《简单逻辑联结词》PPT课件

合集下载

简单逻辑联结词-课件

简单逻辑联结词-课件

跟踪训练: 下列命题中,真命题是________. ①∃m∈R,使函数 f(x)=x2+mx(x∈R)是偶函数; ②∃m∈R,使函数 f(x)=x2+mx(x∈R)是奇函数; ③∀m∈R,函数 f(x)=x2+mx(x∈R)都是偶函数; ④∀m∈R,函数 f(x)=x2+mx(x∈R)都是奇函数.

11、越是没有本领的就越加自命不凡 。2021/3/52021/3/52021/3/5M ar-215- Mar-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/3/52021/3/52021/3/5Fr iday, March 05, 2021

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/3/52021/3/52021/3/52021/3/53/5/2021
函数
f(x)=x2-2cx+1
在12,+∞
上为增函数,若“p

q”
为假,“p 或 q”为真,求实数 c 的取值范围.
当堂检测:
1.命题“存在 x∈R,2x≤0”的否定是______________. 2.用含有逻辑连结词的命题,表示命题“xy=0”的否定是________.
3.已知命题: p1:函数 y=2x-2-x 在 R 上为增函数, p2:函数 y=2x+2-x 在 R 上为减函数, p1∧(非 p2)中,真命题是________. 4.已知命题 p:方程 x2-(2+a)x+2a=0 在[-1,1]上有且仅有一解;
基本知识点:
1.正确理解逻辑联结词“或”“且”“非”以及命题 p∧q、p∨q、非 p 的
真假判定 2.全称量词和存在量词 3.含有一个量词的命题的否定
考点一:命题 p∧q、p∨q、非 p 的真假判定

简单的逻辑连接词PPT教学课件

简单的逻辑连接词PPT教学课件

假命题
2020/10/16
9
例2 用逻辑联结词“且”改写下列命题,并判断它们的真
假: 既

解(:1) 11 是是奇奇数数且,1 是是素素数数;
是假命题

(2)2 3 都是素数。
解: 2 是素数且 3 是素数
是真命题
2020/10/16
10
1.3.2 或 (or)
思考 下列三个命题间有什么关系? (1)27是7的倍数; (2)27是9的倍数;
注:逻辑联结词“且”与日常用语源自的“并且”、 “及”、2020/10“/16 和”相当;在日常用语中常用“且”连接两个3语
例1 将下列命题用“且”联结成新命题 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。
(2) p :菱形的对角线互相垂直, q :菱形的对角线互相平分;
2020/10/16
1
在数学中常常要使用逻辑联结词 “或”、“且”、“非”,它们与日常生 活中这些词语所表达的含义和用法是不尽 相同的,下面我们就分别介绍数学中使用 联结词“或”、“且”、“非”联结命题 时的含义与用法。
为了叙述简便,今后常用小写字母p,q,r, s,…表示命题。
2020/10/16

命题p∨q:三边对应成比例或三角对应相等的两个三 角形相似 真
2020/10/16
12
命题p∨q的真假判断方法:
一般地,我们规定:当p,q两个命题中 有一 个命题是真命题时,p∨q是 真 命题;
当p,q两个命题都是假命题时,p∨q 是假 命题.
一句话概括:
p
q p∨q
真真真

简单的逻辑联结词PPT教学课件

简单的逻辑联结词PPT教学课件

等于(=)
不等于 (≠)
大于(>)
不大于 (≤)
小于(<) 是
不小于 不是 (≥)
都是 不都是
正面 词语
否定 词语
至多有 一个
至少有 两个
至少有 一个
一个也 没有
任意的 所有的 一定 …
某个 某些 一定 … 不
失误与防范
1.p∨q为真命题,只需p、q有一个为真即可,p∧q 为真命题,必须p、q同时为真.
∴ p 为真且q也为真,
即p为假,q为真.
3.命题“对任意实数x∈R,x4-x3+x2+5≤0”的否定是 (C)
A.不存在x∈R,x4-x3+x2+5≤0 B.存在x∈R,x4-x3+x2+5≤0 C.存在x∈R,x4-x3+x2+5>0 D.对任意x∈R,x4-x3+x2+5>0 解析 命题的否定是“ x∈R, x4-x3+x2+5>0”.
B.p1,p4 D.p2,p4
()
思维启迪 明确变量x的范围,判断不等式是否成立, 从而得到命题的真假.
解析 当x∈(0,+∞)恒有(1)x (1)x , 故p1为假; 23
当x
1 2
时,log
1 2
1 2
log 1
3
1 , 故p2为真; 2
当x
1
时,(
1
)
1
22
log 1
2
1, 2
故p3为假;
知能迁移2 (2009·海南,宁夏文,4)有四个关于 三角函数的命题:
p1:x R, sin2 x cos2 x 1

1.3简单的逻辑联结词(公开课)【精品PPT】

1.3简单的逻辑联结词(公开课)【精品PPT】
p
q

真 真

全假为假,一真必真. 1.3简单的逻辑联结词(公开课)
例3:判断下列命题的真假: (1)2≤2; (2)集合A是A∩B的子集或是A∪B的子集; (3)周长相等的两个三角形全等或面积相等的
两个三角形全等.
解:(1)p:2=2 ;q:2<2 ∵ p是真命题,∴p∨q是真命题.
(2)p:集合A是A∩B的子集;q:集合A是A∪B的子集 ∵q是真命题, ∴p∨q是真命题.
题p和命题q联结起来,就得到一个新命题, 记作 p∧q,读作“p且q”
思考:命题 p∧q的真假如何确定?
1.3简单的逻辑联结词(公开课)
一般地,我们规定:
当p,q都是真命题时,p∧q是真命题; 当p,q 两个命题中有一个命题是假命题时, p∧q是假命题。
pq
真 假 假 假
全真为真,一假必假. 1.3简单的逻辑联结词(公开课)
例2:用逻辑联结词“且”改写下列 命题,并判断它们的真假: (1)1既是奇数,又是素数; (2)2和3都是素数;
解:(1)改写为:1是奇数且1是素数。
因为“1是素数”是假命题, 所以这个命题是假命题。
1.3简单的逻辑联结词(公开课)
(1)1既是奇数,又是素数; (2)2和3都是素数;
解:(2)改写为:2是素数且3是素数。 因为“2是素数”与“3是素数”都是真命 题,所以这个命题是真命题。
(2)﹁p:3 2 ;
∵p是假命题, ∴ ﹁p是真命题.
(3)﹁p:空集不是集合A的子集.
∵ p是真命题, ∴ ﹁p是假命题.
1.3简单的逻辑联结词(公开课)
思考:否命题与命题的否定的区别?
(1)否命题:否定条件,也否定结论. (2)命题的否定:只否定结论,不否定条件. (3)原命题: 若 p , 则 q .

简单的逻辑联结词 课件

简单的逻辑联结词   课件

2.含有“且”“或”“非”联结词的命题真假的判断 (1)当p,q都是真命题时,_p_∧__q_是__真__命__题__;当p,q两个命题中至 少有一个命题是假命题时,_p_∧__q_是__假__命__题__. (2)当p,q两个命题中至少有一个命题是真命题时,_p_∨__q_是__真__命__ _题__;当p,q两个命题都是假命题时,_p_∨__q_是__假__命__题__. (3)若p是真命题,则___p_必__是__假__命__题__;若p是假命题,则___p_必__是__ _真__命__题__.
1.联结词只能出现在一个命题的结论中吗? 提示:不一定.联结词既可以出现在条件中,也可以出现在结论 中. 2.命题的否定与否命题相同吗? 提示:不相同.命题的否定是只对结论进行否定,而否命题是既 对条件否定,同时也对结论进行否定.
3.如果命题p∧q是真命题,那么命题p一定是真命题? 提示:正确.因为只有当p,q均为真命题时,p∧q才为真命题, 故如果p∧q为真命题,则命题p一定是真命题. 4.命题“x=1或x=2是方程x2-3x+2=0的解”是________形式的 命题(填“p∧q”“p∨q”“﹁p”中的一个). 【解析】由逻辑联结词知,此命题是“p∨q”的形式. 答案:p∨q
(3)p∧q:公比是负数的等比数列中的项是正负项间隔出现的且 等比数列中可以存在“0”这一项; p∨q:公比是负数的等比数列中的项是正负项间隔出现的或等 比数列中可以存在“0”这一项; p:公比是负数的等比数列中的项不是正负项间隔出现的.
【总结】新命题是如何构成的?三种形式的新命题容易出现的 错误是哪种形式? 提示:新命题是由逻辑联结词“且”“或”“非”构成的;在 “ p”这种命题中容易出现否定错误.
判断命题的结构及命题的真假

12简单的逻辑联结词精品PPT课件

12简单的逻辑联结词精品PPT课件

思考2:命题p与┐p的真假关系如何?
当p为真命题时,则┐p为假命题;当p为假
命题时,则┐p为 真命题 .
结论:p与┐p真假性相反.
一句话概括:
p
¬p
真假相反




例1 分别指出下列命题的形式: (1)8≥7;
(2)2是偶数且2是质数;
(3) 不是整数.
解 (1) 这个命题是“p或q”的形式 p:8>7 q:8=7
(2) 这个命题是“p且q”的形式 p:2是偶数 q:2是质数
(3)这个命题是“非p”的形式
p: 是整数
例2 写出由下列命题构成的“p或q”、“p且q” 以及“非p”形式的命题. (1) p:3是质数,
q: 3是偶数. (2) p:方程x2+x-2=0的解是x=-2,
q:方程x2+x-2=0的解是x=1 .
命题p或q的真假判断方法: 一般地,我们规定:在两个命题p和q之中,只要
有 一 个命题是真命题,新命题“p或q ”就是 真 命 题;当两个命题p和q都是假命题时,新命题 “p或
q ”是 假 命题.
p
q
p或q
一句话概括:



有真即真, 全假为假.









探究点2:逻辑联结词“且” 思考1:下列命题中,命题间有什么关系? (1)12能被3整除; (2)12能被4整除; (3)12能被3整除且能被4整除. 提示:命题(3)是由命题(1)(2)使用联结词“且”联结 得到的新命题. “p且q”:用“_且__”将命题p和命题q联结而成的新命 题,也可记作“_p_∧__q_”.

简单的逻辑联结词(共19张PPT)

简单的逻辑联结词(共19张PPT)
A∩B={x︱x∈A且x∈B}中的“且”, 是指“x∈A”、“x∈B”这两个条件都 要满足的意思
符号“∧”与“∩”开口都是向下
例1 将下列命题用“且”联结成新命题,并判断它们的真
假。 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。 假命题

命题p∨q:函数 y x3是奇函数或在定义域内是减函数。 真
5:命题p: 相似三角形的面积相等;

命题q: 相似三角形的周长相等;

命题p∨q:相似三角形的面积相等或周长相等。

6:命题p:三边对应成比例的两个三角形相似;

命题q:三角对应相等的两个三角形相似;

命题p∨q:三边对应成比例或三角对应相等的两个三 角形相似 真
解:(1)p:2=2 ;q:2<2 ∵ p是真命题,∴p∨q是真命题.
(2)p:集合A是A∩B的子集;q:集合A是A∪B的子集 ∵q是真命题, ∴p∨q是真命题.
(3)p:周长相等的两个三角形全等; q:面积相等的两个三角形全等.
∵命题p、q都是假命题, ∴ p∨q是假命题.
判断复合命题真假的步骤:
注:逻辑联结词“且”与日常用语中的“并且”、 “及”、“和”相当;在日常用语中常用“且”连接两 个语句。表明前后两者同时兼有,同时满足 .
例1 将下列命题用“且”联结成新命题 (1) p :平行四边形的对角线互相平分,
q :平行四边形的对角线相等; 解: p ∧q : 平行四边形的对角线互相平分且相等。
⑴把复合命题写成两个简单命题,并确定复合命 题的构成形式;
⑵判断简单命题的真假;
⑶利用真假表判断复合命题的真假。

简单的逻辑联结词课件

简单的逻辑联结词课件

2.已知命题 p:所有有理数都是实数,命题 q:正数的对数都是负数,则
下列命题中为真命题的是(
).
A.(p)∨q
B.p∧q
C.(p)∧(q)
答案:D
D.(p)∨(q)
解析:p 为真,p 为假.q 为假,q 为真.(p)∨(q)为真.
由逻辑联结词“且”“或”“非”组成的命题的真假判断,
结词组成的命题的真假.
解:(1)因为 p 是真命题,q 是假命题,
所以 p∧q 是假命题,p∨q 是真命题,p 是假命题.
(2)因为 p 是假命题,q 是假命题,
所以 p∧q 是假命题,p∨q 是假命题,p 是真命题.
(3)因为 p 是真命题,q 是真命题,
所以 p∧q 是真命题,p∨q 是真命题,p 是假命题
命题都是假命题时,p∨q 是假命题.
预习交流 2
如果 p∧q 为真命题,那么 p∨q 一定是真命题吗?反之,如果 p∨q 为
真命题,那么 p∧q 一定是真命题吗?
提示:如果 p∧q 为真命题,则 p∨q 为真命题;如果 p∨q 为真命题,
则 p,q 中可能有假命题,所以 p∧q 不一定为真命题.
3.非
1.已知命题 p:3≥3,q:3>4,则下列选项中正确的是(
).
A.“p∨q”为真,“p∧q”为真,“p”为假
B.“p∨q”为假,“p∧q”为假,“p”为真
C.“p∨q”为假,“p∧q”为假,“p”为假
D.“p∨q”为真,“p∧q”为假,“p”为假
答案:D
解析:由于 p 真 q 假,所以 p∨q 为真,p∧q 为假,p 为假.
2

所以 x2- 3 x+ 3 c 恒大于零,即(- 3 )2-4× 3 c<0,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 简单的逻辑联结词


hlj
命题p∧q
函数y=x3是偶函数且在R上是减函数 假
命题p:三角形三条中线相等

命题q: 三角形三条中线相交于一点 真
命题p∧q
三角形三条中线相等且相交与一点 假
问题探究
pq
p(q)闭合 p(q)是真命题 p(q)断开 p(q)是假命题
整个电路的接通 p ∧ q是真命题 整个电路的断开 p ∧ q是假命题
q:平行四边形的对角线相等

解: p∧q:平行四边形的对角线互相平分且相假

p∨q:平行四边形的对角线互相平分或相真

(2)p:菱形的对角线互相垂直 真 q:菱形的对角线互相平分 真
解: p∧q:菱形的对角线互相垂直且平分 真 p∨q:菱形的对角线互相垂直或平分 真
(3)p:35是15的倍数 假 q:35是7的倍数 真

/ / /
方法总结
判断“p或q”“p且q”形式命题的真假,
主要利用真值表来判断,其步骤是:

m.cj
dBiblioteka /bj dxb

“p且q”形式命题的真假判断
一 假 则 假
练习
以下判断正确的是( )
A.若p是真命题,则“p且q”一定是真命题 B.命题“p且q”是真命题,则命题p一定是真命题 C.命题“p且q”是假命题时,命题p一定是假命题 D.命题p是假命题时,命题“p且q”不一定是假命题
探讨问题 1.如何利用集合的观点理解“且”?
问题探究
p
q
p(q)闭合 p(q)是真命题 p(q)断开 p(q)是假命题
整个电路的接通 p ∨ q是真命题 整个电路的断开 p ∨ q是假命题
“p或q”形式命题的真假判断
一 真 则 真
例1
将下列命题分别用“且”与“或”联结成新 命题p∧q与p∨q的形式,并判断它们的真假。
(1)p:平行四边形的对角线互相平分 真
命题(3)是由简单命题(1)(2)使用 联结词“或”联结得到的新的复合命题
形成结论
一般地,用逻辑联结词“或”把命题 p和命题q联结起来就得到一个新命题.
记作: p∨q 读作:“p或q”
探究p或q的真假
判断下列三个命题的真假性
(1) 27是7的倍数;

(2) 27是9的倍数;

(3) 27是9的倍数或是7的倍数; 真
且与或
探究(一)
思考:下列三个语句是命题吗?它们之间 有什么关系?
(1)12能被3整除;
(2)12能被4整除;
(3)12能被3整除且能被4整除.
命题(3)是由简单命题(1)(2)使用 联结词“且”联结得到的新复合命题.
了解概念
简单命题:不含逻辑联结词的命题叫做 简单命题
复合命题:简单命题再加上一些逻辑 联结词构成的命题叫复合命题
wj
kj kj
对“且”的理解,可联想集合中“交集” 的概念,“x∈A∩B”是指“x∈A”,“x∈B” 要同时满足的意思,即x既属于集合A,又属于 集合B.用“且”联结两个命题p与q所构成的复 合命题是“p且q”,当且仅当“p真、q真”时, “p且q”为真.
探究(二)
思考:下列三个语句是命题吗?它们之间有 什么关系? (1)27是9的倍数; (2)27是7的倍数; (3)27是9的倍数或是7的倍数;
形成结论
一般地,用逻辑联结词“且”把命题 p和命题q联结起来就得到一个新命题.
记作: p∧q 读作:“p且q”
探究p且q的真假
判断下列三个命题的真假性 (1)12能被3整除; 真 (2)12能被4整除; 真 (3)12能被3整除且能被4整除. 真
问题探究
命题p:函数y=x3是偶函数

命题q: 函数y=x3在R上是减函数 假
解: p∧q:35是15的倍数且是7的倍数 假 p∨q:35是15的倍数或是7的倍数 真
例2
判断下列命题的真假: (1)6是自然数且是偶数 p:6是自然数 q:6是偶数,由联结词“且”联结 p为真命题,q为真命题,所以p且q为真命题
(2)2≤2
p:2=2 q:2<2,由联结词“或”联结
p是真命题,q是假命题,则p或q是真命题。
第一课时
复习回顾
1.命题的定义是什么?
用语言、符号或式子表达的,可以判 断真假的陈述句叫做命题.
2.充分条件、必要条件和充要条件的含义分别是什 么?
若 p ,q则称p是q的充分条件,且q是p 的必要条件. 若 p ,q则p是q的充要条件.
思考
3.“甲是乙的父亲且甲是乙的老师”与 “甲是乙的父亲或甲是乙的老师”的 含义相同吗?
相关文档
最新文档