ABS系统的结构与工作原理
汽车防滑控制系统结构及工作原理

汽车防滑控制系统结构及工作原理汽车防滑控制系统(Anti-lock Braking System,简称ABS)是一种用于改善汽车制动性能和防止车轮侧滑的电子控制系统。
它通过实时监测车轮的转速差异,并根据车辆速度和车轮粘附情况,自动调节制动力分配,以保持车辆的稳定性和操控性。
下面将详细介绍ABS系统的结构和工作原理。
ABS系统主要由以下几个组成部分组成:1. 主控单元(Electronic Control Unit,简称ECU):负责监测车轮转速、处理传感器信号,并根据算法控制制动系统。
2.传感器:用于感知车轮转速和车轮阻滞情况的变化。
3.控制执行器:控制制动液压系统,通过控制制动压力和刹车分配,来调整车轮所受制动力的大小。
ABS系统的工作原理如下:1.感知车轮转速:ABS系统通过车轮传感器感知每个车轮的转速,传感器工作原理一般为感应式或磁敏电阻式。
2.比对并判断车轮转速差异:主控单元会将各个车轮的转速进行比对,并判断是否存在车轮间的转速差异。
当差异较大时,说明可能存在阻滞或滑动现象。
3.刹车压力调节:当主控单元检测到车轮阻滞或滑动时,会迅速调节制动系统的作用力。
通过控制执行器,它可以控制制动压力的大小和变化速率。
4.防止轮胎阻滞:根据车速和车轮阻滞程度,主控单元会控制制动器施加/解除制动压力。
当主动轮制动器压力过大时,会导致轮胎滑动,此时主控单元会减小制动压力,以保持车轮的滚动。
5.稳定操控车辆:通过循环控制刹车压力,ABS系统可以保持轮胎在阻塞且滑动阶段之间的平衡,使得司机可以保持对车辆的操控,避免有机会发生打滑或侧滑的情况。
ABS系统的工作可以分为两个主要的阶段:1.启动阶段:当驾驶员踩下制动踏板时,ABS系统会进行自检,并进行传感器的校准。
如果发现故障,系统会亮起警示灯并进入故障模式。
2.工作阶段:在正常工作时,ABS系统会通过感知车轮的转速,并实时监测车轮阻滞情况。
当检测到阻滞时,系统会自动通过调节制动器的压力,进行相应的制动力分配,以保持车辆的稳定性。
ABS组成控制分类与原理

ABS组成控制分类与原理ABS是Anti-lock Braking System的简称,即防抱死制动系统。
它是一种电子控制系统,通过控制车辆的制动系统,防止车轮在制动时抱死,并保持车辆的操控性。
ABS的组成由以下几个部分构成:1.传感器:车辆装有多个传感器,用于检测车轮的转速和车辆的加速度。
这些传感器将传输的数据发送给ABS控制单元。
2.ABS控制单元:ABS控制单元是整个系统的核心。
它接收传感器传来的数据,并对数据进行分析和处理。
根据分析结果,ABS控制单元会控制制动系统的工作,确保车轮在制动时不会抱死。
3.泵机组:泵机组通过增加或减少制动压力,控制制动系统的工作。
当需要增加制动压力时,泵机组会增加液压,将制动压力传送到制动器上。
当需要减少制动压力时,泵机组会减少液压。
4.制动执行器:制动执行器是最后的控制单元,它根据ABS控制单元的指令,控制制动系统的工作。
制动执行器接收到制动压力后,将压力传递到车轮的制动器上,实现制动系统的工作。
ABS的工作原理如下:当司机踩下刹车踏板时,传感器会立即检测到车轮的转速和车辆的加速度,并将数据发送给ABS控制单元。
ABS控制单元会根据数据分析车轮的转速变化情况,以及车辆的加速度变化情况。
如果发现车轮即将抱死,ABS控制单元会立即减少制动压力,以降低抱死产生的摩擦力。
一旦车轮恢复正常,ABS控制单元会恢复正常制动压力。
ABS的控制原理主要分为两种:1.速度差控制:根据车轮之间的转速差异,ABS控制单元可以确定是否出现了车轮抱死的情况。
如果车轮即将抱死,ABS控制单元会立即减少制动压力,防止抱死的发生。
2.脉冲控制:当车轮转速较低时,ABS控制单元会通过施加更高的制动压力,产生脉冲信号维持轮胎的旋转。
这样可以增加车轮与地面之间的摩擦力,防止车轮抱死的发生。
根据ABS系统的工作原理和控制方式的不同,可以将ABS分为以下几类:1.三通道四传感器系统(3/4系统):这种ABS系统有3个独立的通道和4个传感器。
ABS结构与工作原理

特点:
(1)各制动轮压 力均可单独调节 (轮控制)- 控制 精度高;
(2)制动时可最 大限度地利用每个车 轮的附着力 - 方向 稳定性好;
2.四传感器、三控制通道
特点:
两前轮独立控 制,两后轮一同 控制(轴控制);
按附着力较小车轮不发生抱死为原则进行制动压力
ABS型式各异,以下二个方面相同:
1、ABS工作车速必须达到一定值后,才 会对制动过程中趋于抱死车轮进行制动防抱 死控制调节。
2、ABS都具有自诊断功能。一但发生影响 系统正常工作的故障时,ABS自动关闭,同时 ABS警告灯点亮。传统制动仍可正常工作。
(一)博世ABS
1、结构特点 制动压力调节器:分离式且独立安装; 调压方式:流通式
(2)ABS警示灯亮
ABS警示灯亮后可能出现两种情况: 灯亮3~5秒后熄灭,说明系统正常;
灯亮3~5秒后不熄灭,说明系统有故障,
ECU关闭ABS,汽车仅保持传统制动。 (3)自检正常ABS等待工作 ECU端子27搭铁,接通电磁阀继电器线圈电路。 电磁阀继电器线圈通电,铁芯产生吸力,常 闭触点(30→87A)张开,ABS警示灯熄灭;常开 触点(30→87)闭合,蓄电池电压作用在三个三 位三通电磁阀线圈及ECU 端子32。
(3)附着系数φ 与滑移率 s 的关系
• 分析结论: • s < 20%为制动稳定区域; s > 20%为制动非稳定区域; 将车轮滑移率 s 控制在20%左右,便 可获取最大的纵向附着系数和较大的横向 附着系数,是最理想的控制效果。
4.理想的制动控制过程
(1)制动开始时,让制动压力迅速增大,使S上 升至20%所需时间最短,以便获取最短的制动距离 和方向稳定性。 (2)制动过程中: 当S上升稍大于20%时,对制动轮迅速而适当 降低制动压力,使S迅速下降到20%; 当S下降稍小于20%时,对制动轮迅速而适当 增大制动压力,使S迅速上升到20%;
abs系统工作原理

abs系统工作原理
ABS(防抱死系统)是一种车辆安全系统,其工作原理如下:
1. 传感器检测:ABS系统会安装在车轮上的传感器来监测每个车轮的转速。
这些传感器会不断地测量车轮的旋转速度,并将数据传输给控制模块。
2. 刹车踏板压力检测:当驾驶员踩下刹车踏板时,压力传感器会检测到踏板上的压力,并将这一信息传送给控制模块。
3. 控制模块分析:控制模块负责接收和分析传感器的数据。
它会根据传感器提供的轮速和刹车踏板压力数据,判断车辆是否即将发生抱死现象。
4. 抱死现象检测:当控制模块检测到某个或多个车轮的速度迅速下降,即将抱死时,会触发ABS系统。
5. ABS系统介入:一旦ABS系统被触发,控制模块会发送信号到刹车系统中的液压阀,同时降低刹车踏板上的压力。
这可以在不断地打开和关闭液压阀的情况下,恢复刹车踏板上的压力,并避免车轮抱死。
6. 恢复车轮转动:通过不断打开和关闭液压阀,ABS系统可以使车轮保持旋转,并避免抱死现象。
这样可以保持车轮与地面产生摩擦,提供更好的制动效果。
7. 保持制动压力:一旦ABS系统恢复车轮的转动,系统会恢
复液压阀的正常操作,并同时保持制动压力,使车辆安全地停止。
通过这些步骤,ABS系统可以避免车辆在紧急制动时发生车轮抱死现象,提供更好的制动效果,增加行车安全性。
ABS的组成和工作原理

ABS的组成和工作原理ABS(Anti-lock Braking System)即防抱死制动系统,是一种用于汽车制动的安全设备。
它由多个部件组成,包括传感器、控制单元、执行器和制动液压泵等。
ABS系统通过控制车轮的制动力,可以有效地防止车轮抱死,从而提高制动时的稳定性和操控性。
ABS系统的主要组成部分包括:1.传感器:ABS系统中的传感器主要用于检测车轮的转速。
每个车轮上都有一个传感器,它通过检测车轮的转动情况来确定制动力的大小。
当车轮即将抱死时,传感器会发送信号给控制单元。
2.控制单元:ABS系统中的控制单元是系统的中枢。
它接收传感器发送的信号,并根据这些信号对制动力进行调整。
当控制单元接收到传感器信号时,它会比较各个车轮之间的转速差异,并根据差异情况调整制动力的大小。
3.执行器:执行器是ABS系统中的关键部件,它负责调整制动力的大小。
执行器通过改变制动液压系统中的液压力来实现对制动力的调整。
当控制单元发出调整制动力的指令时,执行器会相应地增加或减少液压力,从而使制动力得到控制。
4.制动液压泵:制动液压泵负责维持制动系统的正常工作。
它通过提供所需的制动液压力来确保系统的正常运行。
当执行器需要增加制动液压力时,制动液压泵会增加输出压力,当执行器需要减少制动液压力时,制动液压泵会减小输出压力。
ABS系统的工作原理如下:当驾驶员踩下制动踏板时,ABS系统会自动监测车轮的转速。
如果传感器检测到一些车轮的转速明显低于其他车轮,表明该车轮即将抱死。
这时,控制单元便会接收到传感器的信号,并根据信号信息进行处理。
控制单元首先会比较各个车轮之间的转速差异,如果差异过大,即表明有车轮即将抱死。
为了避免车轮抱死,控制单元会发出相应的指令,通过执行器来调整制动力。
执行器根据控制单元的指令调整制动液压力。
当车轮即将抱死时,执行器会减少制动液压力,以使制动力减小,从而避免车轮抱死。
当车轮的转速恢复正常时,执行器会恢复制动液压力,保持适当的制动力。
abs防抱死系统的工作原理

abs防抱死系统的工作原理
ABS(Anti-lock Braking System)防抱死系统是一种用于汽车
制动系统的安全装置。
它的工作原理是通过传感器检测到车轮速度变化,一旦车轮即将发生抱死现象,系统会立即对制动压力进行调节,使车轮保持在合适的滚动范围内,防止车辆失去操控性。
ABS系统由以下几个主要组成部分:
1. 传感器:安装在车轮上,用于测量车轮的转速。
每个车轮都安装有一个传感器,它们会将实时的转速信息发送给控制单元。
2. 控制单元:接收来自传感器的转速信号,并根据这些数据计算每个车轮的制动压力。
控制单元还可以监测车轮的转速差异,并判断是否存在抱死的风险。
3. 动力泵和安全阀:当系统检测到某个车轮有抱死的风险时,控制单元会通过动力泵和安全阀调节制动液的压力。
具体来说,当车轮即将抱死时,系统会迅速减小制动液的压力,让车轮重新获得转动能力。
ABS系统的工作过程如下:
1. 当车辆进行制动时,传感器会测量车轮的转速,并将数据发送给控制单元。
2. 控制单元根据接收到的数据,计算每个车轮的转速差异,并
预测是否存在抱死的风险。
3. 如果某个车轮即将发生抱死现象,控制单元会迅速减小该车轮的制动压力,并监测转速差异的变化。
4. 当车轮转速恢复正常时,控制单元会逐渐增加制动压力,以确保车辆继续安全地制动。
通过实时监控车轮的转速差异,ABS系统能够及时调节制动
压力,保持车轮在合适的滚动范围内。
这样可以避免车轮抱死,提供更好的操控性和制动效果,减少车辆在急制动情况下的侧滑和失控风险,提高驾驶安全性。
ABS系统结构组成及工作原理

ABS系统结构组成及工作原理
ABS (Anti-lock Braking System) 是一种汽车制动系统,它通过防止车轮在制动时锁死,提供更好的制动性能和控制能力。
它由多个组件组成,包括传感器、控制模块、执行器和制动系统。
当ABS系统检测到一些车轮即将锁死时,它会自动调节制动力,以防止车轮停止旋转。
控制模块负责根据传感器的输入,计算出每个车轮所需的制动力,并向执行器发送指令。
执行器是控制制动力的关键部分。
它通常位于每个车轮的制动器上,可以独立于制动系统调节制动力。
当控制模块发送指令时,执行器根据需要增加或减少制动力。
这种独立的控制使得ABS系统能够在车轮减速时防止它们锁死。
当车轮减速到安全的范围内,ABS系统会自动调整制动力,以确保车轮保持在安全的旋转速度范围内。
这样可以确保车辆仍然具有可控制性,并减少在制动过程中的打滑和偏移。
除了以上组成部分,ABS系统还可以与其他车辆控制系统集成,如牵引力控制系统(Traction Control System)和车辆稳定性控制系统(Vehicle Stability Control System)。
这些系统可以通过接收ABS系统的输入来优化车辆的操控性能和安全性。
总结起来,ABS系统的结构主要由传感器、控制模块、执行器和制动系统组成。
它的工作原理是通过实时监测车轮速度和制动力,当检测到车轮即将锁死时,自动调节制动力,以防止车轮停止旋转并提供更好的制动性能和控制能力。
这种系统可以提高车辆的安全性,减少制动过程中的打滑和偏移,以及提供更好的操控性能。
abs的工作原理

abs的工作原理ABS(Anti-lock Braking System,防抱死制动系统)是一种车辆制动辅助系统,它的主要功能是在紧急制动时防止车轮抱死,提高车辆的操控性和制动效果。
下面将详细介绍ABS的工作原理。
一、基本原理ABS系统主要由传感器、控制模块、液压单元和制动执行器组成。
当驾驶员踩下制动踏板时,传感器会实时监测车轮的转速和车轮的滑动情况。
控制模块会根据传感器的数据进行分析和判断,然后通过液压单元控制制动执行器对车轮进行制动力的调节,以保持车轮的转动和车辆的稳定。
二、工作过程1. 初始状态:当车辆处于正常行驶状态时,ABS系统处于待命状态,不会对制动系统进行干预。
2. 制动开始:当驾驶员踩下制动踏板时,传感器会实时监测车轮的转速。
如果发现某个车轮的转速明显低于其他车轮,即表示该车轮即将抱死。
控制模块会根据传感器的数据判断是否需要干预。
3. 制动干预:如果控制模块判断需要干预,它会通过液压单元控制制动执行器对该车轮进行制动力的调节。
具体来说,它会通过减小制动液的压力来降低该车轮的制动力,以防止车轮抱死。
4. 制动释放:当控制模块判断该车轮的转速恢复正常时,它会通过液压单元逐渐恢复制动力,使车轮重新获得牵引力。
5. 循环反复:ABS系统会不断地监测车轮的转速和滑动情况,并根据需要进行干预,以保持车轮的转动和车辆的稳定。
三、优势和效果1. 提高制动效果:ABS系统可以根据车轮的转速和滑动情况实时调节制动力,避免车轮抱死,提高制动效果,缩短制动距离。
2. 提高操控性:ABS系统可以保持车轮的转动,避免车辆在制动时失去操控性,提高驾驶员对车辆的控制能力。
3. 避免侧滑和失控:ABS系统可以根据车轮的滑动情况调节制动力,避免车辆因为车轮抱死而产生侧滑和失控的情况,提高行驶的安全性和稳定性。
4. 适应不同路面:ABS系统可以根据不同路面的情况调节制动力,使制动力更加适应路面的摩擦系数变化,提高制动的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABS分类
• A:按对制动力的 控制分类
• 机械式
• 图示为机械柱塞 式ABS液压制动 系统。速度传感 器3由齿圈12和 感应器组成。
电子式
• 该制动系统也 称Bosch式防 抱死制动系统。 图示为Bosch 防抱制动系统 图。
•
B:按制动管路的布置方式分类
ABS控制通道是指ABS系统中能够独立进行压力调 节的制动管路。按照系统对制动压力调节方式的不 同,可将ABS控制方式分为两大类,即独立控制和 同时控制。前者指一条控制通道只控制一个车轮; 而后者为一条控制通道同时控制多个车轮,依照这 些车轮所ቤተ መጻሕፍቲ ባይዱ位置不同,同时控制又有同轴控制和异 轴控制之分,同轴控制是一个控制通道控制同轴两 车轮,而异轴控制则是一个控制通道控制非同轴两 车轮。
四传感器二通道(前轮独立)控制方式
如图所示,此结构多用于X型制动系统中,前轮独立 控制,制动液通过比例阀(PV阀)按一定比例减压 后传至对角后轮。采用此种控制方式的汽车在不对称 的路面上制动时,高附着系数路面一侧前轮产生高制 动压力,该压力传至低附着系数路面一侧的后轮时, 会导致该后轮抱死。而低附着系数路面一侧前轮制动 压力较低,对应的高附着系数一侧的后轮不会抱死。 从而有利于制动时方向稳定性,但与三通道和四通道 控制系统相比较,其后轮制动力稍有降低,制动效
三传感器三通道(前轮独立、后轮选择)
控制方式
如图所示,此种控 制方式的操纵性和 稳定性较好,制动 效能稍差。
在对桑塔纳2000进行的60 km/h紧急制动对比试验中,有 ABS的车型比无ABS车型的制动距离只短1米,但是有ABS 的车型始终都有方向,不会失去对方向的控制。
• 对两前轮进行独立控制,主要考虑小轿车,特别 是前轮驱动的汽车,前轮的制动力在汽车总制动 中所占的比例较大(可达70%左右),可以充分利 用两前轮的附着力。一方面使汽车获得尽可能大 的总制动力,利于缩短制动距离,另一方面可使 制动中两前轮始终保持较大的横向附着力,使汽 车保持良好转向能力。尽管两前轮独立控制可能 导致两前轮制动力不平衡,但由于两前轮制动力 不平衡对汽车行驶方向稳定性影响相对较小,而 且可以通过驾驶员的转向操纵对由此产生的影响 进行修正。因此,三通道ABS在小轿车上被普遍 采用。
• 制动防抱死系统 (ABS) 都是在制动过程中, 通过调节轮缸(或制动气室)的制动压力 使作用车轮的制动力矩受到控制,从而控 制车轮的滑移率。
• 1. ABS的基本组成:
• 普通制动器,轮速传感器、 ABS 电 控单元( ECU ) 、制动压力调节 装置。(见图2-1)
• 一般来说,带有ABS的汽车制动系统由基 本制动系统和制动力调节系统两部分组成, 前者是制动主缸、制动轮缸和制动管路等 构成的普通制动系统,用来实现汽车的常 规制动,而后者是由传感器、控制器。执 行器等组成的压力调节控制系统 .
目的多少可以对ABS控制系统进行分类。
• 按照通道数目不同,也可将ABS分为四通 道式、三通道式、二通道式和一通道式等。
四传感器四通道(四轮独立)控制方式
如图所示,该系统是通过各 车轮轮速传感器的信号分别 对各车轮制动压力进行单独 控制。其制动距离和转向控 制性能好,但在附着系数不 对称路面上制动时,由于汽 车左右侧车轮地面制动力差 异较大,因此形成较大的偏 转力矩,从而导致汽车在制 动时的方向稳定性较差。因 此四通道很少用.
ABS系统的结构与工作原理
一、 组成与工作原理
• 如图所示, ABS系统主要是在普通制动系 的基础上加装了轮速传感器、 ABS 电控单 元、制动压力调节装置。制动时, ABS 电 控单元( ECU ) 3 从轮速传感器 1 和 5 上
获取车轮的转速信息,经分析处理后判断是
否有车轮处于即将抱死拖滑状态。如果车轮 未处于上述状态,制动压力调节器 2 不工作,
四传感器四通道(前轮独立、后轮选择)控制方式
如图所示,该系统适 用于X型制动管路系统, 由于左右后轮不共用 一条制动管路,故对 它们实施同时控制 (一般为低选控制) 需采用两个通道。此 种控制方式的操纵性 和稳定性较好,制动 效能稍差。
• 性能特点:由于四通道ABS是根据各车轮轮速传感 器输入的信号,分别对各个车轮进行独立控制的,因 此附着系数利用率高,制动时可以最大程度的利用每 个车轮的最大附着力。四通道控制方式特别适用于汽 车左右两侧车轮附着系数接近的路面,不仅可以获得 良好的方向稳定性和方向控制能力,而且可以得到最 短的制动距离。但是如果汽车左右两个车轮的附着系 数相差较大(如路面部分积水或结冰),制动时两个车 轮的地面制动力就相差较大,因此会产生横摆力矩, 使车身向制动力较大的一侧跑偏,不能保持汽车按预 定方向行驶,会影响汽车的制动方向稳定性。因此, 驾驶员在部分结冰或积水等湿滑的路面行车时,应降 低车速,不可盲目迷信ABS装置。
• 如果按照控制时控制依据选择不同,也可 将ABS的同时控制区分为低选控制和高选 控制两种。在低选控制中是以保证附着系 数小的一侧车轮不发生抱死来选择控制系 统压力,而高选控制却是从保证附着系数 较大一侧车轮不发生抱死出发来实施制动 系统压力调节
一般说来,如能在汽车四个车轮上独立地进行压力调 节控制,意味着汽车有可能在四个车轮上都发挥出地 面上最大的附着能力。按照ABS通道数目和传感器数
制动系统按照普通制动过程工作,制动轮缸 的压力继续增大,此即 ABS 系统的增压过 程。
• 如果电控单元判断出某一车轮即将抱死拖滑, 即刻向制动压力调节器发出命令,关闭制动 主缸及相关轮缸的通道,使得该轮缸的压力 不再增加,此即 ABS 系统的保压状态。若 电控单元判断出该车轮仍将要处于抱死拖滑 状态,它将向制动压力调节器发出命令,打 开该轮缸与储液室或储能器的通道,使得该 轮缸的油压降低,此即 ABS 系统的减压状 态。装配 ABS 制动系统的制动就是在高频 地进行增压、保压和减压的往复过程中完成 的。
四传感器三通道(前轮独立、后轮选择)控制方式(双管路前后 布置) 三通道系统都是对两前轮的制动压力进行单独控制,对两后轮
的制动压力按低选原则一同控制.
如图所示,使用在 制动管路前后布置 的后轮驱动汽车上, 后轮一般采用低选 控制,其控制效果 是操纵性和稳定性 较好,制动效能稍 差。
四传感器三通道控制方式(双管路对角布置)