指数函数对数函数幂函数的图像与性质 (2)

合集下载

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

幂函数与对数函数的性质

幂函数与对数函数的性质

幂函数与对数函数的性质幂函数和对数函数是数学中的两个重要函数,它们在各个领域都有广泛的应用。

本文将介绍幂函数和对数函数的相关性质,帮助读者更好地理解和应用它们。

一、幂函数的性质幂函数是形如y=x^n(n为常数)的函数。

下面将介绍幂函数的几个重要性质。

1. 幂函数的图像特点当n为正整数时,函数图像随着x的增大而增大,呈现上升趋势;当n为负整数时,函数图像随着x的增大而减小,呈现下降趋势;当n 为奇数时,函数图像为关于原点对称,当n为偶数时,函数图像右半部分为关于y轴对称。

2. 幂函数的增减性与奇偶性当n为正整数时,幂函数为单调递增函数;当n为负整数时,幂函数为单调递减函数;当n为偶数时,幂函数关于y轴为偶函数;当n为奇数时,幂函数关于原点为奇函数。

3. 幂函数的极值点与拐点幂函数的极值点与拐点的存在与n的奇偶性相关。

当n为偶数且大于0时,幂函数存在极小值点和拐点;当n为奇数时,幂函数不存在极值点和拐点。

二、对数函数的性质对数函数是指数函数的逆运算,表示为y=loga(x)(a>0且a≠1)。

下面将介绍对数函数的几个重要性质。

1. 对数函数的定义域与值域对数函数的定义域为正实数集(0, +∞),值域为实数集。

2. 对数函数的图像特点对数函数的图像关于直线y=x对称,y轴是其渐近线。

当x趋于0时,对数函数趋于负无穷大;当x趋于正无穷大时,对数函数趋于正无穷大。

3. 对数函数的基本性质对数函数具有以下基本性质:(1)loga(1) = 0,loga(a) = 1;(2)loga(MN) = loga(M) + loga(N);(3)loga(M/N) = loga(M) - loga(N);(4)loga(M^k) = kloga(M),其中k为实数;(5)loga(a^k) = k。

三、幂函数和对数函数的关系幂函数与对数函数是互为反函数的关系。

具体来说,如果y=x^n,则x=loga(y),其中n为正整数且a>0且a≠1。

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结

指数函数幂函数对数函数知识点总结一.指数函数指数函数是一种特殊的函数形式,其中自变量位于指数的上方。

指数函数的一般形式为:$y=a^x$。

在指数函数中,底数$a$是一个正实数,且$a\ne q1$。

1.指数函数的性质指数函数的增长特性-:当底数$a$大于1时,指数函数呈现增长趋势,随着自变量$x$的增大,函数值$y$也随之增大。

当底数$a$在0和1之间时,指数函数则呈现递减趋势。

指数函数的定义域和值域-:指数函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

根据底数$a$的不同,指数函数的值域也有所不同。

若底数$a>1$,则值域为$(0,+\in ft y)$;若底数$0<a<1$,则值域为$(-\in ft y,+\in fty)$。

指数函数的奇偶性-:当底数$a>0$且$a\n eq1$时,指数函数为奇数函数。

2.指数函数的图像指数函数的图像特点也与底数$a$的取值有关:-当底数$a>1$时,指数函数的图像呈现增长趋势,在原点左侧逐渐接近$y=0$轴,右侧逐渐趋近于正无穷。

-当底数$0<a<1$时,指数函数的图像呈现递减趋势,在原点左侧呈现正无穷,右侧逐渐接近$y=0$轴。

二.幂函数幂函数是指数函数的一种特殊形式,其中底数固定为正整数。

幂函数的一般形式为:$y=x^n$。

1.幂函数的性质幂函数的增长特性-:当指数$n$为正整数时,幂函数呈现增长趋势。

若$n$为奇数,则幂函数随自变量$x$的增大而增加;若$n$为偶数,则幂函数随着自变量$x$的增大或减小而增加。

幂函数的定义域和值域-:幂函数的定义域为所有实数,即$(-\i nf ty,+\i nf ty)$。

幂函数的值域则根据指数$n$的奇偶性而定。

若$n$为奇数,则值域为$(-\i nf ty,+\i nf t y)$;若$n$为偶数,则值域为$[0,+\in ft y)$。

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的观点(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 一定使n a 存心义)。

2.有理数指数幂 (1)幂的相关观点 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没存心义.注:分数指数幂与根式能够互化,往常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );.n 为奇数 n 为偶数3.指数函数的图象与性质 y=a x a>10<a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,0<y<1(2) 当x>0时,0<y<1; x<0时, y>1(3)在(-∞,+∞)上是增函数 (3)在(-∞,+∞)上是减函数注:如下图,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,怎样确立底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即不论在轴的左边仍是右边,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的观点 (1)对数的定义假如(01)x a N a a =>≠且,那么数x 叫做认为a 底,N 的对数,记作log N a x =,此中a 叫做对数的底数,N 叫做真数。

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

指数函数、对数函数、幂函数的图像和性质知识点总结.docx

(一)指数与指数函数1.根式(1)根式的概念根式的It念3符号表示a备注3如果x n=a,那么x叫做a的〃次方根a n > lfin e AT P 当«为奇数时,正数的«次方根是一个正数,负数的川次方根是一个负数3零的兀次方根是零3当n为偶数时,正数的n次方根有两个,它们互为相反数"土嚅(° >0)3负数没有偶次方根卩(2).两个重要公式*a①> 0)\a\=<[-a{ci < 0)②=a (注意a必须使砺有意义)。

2.有理数指数幕(1)幕的有关概念①正数的正分数指数幕:a"= 奸(d > (),m. n w AT,且〃〉1);豐 1 1②正数的负分数指数幕:a n = —=-=(^7>0,/?K /?G N\JBL H>1)a n③0的正分数指数幕等于0,0的负分数指数幕没有意义.注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算。

(2)有理数指数幕的性质①a I a'=a H'"(a>0,r、s G Q);②(a r)s=a re(a>0,r> sEQ);③(ab)'=a r b s(a>0,b>0,r E Q);.3.指数函数的图象与性质y=a x a>l 0<a<l图象~d 1 *定义域 R 值域 (0, +oo) 性质(1)过定点(0, 1)(2)当 x>0 时,y>l; x<0 时,0<y<l(2)当 x>0 时,0<y<l; x<0 时,y>l(3)在(-oo, +oo)上是增函数(3)在 (-00 , 4-00 )上是减函数注:如图所示,是指数函数(1) y=a x , (2) y=b x ' (3) ,y=c x (4) ,y=d x 的图象,如何确 定底数a,b,c,d 与1之间的大小关系?提示:在图屮作直线x=l,与它们图象交点的纵坐标即为它们各自底数的值,即 ci>』>l>ai>bi,・・・c>d>l>a>b 。

幂函数指数函数与对数函数的性质与计算

幂函数指数函数与对数函数的性质与计算

幂函数指数函数与对数函数的性质与计算幂函数、指数函数与对数函数是数学中常见的函数类型,它们具有一些独特的性质以及特定的计算方式。

在本文中,我们将探讨这些函数的基本概念、性质以及如何进行计算。

一、幂函数的性质与计算幂函数是形如y=x^n的函数,其中n为实数。

幂函数的性质如下:1. 幂函数的定义域为实数集R,值域则取决于n的值。

- 当n为正奇数时,f(x)为增函数,值域为R+(正实数集);- 当n为正偶数时,f(x)为非负且有最小值0,值域为[0, +∞);- 当n为负数时,f(x)有正负之分,值域为R+和R-(负实数集),且在不同的定义域上具有不同的增减性;- 当n为0时,0的0次方没有定义。

2. 幂函数的图像特点:- 当n为正数时,随着x的增大,函数值也随之增大,图像呈现递增趋势;- 当n为负数时,随着x的增大,函数值递减,图像呈现递减趋势。

3. 幂函数的计算方法:- 幂函数的运算法则遵循指数运算法则,如x^m * x^n = x^(m+n),x^m / x^n = x^(m-n),(x^m)^n = x^(m*n)等。

二、指数函数的性质与计算指数函数是形如y=a^x的函数,其中a为常数且a>0且a≠1。

指数函数的性质如下:1. 指数函数的定义域为实数集R,值域为正实数集R+。

2. 指数函数以a为底,随着自变量x的增大,函数值呈现指数增长的特征。

3. 指数函数的计算方法:- 当a为正数时,指数函数的运算法则与幂函数相似,如a^m *a^n = a^(m+n),a^m / a^n = a^(m-n)等。

- 当a为负数时,指数函数的运算方法可以通过转化为幂函数的形式进行计算。

三、对数函数的性质与计算对数函数是指数函数的逆运算,以b为底,记作y=logₐx。

对数函数的性质如下:1. 对数函数的定义域为正实数集R+,值域为实数集R。

2. 对数函数以b为底,将正实数x映射到实数y,即b^y=x。

3. 对数函数的计算方法主要包括:- 同底数的对数乘法法则:logₐ(x * y) = logₐx + logₐy;- 同底数的对数除法法则:logₐ(x / y) = logₐx - logₐy;- 对数的换底公式:logₐx = log_bx / log_ba,其中a、b为正实数且a≠1,b≠1。

幂函数、指数函数、对数图像及性质

幂函数、指数函数、对数图像及性质
(3) 过点(1,0), 即x=1 时, y=0 (4) 0<x<1时, y<0; (4) 0<x<1时, y>0;

x>1时, y>0
x>1时, y<0
(5) 在(0,+∞)上是增函数 (5)在(0,+∞)上是减函数
x

x
指数函数的图象和性质 y a
图 象 性 值域:
y
x
(a 0且a 1)
a>1
y 1 o
0<a<1
1 o R (0,&#义域:
过定点: 当x>0时,y>1. 当x>0时,0<y<1, 当x<0时,y>1. 质 当x<0时,0<y<1. 单调性:是R上的增函数 单调性:是R上的减函数 奇偶性: 非奇非偶 奇偶性: 非奇非偶
1. 幂函数的图像
y x, y x , y x ,
2 3
y
y x , y x
的图象.
1 2
y x3 y x2 y x
1
yx
1
1 2
yx
1
O1
y x 2
x
幂函数的性质
(1) 所有的幂函数在(0,+∞)都有定义,
并且图象都通过点(1,1); (2) 如果a>0,则幂函数图象过原点, 并且在区间 [0,+∞)上是增函数;
3、对数函数的图像
y log2 x y log0.5 x y lg x
y log0.1 x
1
对数函数的图象和性质
a>1 图 象
o y (1, 0) x
对数函数y=log a x (a>0, a≠1)

指数函数对数函数与幂函数指数函数的性质与图像

指数函数对数函数与幂函数指数函数的性质与图像

指数函数对数函数与幂函数指数函数的性质与图像xx年xx月xx日CATALOGUE 目录•指数函数的定义与性质•对数函数的定义与性质•幂函数的定义与性质•指数函数、对数函数与幂函数的比较•指数函数、对数函数与幂函数的应用案例•总结与展望01指数函数的定义与性质指数函数的定义02指数函数:y=f(x)=a^x03a>0时,函数图像过一三象限;a<0时,函数图像过二四象限。

指数函数的性质函数图像恒过(0,1)点值域:R a>1时,函数为单调递增函数;0<a<1时,函数为单调递减函数奇偶性:当a>0时,为奇函数;当a=0时,既不是奇函数也不是偶函数;当a<0时,为偶函数指数函数的图像图像恒过(0,1)点当a>1时,函数的增长速度随着x的增大而逐渐加快;当0<a<1时,函数的增长速度随着x的增大而逐渐减慢。

a>1时,函数为单调递增函数,图像位于一三象限;0<a<1时,函数为单调递减函数,图像位于二四象限。

当a>1时,函数的最大值无限趋近于正无穷大;当0<a<1时,函数的最小值无限趋近于0。

02对数函数的定义与性质1 2 3自然对数:以数学常数e为底数的对数,记作ln(x)。

常用对数:以10为底数的对数,记作lg(x)。

底数为任意正数的对数,记作log(x)。

对数的运算性质log(a*b)=log(a)+log(b);log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。

对数恒等式log(a/b)=log(a)-log(b);log(a^n)=nlog(a)。

对数的运算律如果a>0且a不等于1,M>0,N>0,那么log(a)(MN)=log(a)M +log(a)N;log(a)(M/N)=log(a)M -log(a)N;log(a)M^n=nlog(a)M。

•对数函数的图像与性质:图像与x轴交点为1,当x>1时,函数值大于0;当0<x<1时,函数值小于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mna a m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算. (2)有理数指数幂的性质 ①a r as =a r+s(a>0,r、s∈Q ); ②(a r )s =a rs (a 〉0,r 、s ∈Q );③(a b)r =a r bs (a>0,b >0,r ∈Q);。

n 为奇数 n 为偶数3.指数函数的图象与性质y=a x a〉1 0<a〈1图象定义域R值域(0,+∞)性质(1)过定点(0,1)(2)当x>0时,y>1;x<0时,0<y<1(2)当x>0时,0<y〈1;x<0时,y>1(3)在(-∞,+∞)上是增函数(3)在(—∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1〉b1,∴c>d〉1>a>b。

即无论在轴的左侧还是右侧,底数按逆时针方向变大.(二)对数与对数函数1、对数的概念(1)对数的定义如果(01)xa N a a=>≠且,那么数x叫做以a为底,N的对数,记作log Nax=,其中a叫做对数的底数,N叫做真数。

(2)几种常见对数对数形式特点记法一般对数底数为a0,1a a>≠且log Na常用对数底数为10lg N自然对数底数为e ln N2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②log 1aa =,③log Na aN =,④log Na a N =。

(2)对数的重要公式:①换底公式:log log (,1,0)log NNa bbaa b N =>均为大于零且不等于; ②1log log ba ab=。

(3)对数的运算法则:如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③)(log log R n M n M a na ∈=;④b mnb a na m log log =。

图象1a >01a <<性质(1)定义域:(0,+∞)(2)值域:R(3)当x=1时,y =0即过定点(1,0) (4)当01x <<时,(,0)y ∈-∞; 当1x >时,(0,)y ∈+∞ (4)当1x >时,(,0)y ∈-∞; 当01x <<时,(0,)y ∈+∞ (5)在(0,+∞)上为增函数(5)在(0,+∞)上为减函数提示:作一直线y=1,该直线与四个函数图象交点的横坐标即为它们相应的底数。

∴0〈c 〈d<1〈a〈b 。

4、反函数指数函数y=ax 与对数函数y=lo ga x 互为反函数,它们的图象关于直线y=x 对称。

(三)幂函数1、幂函数的定义形如y =x α(a ∈R)的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 2、幂函数的图象注:在上图第一象限中如何确定y=x 3,y=x 2,y=x,12y x =,y=x -1方法:可画出x=x 0;当x 0〉1时,按交点的高低,从高到低依次为y=x3,y =x 2, y=x ,12y x =, y =x —1; 当0<x 0<1时,按交点的高低,从高到低依次为y =x-1,12y x = ,y=x, y =x 2,y=x 3 。

y =x y=x2y=x 312y x =y=x—1定义域 R RR [0,+∞) {}|0x x R x ∈≠且值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且奇偶性 奇 偶奇非奇非偶 奇单调性增x∈[0,+∞)时,增; x ∈(,0]-∞时,减增 增x ∈(0,+∞)时,减;x∈(—∞,0)时,减定点(1,1)三:例题诠释,举一反三知识点1:指数幂的化简与求值 例1.(2007育才A )(1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A)化简下列各式(其中各字母均为正数):(1);)(65312121132ba ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)1200.2563433721.5()82(23)()63-⨯-+⨯+⨯- 知识点2:指数函数的图象及应用例2。

(2009广附A)已知实数a 、b满足等式b a )31()21(=,下列五个关系式:①0<b <a;②a<b <0;③0<a<b;④b<a <0;⑤a=b.其中不可能成立的关系式有 ( )A 。

1个B .2个 C。

3个 D 。

4个 变式:(2010华附A)若直线a y 2=与函数 0(|1|>-=a a y x且)1≠a 的图象有两个公共点,则a 的取值范围是_______。

知识点3:指数函数的性质例3。

(2010省实B )已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 的单调性;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.变式:(2010东莞B)设a >0,f(x)=xx a a e e +是R 上的偶函数.(1)求a 的值;(2)求证:f(x)在(0,+∞)上是增函数。

知识点4:对数式的化简与求值例4.(2010云浮A)计算:(1))32(log 32-+ (2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg4932-34lg 8+lg 245.变式:(2010惠州A)化简求值. (1)log 2487+log 212—21log 242—1;(2)(lg2)2+lg2·l g50+l g25;(3)(lo g32+log 92)·(log 43+lo g83)。

知识点5:对数函数的性质例5.(2011深圳A)对于01a <<,给出下列四个不等式: ①1log (1)log ();a a a a a +<+ ②1log (1)log (1)a a a a+>+;③111;aaaa++< ④111;aaaa++> 其中成立的是( )(A)①与③(B )①与④(C)②与③(D)②与④变式:(2011韶关A)已知0<a<1,b >1,a b>1,则l og a bb b b a 1log ,log ,1的大小关系是 ( )A.l oga bb b ba 1log log 1<< B 。

b b b b a a 1log 1log log << C。

bb b a b a 1log 1log log << D .b b b a a b log 1log 1log <<例6.(2010广州B)已知函数f (x )=log a x(a>0,a ≠1),如果对于任意x ∈[3,+∞)都有|f (x)|≥1成立,试求a 的取值范围. 变式:(2010广雅B)已知函数f (x)=log2(x2-ax —a)在区间(-∞,1-3]上是单调递减函数。

求实数a 的取值范围. 知识点6:幂函数的图象及应用例7.(2009佛山B )已知点(22),在幂函数()f x 的图象上,点124⎛⎫- ⎪⎝⎭,,在幂函数()g x 的图象上.问当x 为何值时有:(1)()()f x g x >;(2)()()f x g x =;(3)()()f x g x <.变式:(2009揭阳B)已知幂函数f (x)=x322--m m(m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数。

(1)求函数f(x );(2)讨论F(x)=a )()(x xf bx f -的奇偶性。

四:方向预测、胜利在望1.(A)函数41lg)(--=x xx f 的定义域为( ) A.(1,4) B .[1,4) C.(-∞,1)∪(4,+∞) D.(-∞,1]∪(4,+∞) 2.(A )以下四个数中的最大者是( )(A) (ln 2)2ﻩﻩ(B) ln (ln2)ﻩ(C) ln2(D ) ln23(B)设a>1,函数f(x)=lo ga x 在区间[a,2a]上的最大值与最小值之差为,21则a=( ) (A)2 (B)2 (C )22 (D )44.(A)已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a fb f ==5(),2c f =则( )(A )a b c << (B )b a c << (C )c b a << (D)c a b <<5.(B )设f(x)= 1232,2,log (1),2,x e x x x -⎧<⎪⎨-≥⎪⎩则不等式f(x )>2的解集为( ) (A)(1,2)⋃(3,+∞) (B )(10,+∞)(C)(1,2)⋃ (10 ,+∞) (D)(1,2) 6.(A )设2log 3P =,3log 2Q =,23log (log 2)R =,则( ) A .R Q P <<ﻩB.P R Q << C.Q R P << D.R P Q <<7.(A )已知c a b 212121log log log <<,则( )A .c ab 222>>ﻩB .c ba 222>> C.abc 222>> D.b a c 222>> 8.(B)下列函数中既是奇函数,又是区间[]1,1-上单调递减的是( )(A )()sin f x x = (B) ()1f x x =-+(C) 1()()x x f x a a -=+ (D) 2()2xf x lnx-=+ 9.(A)函数y =( )A [1,)+∞ B 23(,)+∞ C 23[,1] D 23(,1]10.(A)已知函数kx y x y ==与41log 的图象有公共点A,且点A 的横坐标为2,则k ( )A.41-B.41C.21- D .2111.(B)若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有( ) A .010><<b a 且 B .01>>b a 且C .010<<<b a 且 D.01<>b a 且12.(B )若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=( ) A 。

相关文档
最新文档