 正确;因为重力做功相同,而电场力对液滴 c 做功最多,所以它落到底板时的速率最大,选项 C 错误.7 、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中 xOy 所在平面与光滑水平面重合,电场方向与 x 轴正向平行,电场的半径为 R= 2 m ,圆心 O 与坐标系的原点重合,场强 E=2 N/C. 一带电荷量为 q=-1×10 -5 C、质量 m =1 ×10 -5 kg 的粒子,由坐标原点 O 处以速度 v0=1 m/s 沿 y 轴正方向射入电场(重力不计),求:(1) 粒子在电场中运动的时间;(2) 粒子出射点的位置坐标;(3)粒子射出时具有的动能.答案(1)1 s (2)( - 1 m,1 m) (3)2.5 ×10-5 J解析(1) 粒子沿 x 轴负方向做匀加速运动,加速度为a,则有:1 Eq=ma ,x=2at2沿 y 轴正方向做匀速运动,有y=v0tx2+y2=R2解得 t=1 s.(2) 设粒子射出电场边界的位置坐标为(-x1,y1),则有1 x1= at2=1 m ,y1=v0t=1 m ,即出射点的位置坐标为(-1 m,1 m) .1(3) 射出时由动能定理得 Eqx1=E k- mv 20代入数据解得 E k=2.5 ×10 -5 J.8 、如图所示,在正方形 ABCD 区域内有平行于 AB 边的匀强电场, E、F、G、H 是各边中点,其连线构成正方形,其中P 点是 EH 的中点.一个带正电的粒子( 不计重力) 从 F点沿 FH 方向射入电场后恰好从 D 点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形 ABCD 区域D.若将粒子的初速度变为原来的一半,粒子恰好由 E 点射出正方形 ABCD 区域答案BD解析粒子从 F 点沿 FH 方向射入电场后恰好从 D 点射出,其轨迹是抛物线,则过 D 点做速度的反向延长线一定与水平位移交于FH 的中点,而延长线又经过 P 点,所以粒子轨迹一定经过 PE之间某点,选项 A 错误, B 正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项 C 错误,D 正确.9 、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道 AB部分为倾角为30 °的斜面,AC 部分为竖直平面上半径为 R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为 m 的小球,带正电荷量为 q =E,要使小球能安全通过圆轨道,在O 点的初速度应满足什么条件?图9审题与关联解析小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,mg ′,大小为类比重力场,将电场力与重力的合力视为等效重力效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点” (D 点 )满足等效重力刚好提112mg ′R= mv 2D - mv 222 因此要使 小球安 全通过圆轨道, 初速度应满足 v ≥10 、在空间中水平面 MN 的下方存在竖直向下的匀强电场,质量为 m 的带电小球由 MN上方的 A 点以一定的初速度水平抛出,从 B 点进入电场,到达 C 点时速度方向恰好水 平, A 、B 、 C 三点在同一直线上,且 AB =2BC ,如图所示.由此可见 ( )mv 2D供向心力,即有:mg ′= ,因 θ=30 °与斜面的倾角相等,由几何关系可知 ADR2R ,令小球以最小初速度v 0 运动,由动能定理知:3,得 θ=30°,等3qE, tan θ=mgmg ′ = qE 2+ mgA.电场力为3mgB.小球带正电C.小球从 A 到 B 与从 B 到 C 的运动时间相等D.小球从 A到 B与从 B到 C的速度变化量的大小相等答案AD解析设 AC 与竖直方向的夹角为θ,带电小球从 A 到 C,电场力做负功,小球带负电,由动能定理,mg ·AC·cos θ-qE·BC·cos θ=0 ,解得电场力为 qE =3 mg ,选项 A 正确,B错误.小球水平方向做匀速直线运动,从 A到 B的运动时间是从B到 C的运动时间的2倍,选项C错误;小球在竖直方向先加速后减速,小球从 A到 B 与从 B到 C 竖直方向的速度变化量的大小相等,水平方向速度不变,小球从 A到 B与从B到 C的速度变化量的大小相等,选项 D 正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:电容1.下列说法中正确的是()A.任何两个靠得很近的导体都构成了电容器,与是否带电无关B.电容是盛放电荷和电能的仪器,只有带电的容器才能称为电容器C.电容器所带电荷量为2 C,说明每个极板所带电荷量均为1 CD.电容器所带电荷量为2 C,说明每个极板所带电荷量的绝对值均为2 C2.一个电容器的规格是100 μF、25 V,对这两个数据的理解正确的是()A.这个电容器加上25 V电压时,电容才是100 μFB.这个电容器最大电容是100 μF,当带电荷量较小时,电容小于100 μFC.这个电容器所加电压不能高于25 VD.这个电容器所加电压可以低于25 V,但电容不变,总是100 μF3.对于水平放置的平行板电容器,下列说法正确的是()A.将两极板的间距加大,电容将增大B.将两极板平行错开,使正对面积减小,电容将减小C.在下板的内表面上放置一面积和极板相等、厚度小于极板间距的陶瓷板,电容将增大D.在下板的内表面上放置一面积和极板相等、厚度小于极板间距的铝板,电容将增大4.如图所示是描述对给定的电容器充电时其电荷量Q,电压U,电容C之间相互关系的图象,其中正确的是()题型一:充电结束不断开电键——_______不变5、连接在电池两极板上的平行板电容器,当两极板间的距离减小时()A、电容器的电容器C变大B、电容器极板的带电量Q变大C、电容器极板间的电压U变大D、电容器两极板间的电场强度E变大6、如图1-7-3所示,两板间距为d的平行板电容器与一电源连接,开关S闭合,电容器两板间的一质量为m,带电荷量为q的微粒静止不动,下列各叙述中正确的是()A.微粒带的是正电B.两板间电压的大小等于qmgdC.断开开关S,微粒将向下做加速运动D.保持开关S闭合,把电容器两极板距离增大,将向下做加速运动题型二:充电结束断开电键——_______不变7、如图1—7—5所示,在开关S闭合时,质量为m的带电液滴处于静止状态,那么,下列判断正确的是( )A.开关S断开,极板上电荷量将减小,电压降低B.开关S断开,极板间距离减小,则极板上电荷量减小C.开关S断开.极板间距离减小,则极板间的电压减小图1-7-3D.开关S断开,极板间距离减小,则带电液滴向下运动8. 如图2所示,水平放置的两个平行的金属板A、B带等量的异种电荷,A板带负电荷,B板接地.若将A板向上平移到虚线位置,在A、B两板中间的一点P的电场强度E和电势φ的变化情况是()A.E不变,φ改变B.E改变,φ不变C.E不变,φ不变D.E改变,φ改变第二部分带电粒子在电场中的运动【题型1】直线运动1、如图3所示,两平行金属板竖直放置,板上A、B两孔正好水平相对,板间电压为500 V.一个动能为400 eV的电子从A孔沿垂直板方向射入电场中.经过一段时间电子离开电场,则电子离开电场时的动能大小为()A.900 eV B.500 eV C.400 eV D.100 eV2.如图所示,带等量异号电荷的两平行金属板在真空中水平放置,M、N为板间同一电场线上的两点,一带电粒子(不计重力)以速度v M经过M点在电场线上向下运动,且未与下板接触,一段时间后,粒子以速度v N折回N点,则( )A.粒子受电场力的方向一定由M指向NB.粒子在M点的速度一定比在N点的大C.粒子在M点的电势能一定比在N点的大D.电场中M点的电势一定高于N点的电势3、在空间有一正方向水平向右、大小按图所示的图线变化的电场,位于电场中A点的电子在t=0时速度为零,在t=1 s时,电子离开A点的距离为x,那么在t=2 s时,电子将处在距A点多远的位置____________【题型2】直接偏转4、如图所示,长为l的平行金属板间存在一匀强电场,一带电荷量为q,质量为m的带电粒子以初速度v0紧贴上板垂直电场方向飞入电场,刚好从下板的右边缘飞出,且速度方向与下板成30°角,不考虑粒子的重力.求:(1)粒子从平行金属板飞出时的速度大小.(2)匀强电场的场强E的大小.(3)两平行金属板间的距离d.5、一质量为m 、电荷量为q 的带电粒子从水平放置的平行金属板的两极板中点O 以平行于两极板的速度v 0进入匀强电场,如图2-4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子不会击中极板,粒子从电场飞出后打在竖直放置的荧光屏上P点,O ′点是入射速度v 0正对的屏幕上的一点,该屏到两极板右端的距离也是L .若粒子的重力忽略不计,对于粒子运动的全过程,求:(1)电势能的变化量;(2)O ′与P 的距离.【题型3】先加速再偏转6、如图所示,竖直放置的一对平行金属板间的电势差为U 1,水平放置的一对平行金属板间的电势差为U 2.一电子由静止开始经U 1加速后,进入水平放置的金属板间,刚好从下板边缘射出.不计电子重力,下列说法正确的是( )①增大U 1,电子一定打在金属板上②减小U 1,电子一定打在金属板上③减小U 2,电子一定能从水平金属板间射出④增大U 2,电子一定能从水平金属板间射出A .①②B .②③C .①④D .②④7.如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射人电势差为U 2的两块平行极板间的电场中,入射方向跟极板平行,整个装置处在真空中,重力可忽略.在满足电子能射出平行板区的条件下,下述四种情况中一定能使电子的偏转角θ变大的是( ).(A )U 1变大,U 2变大(B )U 1变小,U 2变大 (C )U 1变大,U 2变小 (D )U 1变小,U 2变小【题型3】考虑重力8、三个分别带有正电、负电和不带电的颗粒,从水平放置的平行带电金属板左侧以相同速度V 0垂直电场线方向射入匀强电场,分别落在带正电荷的下板上的a 、b 、c 三点,如图所示,下面判断正确的是( )A 、落在a 点的颗粒带正电、C 点的带负电、b 点的不带电B 、落在a 、b 、c 点颗粒在电场中的加速度的关系是a a >a b >a cC 、三个颗粒在电场中运动中所受电场力关系是F a >F b >F cD 、电场力对落在b 点的颗粒不做功 9、如图1-9-1所示,水平放置的A 、B 两平行板相距h ,上板A 带正电,现有质量为m 、带电量为+q 的小球在B 板下方距离B 板为H 处,以初速υ0竖直向上从B 板小孔进入板间电场,欲使小球刚好打到A 板,A 、B 间电势差为多少?- - - - -图1【题型3】综合问题10、一个初动能为E k 的电子,垂直电场线飞入平行板电容器中,飞出电容器的动能为2E k ,如果此电子的初速度增至原来的2倍,则它飞出电容器的动能变为 ( )A .4E kB .8E kC .5E kD .4.25E k11、电荷量为q =1×10-4C 的带正电小物块置于粗糙的绝缘水平面上,所在空间存在沿水平方向的匀强电场,场强E 与时间t 的关系及物块速度v 与时间t 的关系如图所示。

若重力加速度g 取10 m/s 2,求:(1)物块的质量m 。

(2)物块与水平面之间的动摩擦因数。

(3)物块运动2s 过程中,其电势能的改变量。

第二部分1.原来都静止的质子(氢原子核11H )和α粒子(氦原子核24H e ),经过同一电压的加速后,它们的速度大小之比为( )A .1 : 1B .1 : 2C .1 : 4D .2 : 12、如图1所示,在A 板附近有一电子由静止开始向B 板运动,则关于电子到达B 板时的速率,下列解释正确的是 ( )A .两板间距越大,加速的时间就越长,则获得的速率越大B .两板间距越小,加速度就越大,则获得的速率越大C .电子到达B 板时的速率与两板间的距离无关,仅与加速电压U 有关D .以上解释都不正确3.如图1所示,在O 点放置正点电荷Q ,a 、b 两点的连线过O 点,且Oa =ab .以下说法正确的是 ( )A .将质子(氢原子核11H )从a 点由静止释放,质子向b 做匀加速运动子核24H e )从B .将质子从a 点由静止释放,质子运动到b 点的速率为v ,则将a 粒子(氦原a 点由静止释放后运动到b 点的速率为22v C .若电子以Oa 为半径绕O 做匀速圆周运动的线速度为v ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2vD .若电子以Oa 为半径绕O 做匀速圆周运动的线速度为v ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为v 24. 一平行板电容器中存在匀强电场,电场沿竖直方向。

两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a 和b ,从电容器的P 点(如图)以相同的水平速度射入两平行板之间。

测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为1:2。

若不计重力,则a 和b 的比荷之比是 ( ) A.1:2 B.1:8 C. 2:1 D. 4:15.如图6所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为a ,最低点为b .不计空气阻力,则( )A.小球带正电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒6.如图3所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上板的过程中() A.它们运动的时间t Q>t P B.它们运动的加速度a Q<a PC.它们所带的电荷量之比q P∶q Q=1∶2 D.它们的动能增加量之比ΔE k P∶ΔE k Q=1∶27.如图所示,光滑绝缘细杆竖直放置,细杆右侧距杆0.3m处有一固定的点电荷Q,A、B是细杆上的两点,点A与Q、点B与的连线与杆的夹角均为 =37°。

一中间有小孔的带电小球穿在绝缘细杆上滑下,通过A点时加速度为零,速度为3m/s,取g=10m/s2,求小球下落到B点时的加速度和速度的大小。

8.(12分)如图13所示,质量为m=5×10-8kg的带电粒子以v0=2 m/s的速度从水平放置的平行金属板A、B中央飞入电场,已知板长L=10 cm,板间距离d=2 cm,当A、B间加电压U AB=103 V时,带电粒子恰好沿直线穿过电场(设此时A板电势高).求:(1)带电粒子的电性和所带电荷量;(2)A、B间所加电压在什么范围内带电粒子能从板间飞出?。

相关文档
最新文档