初三数学中考模拟试题(4月)
浙江省宁波市海曙区中考数学4月模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省某某市海曙区中考数学模拟试卷(4月份)一、选择题1.﹣3的绝对值是()A.3 B.﹣3 C.D.2.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生3.清明节是祭祖和扫墓的日子,据某某市民政局社会事务处的数据显示,今年清明期间全市祭扫人数超300万人次,其中的300万用科学记数法表示为()A.3×105B.3×106C.30×105×1064.下列计算正确的是()A.2a﹣a=2 B.a2+a=a3C.(x﹣1)2=x2﹣1 D.(a2)3=a65.如图,图1是由5个完全相同的正方体搭成的几何体,现将标有E的正方体平移至图2所示的位置,下列说法中正确的是()①左、右两个几何体的主视图相同②左、右两个几何体的俯视图相同③左、右两个几何体的左视图相同.A.①②③B.②③ C.①② D.①③6.已知2,2,x,4,9,这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和27.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+158.已知x=1是方程ax2+bx﹣6=0(a≠0)的一个解,若a≠b,则的值为()A.﹣3 B.3 C.﹣6 D.69.圆锥纸帽的侧面展开图是一个圆心角为120°,弧长为6π(cm)的扇形纸片,则圆锥形纸帽的侧面积为()A.9π cm2B.18π cm2C.27π cm2D.36π cm210.如图(1)是一个六角星的纸板,其中六个锐角都为60°,六个钝角都为120°,每条边都相等,现将该纸板按图(2)切割,并无缝隙无重叠地拼成矩形ABCD.若六角星纸板的面积为9cm2,则矩形ABCD的周长为()A.18cm B.8cm C.(2+6)cm D.(6+6)cm11.如图(1)是两圆柱形联通容器(联通外体积忽略不计).向甲容器匀速注水,甲容器的水面高度h(cm)随时间t(分)之间的函数关系如图(2)所示,根据提供的图象信息,若甲的底面半径为1cm,则乙容器底面半径为()A.5cm B.4cm C.3cm D.2cm12.如图,B、C两点都在反比例函数y=(x>0)上,点A在y轴上,AB∥x轴,当△ABC 是等边三角形时,的值为()A.B.C.D.二、填空题13.如图,某中学制作了学生拓展性课程中选择棋类、球类、美术、书法四门课程情况的扇形统计图,从图中可以看出选择书法的学生的百分比为.14.若,则m+n=.15.如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为.16.已知,抛物线y=ax2+bx+3满足2a+b=0,写出该抛物线上可以确定的点的坐标.17.如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=2CD,AE⊥AB交BD的延长线于E,则=.18.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.(6分)解不等式:﹣1>6x.20.(8分)已知EF∥MN,直线AC交EF、MN于点A、C,作∠A的角平分线于点B,作∠CAE 的角平分线交MN于点D.(1)求证:四边形ABCD为平行四边形;(2)若四边形ABCD为菱形,求∠ABC的度数.21.(8分)现有四X外观质地相同的扑克牌,其中两XA,两XK(1)把四X牌放成两堆,每堆一XA一XK,把它们正面朝下放置,随机在这两堆中各抽一X 牌,请通过画树状图或列表计算,抽出的两X牌正好是一XA一XK的概率?(2)元芳说:把这四X牌混在一起,正面朝下放置,从中任意抽取两X牌,结果是一XA 一XK的概率与(1)中的概率相等,元芳说得对吗?请计算说明.22.(10分)已知直线y=x+b与双曲线y=的一个交点为(2,5),直线与y轴交于点A.(1)求m的值及点A的坐标;(2)若点P在双曲线y=的图象上,且S△POA=10,求点P的坐标.23.(10分)用22米长的篱笆和6米长的围墙围成一个矩形鸡舍.(1)爸爸的方案是:一面是墙,另外三面是篱笆,求爸爸围成的鸡舍面积最大是多少?(2)小明的方案是:把有墙的一面用篱笆加长作为一边,另外三面也是篱笆,要使围成的鸡舍面积最大,求有墙的一面应该再加长几米长的篱笆?24.(10分)如图,C为⊙O上的一点,P为直径AB延长线上的一点,BH⊥CP于H交⊙O 于D,∠PBH=2∠PAC.(1)求证:PC是⊙O的切线;(2)若sin∠P=,求的值.25.(12分)定义:三角形一边的中线与这边上的高线之比称为这边上的中高比.(1)直接写出等腰直角三角形腰上的中高比为.(2)已知一个直角三角形一边上的中高比为5:4,求它的最小内角的正切值.(3)如图,已知函数y=(x+4)(x﹣m)与x轴交于A、B两点,与y轴的负半轴交于点C,对称轴与x的正半轴交于点D,若△ABC中AB边上的中高比为5:4,求m的值.26.(14分)如图,直线y=2x+3与x轴交于点A,与y轴交于点B,D是射线AB上的动点(不与点A重合),DN⊥x轴于N,把△AND沿直线AB翻折,得到△AMD,延长MA交y轴于点C,过A、C、D三点的圆E与x轴交于点F,连结DF.(1)直接写出tan∠BAO的值为;(2)求证:MC=NF;(3)求线段OC的长;(4)是否存在点D,使DF∥AC?若存在,求点D的坐标;若不存在,请说明理由.2017年某某省某某市海曙区中考数学模拟试卷(4月份)参考答案与试题解析一、选择题1.﹣3的绝对值是()A.3 B.﹣3 C.D.【考点】15:绝对值.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.要调查某校学生周日的睡眠时间,下列选项调查对象中最合适的是()A.选取一个班级的学生B.选取50名男生C.选取50名女生D.在该校各年级中随机选取50名学生【考点】V1:调查收集数据的过程与方法.【分析】根据调查数据要具有随机性,进而得出符合题意的答案.【解答】解:要调查某校周日的睡眠时间,最合适的是随机选取该校50名学生.故选:D.【点评】此题主要考查了调查收集数据的过程与方法,利用数据调查应具有随机性是解题关键.3.清明节是祭祖和扫墓的日子,据某某市民政局社会事务处的数据显示,今年清明期间全市祭扫人数超300万人次,其中的300万用科学记数法表示为()A.3×105B.3×106C.30×105×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300万=3000000=3×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列计算正确的是()A.2a﹣a=2 B.a2+a=a3C.(x﹣1)2=x2﹣1 D.(a2)3=a6【考点】47:幂的乘方与积的乘方;35:合并同类项;4C:完全平方公式.【分析】根据合并同类项的法则判断A、B;根据完全平方公式判断C;根据幂的乘方性质判断D.【解答】解:A、2a﹣a=a,故A错误,不符合题意;B、a2与a不是同类项,不能合并成一项,故B错误,不符合题意;C、(x﹣1)2=x2﹣2x+1,故C错误,不符合题意;D、(a2)3=a6,故D正确,符合题意.故选:D.【点评】本题考查合并同类项、完全平方公式、幂的乘方,熟练掌握运算性质和法则是解题的关键.5.如图,图1是由5个完全相同的正方体搭成的几何体,现将标有E的正方体平移至图2所示的位置,下列说法中正确的是()①左、右两个几何体的主视图相同②左、右两个几何体的俯视图相同③左、右两个几何体的左视图相同.A.①②③B.②③ C.①② D.①③【考点】U2:简单组合体的三视图;Q2:平移的性质.【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【解答】解:①左、右两个几何体的主视图为:,故不相同;②左、右两个几何体的俯视图为:,故相同;③左、右两个几何体的左视图为:,故相同.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.6.已知2,2,x,4,9,这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2 B.4和2 C.2和3 D.3和2【考点】W5:众数;W1:算术平均数;W4:中位数.【分析】根据这组数据的平均数求得未知数x的值,然后确定众数及中位数.【解答】解:∵数据2,2,x,4,9的平均数是4,∴=4,解得:x=3,∴在这组数据中2出现了两次,最多,∴众数为2;把数据排列如下:2,2,3,4,9∴中位数为:3.故选D.【点评】本题考查了平均数、中位数及众数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.在方程﹣=5中,用关于x的代数式表示y,正确的是()A.x=y﹣10 B.x=y+10 C.y=x﹣15 D.y=y+15【考点】93:解二元一次方程.【分析】把x看做已知数表示出y即可.【解答】解:方程﹣=5,整理得:y==x﹣15,故选C【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.已知x=1是方程ax2+bx﹣6=0(a≠0)的一个解,若a≠b,则的值为()A.﹣3 B.3 C.﹣6 D.6【考点】A3:一元二次方程的解.【分析】先利用一元二次方程的解的定义得到a+b=6,再把化简得,然后利用整体代入的方法计算.【解答】解:∵x=1是方程ax2+bx﹣6=0(a≠0)的一个解,∴a+b﹣6=0,即a+b=6,∴====3.故选B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.圆锥纸帽的侧面展开图是一个圆心角为120°,弧长为6π(cm)的扇形纸片,则圆锥形纸帽的侧面积为()A.9π cm2B.18π cm2C.27π cm2D.36π cm2【考点】MP:圆锥的计算;MN:弧长的计算;MO:扇形面积的计算.【分析】设扇形的半径为r,利用弧长公式计算出r=9,然后利用圆锥的侧面展开图为一扇形和扇形的面积公式可计算出圆锥形纸帽的侧面积.【解答】解:设扇形的半径为r,则=6π,解得r=9,圆锥形纸帽的侧面积=•6π•9=27π(cm2).故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.记住弧长公式和扇形的面积公式.10.如图(1)是一个六角星的纸板,其中六个锐角都为60°,六个钝角都为120°,每条边都相等,现将该纸板按图(2)切割,并无缝隙无重叠地拼成矩形ABCD.若六角星纸板的面积为9cm2,则矩形ABCD的周长为()A.18cm B.8cm C.(2+6)cm D.(6+6)cm【考点】PC:图形的剪拼;LB:矩形的性质.【分析】过点E作EF⊥AB于点F,设AE=xcm,则AD=3x,AB=2AF=2xcos30°,再由六角星纸板的面积为9cm2,求出x的值,进而可得出结论.【解答】解:如图,过点E作EF⊥AB于点F,∵六个锐角都为60°,六个钝角都为120°,∴设AE=xcm,则AD=3x,∵∠AEB=120°,∴∠EAB=30°,∴AB=2AF=2xcos30°,∵六角星纸板的面积为9cm2,∴AB•AD=9,即2x•cos30°•3x=9,解得x=,∴AD=3,AB=3,∴矩形ABCD的周长=2(3+3)=(6+6)cm.故选D.【点评】本题考查的是图形的拼剪,熟知矩形的性质及锐角三角函数的定义是解答此题的关键.11.如图(1)是两圆柱形联通容器(联通外体积忽略不计).向甲容器匀速注水,甲容器的水面高度h(cm)随时间t(分)之间的函数关系如图(2)所示,根据提供的图象信息,若甲的底面半径为1cm,则乙容器底面半径为()A.5cm B.4cm C.3cm D.2cm【考点】E6:函数的图象.【分析】由注满相同高度的水乙容器所需的时间为甲容器的4倍,结合甲容器的底面半径即可求出乙容器的底面半径,此题得解.【解答】解:观察函数图象可知:乙容器底面积为甲容器底面积的4倍,∴乙容器底面半径为2cm.故选D.【点评】本题考查了函数的图象,根据注满相同高度的水乙容器所需的时间为甲容器的4倍求出两容器的地面半径之比是解题的关键.12.如图,B、C两点都在反比例函数y=(x>0)上,点A在y轴上,AB∥x轴,当△ABC 是等边三角形时,的值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;G5:反比例函数系数k的几何意义;KK:等边三角形的性质.【分析】设点B的坐标为(m,),则点C的坐标为(,),由B、C的纵坐标间的关系可得出点D为线段OC的中点,进而得出D(,),由△ABC和△BCD等高结合三角形的面积公式即可得出=,代入数值即可得出结论.【解答】解:设点B的坐标为(m,),则点C的坐标为(,),∴点D为线段OC的中点,点D(,),∴BD=m﹣=.∵△ABC和△BCD等高,∴===.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、等边三角形的性质以及三角形的面积,设出点B的坐标表示出点D的坐标是解题的关键.二、填空题13.如图,某中学制作了学生拓展性课程中选择棋类、球类、美术、书法四门课程情况的扇形统计图,从图中可以看出选择书法的学生的百分比为10% .【考点】VB:扇形统计图.【分析】利用1减去其它组所占的百分比即可求解.【解答】解:选择书法的学生的百分比是1﹣35%﹣25%﹣30%=10%.故答案是:10%.【点评】此题主要考查了扇形统计图,扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.14.若,则m+n= 5 .【考点】98:解二元一次方程组.【分析】求出方程组的解得到m与n的值,代入原式计算即可得到结果.【解答】解:,②×2﹣①得:m=3,把m=3代入②得:n=2,则m+n=3+2=5.故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.如图,AB为⊙O的内接正多边形的一边,已知∠OAB=70°,则这个正多边形的内角和为1260°.【考点】MM:正多边形和圆;L3:多边形内角与外角.【分析】由圆的性质易证△OAB是等腰三角形,所以∠AOB的度数可求,再根据正多边形的性质可求出其边数,最后利用多边形内角和定理计算即可.【解答】解:∵OA=OB,∴∠OAB=∠OBA=70°,∴∠AOB=40°,∵AB为⊙O的内接正多边形的一边,∴正多边形的边数==9,∴这个正多边形的内角和=(9﹣2)×180°=1260°,故答案为:1260°.【点评】本题考查了正多边形和圆的有关知识、等腰三角形的判断和性质以及多边形内角和定理的运用,熟记多边形内角和定理计算公式是解题的关键.16.已知,抛物线y=ax2+bx+3满足2a+b=0,写出该抛物线上可以确定的点的坐标(0,3)(2,3).【考点】H5:二次函数图象上点的坐标特征.【分析】由题意得到y=ax2+bx+3=ax2﹣2ax+a﹣a+3=ax(x﹣2)+3,即可求得抛物线y=ax2+bx+3一定经过点(2,3),求得对称轴x=﹣=2,然后根据抛物线的对称性即可求得对称点坐标.【解答】解:∵抛物线y=ax2+bx+3满足2a+b=0,∴b=﹣2a,∴y=ax2+bx+3=ax2﹣2ax+a﹣a+3=ax(x﹣2)+3,∴抛物线y=ax2+bx+3一定经过点(2,3),∵对称轴x=﹣=2,∴点(2,3)的对称点为(0,3),∴抛物线y=ax2+bx+3一定经过点(0,3),故答案为(0,3)(2,3).【点评】本题主要考查对二次函数图象上点的坐标特征的理解和掌握,能根据已知得出过(2,3)和对称轴是解此题的关键.17.如图,△ABC中,∠C=90°,CA=CB,D为AC上的一点,AD=2CD,AE⊥AB交BD的延长线于E,则=.【考点】S9:相似三角形的判定与性质;KW:等腰直角三角形.【分析】过D作DF⊥AB于G,DG∥BC交AB于G.根据平行线分线段成比例定理得出==2,即AG=2GB.再利用AAS证明△AFD≌△GFD,得出AF=GF,那么=.易证DF∥AE,根据平行线分线段成比例定理得出==.【解答】解:如图,过D作DF⊥AB于G,DG∥BC交AB于G.∵DG∥BC,AD=2CD,∴==2,∠DGA=∠CBA,∴AG=2GB.∵△ABC中,∠C=90°,CA=CB,∴∠CAB=∠CBA,∴∠CAB=∠DGA.在△AFD与△GFD中,,∴△AFD≌△GFD,∴AF=GF,∴AF=GF=GB,∴=.∵DF∥AE,∴==.故答案为.【点评】本题考查了全等三角形的判定与性质,平行线分线段成比例定理,等腰直角三角形的性质,平行线的性质,准确作出辅助线是解题的关键.18.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为2+2.【考点】R2:旋转的性质;J4:垂线段最短;KD:全等三角形的判定与性质;KO:含30度角的直角三角形;KQ:勾股定理;LE:正方形的性质.【分析】先将BC绕着点C顺时针旋转90°得FC,作直线FE交OM于H,则∠BCF=90°,BC=FC,根据旋转的性质,即可得到△BCP≌△FCE(SAS),进而得出∠BHF=90°,据此可得点E在直线FH上,即点E的轨迹为直线FH,再根据当点E与点H重合时,BE=BH最短,求得BH 的值即可得到BE的最小值.【解答】解:如图所示,将BC绕着点C顺时针旋转90°得FC,作直线FE交OM于H,则∠BCF=90°,BC=FC,∵将CP绕点C按顺时针方向旋转90°得CE,∴∠PCE=90°,PC=EC,∴∠BCP=∠FCE,在△BCP和△FCE中,,∴△BCP≌△FCE(SAS),∴∠CBP=∠CFE,又∵∠BCF=90°,∴∠BHF=90°,∴点E在直线FH上,即点E的轨迹为直线FH,∵BH⊥EF,∴当点E与点H重合时,BE=BH最短,∵当CP⊥OM时,Rt△BCP中,∠CBP=30°,∴CP=BC=2,BP=CP=2,又∵∠PCE=∠CPH=∠PHE=90°,CP=CE,∴正方形CPHE中,PH=CP=2,∴BH=BH+PH=2+2,即BE的最小值为2+2,故答案为:2+2.【点评】本题主要考查了正方形的性质,勾股定理,全等三角形的判定与性质以及垂线段最短的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的性质得出∠PHF=90°,据此得出点E的轨迹为一条直线.解题时注意:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段,垂线段最短.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.解不等式:﹣1>6x.【考点】C6:解一元一次不等式.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:去分母,得:3x+20﹣2>12x,移项、合并,得:﹣9x>﹣18,系数化为1,得:x<2【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.已知EF∥MN,直线AC交EF、MN于点A、C,作∠A的角平分线于点B,作∠CAE的角平分线交MN于点D.(1)求证:四边形ABCD为平行四边形;(2)若四边形ABCD为菱形,求∠ABC的度数.【考点】L7:平行四边形的判定与性质.【分析】(1)因为NM∥EF,只要证明AD∥BC即可证明.(2)由四边形ABCD是菱形,推出∠DAC=∠CAB,由∠EAD=∠DAC,推出∠DAC=∠EAD=∠CAB==60°,即可解决问题.【解答】解:(1)∵EF∥MN,∴∠A=∠EAC,∵CB平分∠A,AD平分∠EAC,∴∠ACB=∠A,∠DAC=∠EAC,∴∠ACB=∠DAC,∴AD∥BC,∴四边形ABCD是平行四边形.(2)∵四边形ABCD是菱形,∴∠DAC=∠CAB,∵∠EAD=∠DAC,∴∠DAC=∠EAD=∠CAB==60°,∴∠ABC=∠DAE=60°.【点评】本题考查平行四边形的判定和性质、角平分线的定义等知识,解题的关键是熟练掌握平行四边形的判定方法,灵活运用所学知识解决问题,属于中考常考题型.21.现有四X外观质地相同的扑克牌,其中两XA,两XK(1)把四X牌放成两堆,每堆一XA一XK,把它们正面朝下放置,随机在这两堆中各抽一X 牌,请通过画树状图或列表计算,抽出的两X牌正好是一XA一XK的概率?(2)元芳说:把这四X牌混在一起,正面朝下放置,从中任意抽取两X牌,结果是一XA 一XK的概率与(1)中的概率相等,元芳说得对吗?请计算说明.【考点】X6:列表法与树状图法.【分析】(1)设第一堆两X牌为A1K1,第二堆两X牌为A2K2,得出取法有4种,再根据概率公式即可得出答案;(2)先求出四X牌混在一起后任意抽取两X,有多少种抽法,再根据概率公式求出抽出两X 牌正好是一XA一XK的概率,再进行比较即可得出答案.【解答】解:(1)设第一堆两X牌为A1K1,第二堆两X牌为A2K2,∵取法有A1A2,A1K2,K1A2,K1K2共4种,∴抽出的两X牌正好是一XA一XK的概率的概率为;(2)元芳说得对,理由如下:四X牌混在一起后任意抽取两X,抽法有A1A2,A1K2,K1A2,A1K1,A2K2,K1K2共6种,则抽出两X牌正好是一XA一XK的概率为,因此两种抽法结果是不一样.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(10分)(2017•海曙区模拟)已知直线y=x+b与双曲线y=的一个交点为(2,5),直线与y轴交于点A.(1)求m的值及点A的坐标;(2)若点P在双曲线y=的图象上,且S△POA=10,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可求得反比例函数和一次函数的解析式,然后求得A的坐标;(2)设P的横坐标是m,根据三角形的面积公式求得P的横坐标,进而求得P的坐标.【解答】解:(1)把(2,5)代入y=得m=10;把(2,5)代入y=x+b得1+b=5,解得b=4,则直线的解析式是y=x+4,令x=0,解得y=4,则A的坐标是(0,4);(2)设P的横坐标是m,则×4|m|=10,解得m=±5.当x=m=5时,代入y=得y=2,则P的坐标是(5,2),当x=﹣5时,代入y=得y=﹣2,则P的坐标是(﹣5,﹣2).则P的坐标是(5,2)或(﹣5,﹣2).【点评】本题考查了待定系数法求函数解析式,以及反比例函数与一次函数的交点,注意到P应该分成两种情况是关键.23.(10分)(2017•海曙区模拟)用22米长的篱笆和6米长的围墙围成一个矩形鸡舍.(1)爸爸的方案是:一面是墙,另外三面是篱笆,求爸爸围成的鸡舍面积最大是多少?(2)小明的方案是:把有墙的一面用篱笆加长作为一边,另外三面也是篱笆,要使围成的鸡舍面积最大,求有墙的一面应该再加长几米长的篱笆?【考点】HE:二次函数的应用.【分析】(1)根据题意可以得到相应的函数关系式,然后化为顶点式,根据x的取值X围即可解答本题;(2)根据题意可以列出相应的函数关系式,然后化为顶点式,即可解答本题.【解答】解:(1)设平行于墙的一边长为x米,矩形鸡舍的面积为S平方米,S==,∵0<x≤6,∴当x=6时,S取得最大值,此时S=48,即爸爸围成的鸡舍面积最大是48平方米;(2)设有墙的一面应该再加长y米长的篱笆,矩形的面积为S平方米,S=(6+y)[]=﹣(y﹣1)2+49,∴当y=1时,S取得最大值,此时S=49,即有墙的一面应该再加长1米长的篱笆.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件.利用二次函数的顶点式和二次函数的性质解答问题.24.(10分)(2017•海曙区模拟)如图,C为⊙O上的一点,P为直径AB延长线上的一点,BH⊥CP于H交⊙O于D,∠PBH=2∠PAC.(1)求证:PC是⊙O的切线;(2)若sin∠P=,求的值.【考点】S9:相似三角形的判定与性质;MD:切线的判定;T7:解直角三角形.【分析】(1)连接OC,根据等腰三角形的性质得到∠PAC=∠OCA,推出∠COP=∠OBH,得到OC∥BH,于是得到结论;(2)设⊙O的半径为2a,解直角三角形得到OP=3a,PB=OP﹣OB=a,作OG⊥DH,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,∵OA=OC,∴∠PAC=∠OCA,∴∠COP=∠PAC+∠OCA=2∠PAC,∵∠PBH=2∠PAC,∴∠COP=∠OBH,∴OC∥BH,∵BH⊥CP,∴OC⊥CP,∴PC是⊙O的切线;(2)解:设⊙O的半径为2a,在Rt△OCP中,sin∠P=,OC⊥CP,∴OP=3a,∴PB=OP﹣OB=a,作OG⊥DH,则BG=BD,△OBG∽△PBH,∴,∴.【点评】本题考查了相似三角形的判定和性质,切线判定,解直角三角形,正确的作出辅助线是解题的关键.25.(12分)(2017•海曙区模拟)定义:三角形一边的中线与这边上的高线之比称为这边上的中高比.(1)直接写出等腰直角三角形腰上的中高比为.(2)已知一个直角三角形一边上的中高比为5:4,求它的最小内角的正切值.(3)如图,已知函数y=(x+4)(x﹣m)与x轴交于A、B两点,与y轴的负半轴交于点C,对称轴与x的正半轴交于点D,若△ABC中AB边上的中高比为5:4,求m的值.【考点】HF:二次函数综合题.【分析】(1)利用等腰直角三角形的性质和中高比的定义即可求出结论;(2)根据直角三角形的性质和中高比的定义即可求出结论;(3)先确定出抛物线与坐标轴的交点即可得出点D的坐标,再利用中高比是5:4建立方程组即可求出m.【解答】解:(1)如图1,设等腰直角三角形的直角边为2x,∴BC边上的高为AB=2x,∵AD是BC边上的中线,∴BD=BC=x,在Rt△ABD中,根据勾股定理得,AD==x,∴等腰直角三角形腰上的中高比为=,故答案为:;(2)①当斜边上的中高比为5:4时,设高线为4k,则此边上的中线为5k,如图2,在△ABC中,∠BAC=90°,∴AD是高,∴AD=4x,AE是中线,∴CE=AE=5x,在RtADE中,DE==3k,∴CD=CE+DE=8k,∴tan∠C===,当直角边上的中高比为5:4时,设高为4k,此边上的中线为5k,如图3,在△ABC中,∠BAC=90°,AB是AC边上的高,为4k,BD为AC边上的中线,为5k,根据勾股定理得,AD==3k,∴AC=2AD=6k,∴tan∠C==,∴直角三角形的最小内角的正切值为或;(3)∵函数y=(x+4)(x﹣m)与x轴交于A、B两点,∴令y=0,∴0=(x+4)(x﹣m),∴x=﹣4或x=m,∴A(﹣4,0),B(m,0),∵点C是抛物线与y轴的交点,∴C(0,﹣),∵对称轴与x的正半轴交于点D,∴D(,0),在Rt△COD中,设CD=5k,∴OC=4k,根据勾股定理得,OD=3k,∴,∴,即m的值为10.【点评】此题是二次函数综合题,主要考查了等腰直角三角形的性质,直角三角形的性质,勾股定理,抛物线的性质,解(1)的关键是求出直角边上中线长,解(2)的关键分两种情况讨论计算,解(3)的关键是由点C,D的坐标建立方程组,是一道简单的新定义题目.26.(14分)(2017•海曙区模拟)如图,直线y=2x+3与x轴交于点A,与y轴交于点B,D是射线AB上的动点(不与点A重合),DN⊥x轴于N,把△AND沿直线AB翻折,得到△AMD,延长MA交y轴于点C,过A、C、D三点的圆E与x轴交于点F,连结DF.(1)直接写出tan∠BAO的值为 2 ;(2)求证:MC=NF;(3)求线段OC的长;(4)是否存在点D,使DF∥AC?若存在,求点D的坐标;若不存在,请说明理由.【考点】MR:圆的综合题.【分析】(1)根据三角函数的定义即刻得到结论;(2)连接DC,则∠MCD=∠NFD,根据全等三角形的性质即刻得到结论;(3)作CG⊥y轴于G,根据平行线的性质得到∠AGC=∠DAF,等量代换得到∠AGC=∠GAC,求得GC=AC,设GC=a,根据三角函数的定义得到BC=2a,求得OC=2a﹣3,根据勾股定理即刻得到结论;(4)设D(m,2m+3)当DF∥AC时,∠DFA=∠FAC,根据三角函数的定义得到DN=2m+3,求得NF=(2m+3),列方程即刻得到结论.【解答】解:(1)在y=2x+3中,令y=0,得x=﹣,令x=0,得y=3,∴A(﹣,0),B(0,3),∴OA=,OB=3,∴tan∠BAO==2;故答案为:2;(2)连接DC,则∠MCD=∠NFD,在△MCD与△DNF中,,∴△MCD≌△NFD,∴MC=NF;(3)作CG⊥y轴于G,∵CG∥x轴,∴∠AGC=∠DAF,∵∠GAC=∠MAD=∠DAF,∴∠AGC=∠GAC,∴GC=AC,设GC=a,∵tan∠BAO=tan∠BGC=2,∴BC=2a,∴OC=2a﹣3,∵AO2+OC2=AC2,∴2+(2a﹣3)2=a2,。
浙江省湖州市中考数学4月模拟试卷(含解析)-人教版初中九年级全册数学试题

2017年某某省某某市九校联合中考数学模拟试卷(4月份)一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b23.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×10114.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.5.不等式组的最小整数解是()A.1 B.2 C.3 D.46.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,509.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x=.12.若二次根式有意义,则x的取值X围是.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.14如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是.(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为.三、解答题(本大题有8小题,共66分)17.(6分)计算:|﹣2|﹣(1+)0+﹣cos30°.18.(6分)如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF=.证明:19.(6分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)20.(8分)李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.22.(10分)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?23.(10分)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D 作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)24.(12分)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E 为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?2017年某某省某某市九校联合中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.|﹣2|=()A.2 B.﹣2 C.±2 D.【考点】15:绝对值.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2,故选A.【点评】本题主要考查了绝对值的定义,掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.(ab)2=a2b2D.(a+b)2=a2+b2【考点】47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.【分析】根据幂的乘方,可判断A,根据同底数幂的除法,可判断B,根据积的乘方,可判断C,根据完全平方公式,可判断D.【解答】解:A、底数不变指数相乘,故A错误;B、底数不变指数相减,故B错误;C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;D、和的平方等于平方和加积的二倍,故D错误;故选:C.【点评】本题考查了幂的乘方与积的乘方,幂的乘方底数不变指数相乘.3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4730000000元,用科学记数法表示为()×108×109×1010×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,△ABC,∠B=90°,AB=3,BC=4,则cosA等于()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】由勾股定理求得AC=5,再根据余弦函数的定义可得答案.【解答】解:在Rt△ABC中,∠B=90°,∵AB=3,BC=4,∴AC===5,∴cosA==,故选:D.【点评】本题主要考查锐角三角函数的定义和勾股定理,熟练掌握勾股定理和余弦函数的定义是解题的关键.5.不等式组的最小整数解是()A.1 B.2 C.3 D.4【考点】CC:一元一次不等式组的整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式的解集,求出整数解即可.【解答】解:,由①得:x≥1,由②得:x>2,∴不等式组的解集为x>2,则不等式组的最小整数解是3.故选C.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.6.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A.130°B.140°C.150°D.160°【考点】JA:平行线的性质.【分析】根据平行线的性质可得∠GEB=∠1=60°,然后根据EF为∠GEB的平分线可得出∠FEB的度数,根据两直线平行,同旁内角互补即可得出∠2的度数.【解答】解:∵AB∥CD,∴∠GEB=∠1=60°,∵EF为∠GEB的平分线,∴∠FEB=∠GEB=30°,∴∠2=180°﹣∠FEB=150°.故选C.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.7.如图所示的支架是由两个长方体构成的组合体,则它的主视图是()A. B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从几何体的正面看可得此几何体的主视图是,故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成绩45 46 47 48 49 50人数 1 2 4 2 5 1这此测试成绩的中位数和众数分别为()A.47,49 B.48,49 C.47.5,49 D.48,50【考点】W5:众数;W4:中位数.【分析】根据众数与中位数的定义,众数是出现次数最多的一个,中位数是第8个数解答即可.【解答】解:第8个数是48,所以中位数为48,49出现的次数最多,出现了5次,所以众数为49.故选B.【点评】本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.9.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】连接DE,根据折叠的性质可得∠CPD=∠C′PD,再根据角平分线的定义可得∠BPE=∠C′PE,然后证明∠DPE=90°,从而得到△DPE是直角三角形,再分别表示出AE、CP的长度,然后利用勾股定理进行列式整理即可得到y与x的函数关系式,根据函数所对应的图象即可得解.【解答】解:如图,连接DE,∵△PC′D是△PCD沿PD折叠得到,∴∠CPD=∠C′PD,∵PE平分∠BPC′,∴∠BPE=∠C′PE,∴∠EPC′+∠DPC′=×180°=90°,∴△DPE是直角三角形,∵BP=x,BE=y,AB=3,BC=5,∴AE=AB﹣BE=3﹣y,CP=BC﹣BP=5﹣x,在Rt△BEP中,PE2=BP2+BE2=x2+y2,在Rt△ADE中,DE2=AE2+AD2=(3﹣y)2+52,在Rt△PCD中,PD2=PC2+CD2=(5﹣x)2+32,在Rt△PDE中,DE2=PE2+PD2,则(3﹣y)2+52=x2+y2+(5﹣x)2+32,整理得,﹣6y=2x2﹣10x,所以y=﹣x2+x(0<x<5),纵观各选项,只有D选项符合.故选:D.【点评】本题考查了动点问题的函数图象,勾股定理的应用,作出辅助线并证明得到直角三角形,然后在多个直角三角形应用勾股定理是解题的关键.10.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为()A.9 B.6 C.3 D.3【考点】G6:反比例函数图象上点的坐标特征;KQ:勾股定理.【分析】先设点B坐标,再由等腰直角三角形的性质得出OA=AC,AB=AD,OC=AC,AD=BD,代入OA2﹣AB2=18,得到ab=9,即可求得反比例函数的解析式,然后联立方程,解方程即可求得P的横坐标.【解答】解:设点B(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=18,∴2AC2﹣2AD2=18即AC2﹣AD2=9∴(AC+AD)(AC﹣AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,∴反比例函数y=,∵△OAC是等腰直角三角形,∴直线OA的解析式为y=x,解得或,∴P(3,3),故选C.【点评】本题考查的是等腰三角形的性质和待定系数法求反比例函数的解析式,反比例函数图象上点点坐标特征,解答时,注意因式分解的运用.二、填空题(本大题有6小题,每小题4分,共24分)第10题11.分解因式:x3﹣4x= x(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.12.若二次根式有意义,则x的取值X围是x≤.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质(被开方数大于等于0)列出关于x的不等式,然后解不等式即可.【解答】解:根据二次根式有意义,分式有意义得:1﹣2x≥0,解得:x≤.故答案是:x≤.【点评】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.13.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是20 .【考点】KH:等腰三角形的性质;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;K6:三角形三边关系.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为π﹣9,.【考点】M2:垂径定理;MO:扇形面积的计算.【分析】连接OB,OA,根据圆周角定理得出∠AOD的度数,再根据弦AB⊥CD,得到OA,OE 的长,然后根据图形的面积公式即可得到结论.【解答】解:连接OA,OB,∵∠C=22.5°,∴∠AOD=45°,∵AB⊥CD,∴∠AOB=90°,∴OE=AB=3,OA=OB=AB=3,∴S阴影=S扇形﹣S△AOB=﹣6×3=π﹣9,故答案为:π﹣9.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.如图,在边长为2的菱形ABCD中,∠ABC=120°,E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是.【考点】L8:菱形的性质.【分析】由在边长为2的菱形ABCD中,∠ABC=120°,易得△ABD、△CBD都是边长为2的正三角形,继而证得△BDE≌△BCF(SAS),继而证得△BEF是正三角形,继而可得当BE⊥AD,即E为AD的中点时,线段EF长最小.【解答】解:∵四边形ABCD是边长为2的菱形,∠ABC=120°,∴△ABD、△CBD都是边长为2的正三角形,∵AE+CF=2,∴CF=2﹣AE=AD﹣AE=DE,又∵BD=BC=2,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最小值为.故答案为:.【点评】此题考查了菱形的性质、等边三角形的判定与性质以及全等三角形的判定与性质.注意证得△BDE≌△BCF是解此题的关键.16.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)将抛物线沿y轴平移t(t>0)个单位,当平移后的抛物线与线段OB有且只有一个交点时,则t的取值X围是0<t<3或t=4 .(2)抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,则点P的坐标为(,)或(﹣5,﹣32).【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)把函数化为顶点式y=a(x﹣h)2+k的形式,向下平移使抛物线与x轴只有一个交点,即把解析式中的k变成0即可.(2)取AC的中点M,过M作MN⊥AC交OC于N,连接AN则AN=,∠ACO=∠CAN,通过△M∽△OCA,求得的值,进而求得NO的值,从而得出tan∠NAO==;当P在BC的上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E,通过证明△BDE∽△CBO,进而求得tan∠BCP1=tan∠NAO=,从而确定D点的坐标,把D点代入直线CP1的解析式为y=k1x+3,求得P1点的坐标;当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1,延长DB交直线CP2于E,则点B是DE的中点,求得E点坐标,代入直线CP2的解析式为y=k2x+3,即可求得P2的坐标.【解答】解:(1)由题意,抛物线只能沿y轴向下平移,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴设平移后的抛物线的解析式为y=﹣(x﹣1)2+4﹣t(t>0),当原点O落在平移后的抛物线上时,把(0,0)代入得:0=﹣(0﹣1)2+4﹣t,解得t=3;当平移后的抛物线的顶点落在x轴上时,x=1,y=0即0=﹣(1﹣1)2+4﹣t,解得t=4,∵平移后的抛物线与线段OB有且只有一个交点∴0<t<3或t=4,故答案为:0<t<3或t=4;(2)当y=0时,﹣x2+2x+3=0,解得:x=﹣1或x=3,即A(﹣1,0)、B(3,0),取AC的中点M,过M作MN⊥AC交OC于N,连接AN,则AN=,∴∠ACO=∠CAN∵∠BCP=∠BAC﹣∠ACO,∴∠BCP=∠BAC﹣∠CAN=∠NAO∵∠ACO=∠NCM,∠AOC=∠CMN=90°,∴△M∽△OCA,∴=,∴====,∴NO=CO﹣=3﹣=,∴tan∠NAO==;当点P在BC上方时,设为P1,过B作BD⊥BC交直线CP1于D,过D作DE⊥x轴于E ∵∠OCB=∠DBE,∠BOC=∠BED=90°,∴△BDE∽△CBO,∴===tan∠BCP1=tan∠NAO=,∴BE=CO=4,DE=BO=4,OE=3+4=7∴D(7,4)设直线CP1的解析式为y=k1x+3,把(7,4)代入4=7k1+3,∴k1=,∴y=x+3令﹣x2+2x+3=x+3,解得x1=0(舍去),x2=∴P1(,),当点P在BC下方时,设为P2(m,n),则∠BCP2=∠BCP1延长DB交直线CP2于E,则点B是DE的中点∴解得,∴E(﹣1,﹣4)设直线CP2的解析式为y=k2x+3,把(﹣1,﹣4)代入﹣4=﹣k2+3,∴k2=7,∴y=7x+3令﹣x2+2x+3=7x+3,解得x1=0(舍去),x2=﹣5∴P2(﹣5,﹣32)综上所述,抛物线上存在点P,使∠BCP=∠BAC﹣∠ACO,P点坐标为(,)或(﹣5,﹣32),故答案为:(,)或(﹣5,﹣32).【点评】此题是二次函数的综合题,主要考查了相似三角形的判定和性质,对称轴顶点坐标的公式,以及函数与坐标轴交点坐标的求解方法.三、解答题(本大题有8小题,共66分)17.计算:|﹣2|﹣(1+)0+﹣cos30°.【考点】78:二次根式的加减法;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先分别计算绝对值、零次幂、二次根式和特殊角的三角函数,然后再计算乘法,后计算加减即可.【解答】解:原式=2﹣1+2﹣×,=2﹣1+2﹣,=.【点评】此题主要考查了实数的运算,关键是熟练掌握绝对值、零次幂、二次根式和特殊角的三角函数.18.如图,▱ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F.请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)结论:AF= CD或AB .证明:【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AB=CD,AB∥CD,又由E是AD的中点,易证得△AEF≌△DEC,继而证得结论.【解答】解:与AF相等的有CD或AB.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠F=∠ECD,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(ASA),∴AF=CD,∴AF=CD=AB.故答案为:AB或CD.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.19.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到1cm)(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.414)【考点】T8:解直角三角形的应用.【分析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.【解答】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+≈37(cm).答:AB的长度为37cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有 3 名,D类男生有 1 名,将下面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数;(2)用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【解答】解:(1)根据题意得:3÷15%=20(名),答:李老师一共调查了20名同学;故答案为:20;(2)C类女生:20×25%﹣2=3(名),D类男生有20﹣3﹣10﹣5﹣1=1(人),如图所示;故答案为:3,1;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是=.【点评】此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD 的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=2,DE=2,求AD的长.(3)在(2)的条件下,求弧BD的长.【考点】MC:切线的性质;MN:弧长的计算.【分析】(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到=,解方程即可得到结论;(3)利用三角函数求得∠DCE的度数,根据△AEC∽△CED,求得∠A的度数,则∠DIB即可求得,然后在直角△ABD中求得BD,从而求得半径,然后利用弧长公式求解.【解答】(1)证明:连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴=,∴EC2=DE•AE,∴(2)2=2(2+AD),∴AD=4.(3)∵直角△CDE中,tan∠DCE===,∴∠DCE=30°,又∵△AEC∽△CED,∴∠A=∠DCE=30°,∴∠DOB=2∠A=60°,BD=AD•tanA=4×=,∴△OBD是等边三角形,则OD=BD=,则弧BD的长是=.【点评】本题考查了切线的性质、相似三角形的判定与性质以及特殊角的三角函数值,正确证明△AEC∽△CED是关键.22.(10分)(2017•某某二模)某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)n=50﹣x销售单价m(元/件)当1≤x≤20时,m=20+x当21≤x≤30时,m=10+(1)请计算第几天该商品单价为25元/件?(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;(3)这30天中第几天获得的利润最大?最大利润是多少?【考点】HE:二次函数的应用.【分析】(1)分两种情形分别代入解方程即可.(2)分两种情形写出所获利润y(元)关于x(天)的函数关系式即可.(3)分两种情形根据函数的性质解决问题即可.【解答】解:(1)分两种情况①当1≤x≤20时,将m=25代入m=20+x,解得x=10②当21≤x≤30时,25=10+,解得x=28经检验x=28是方程的解∴x=28答:第10天或第28天时该商品为25元/件.(2)分两种情况①当1≤x≤20时,y=(m﹣10)n=(20+x﹣10)(50﹣x)=﹣x2+15x+500,②当21≤x≤30时,y=(10+﹣10)(50﹣x)=综上所述:(3)①当1≤x≤20时由y=﹣x2+15x+500=﹣(x﹣15)2+,∵a=﹣<0,∴当x=15时,y最大值=,②当21≤x≤30时由y=﹣420,可知y随x的增大而减小∴当x=21时,y最大值=﹣420=580元∵∴第15天时获得利润最大,最大利润为612.5元.【点评】本题考查二次函数的应用、反比例函数的性质等知识,解题的关键是学会构建函数,利用二次函数的性质解决问题,属于中考常考题型.23.(10分)(2017•某某模拟)如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB 上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.(1)①求证:△ABD∽△ACE;②若CD=1,BD=,求AD的长.(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设==k,若CD=1,BD=2,AD=3,求k的值.(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若==,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【考点】SO:相似形综合题.【分析】(1)①先利用平行线分线段成比例定理得,,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+n2,而DE=AE=p,即可得出结论;【解答】解:(1)①∵DE∥BC,∴,由旋转知,∠EAC=∠DAB,∴△ABD∽△ACE,②在Rt△ABC中,AC=BC,∴AB=AC,由①知,△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,∵△ABD∽△ACE,∴=,∴AD=AE,BD=CE,∵BD=,∴CE=,在Rt△CDE中,CD=1,CE=,根据勾股定理得,DE=2,在Rt△ADE中,AD=AE,∴AD=DE=2,(2)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=k,∵AD=3,BD=2,∴AE=kAD=3k,CE=kBD=2k,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DC E=90°,在Rt△CDE中,DE2=CD2+CE2=1+4k2,在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,∴1+4k2=9﹣9k2,∴k=﹣(舍)或k=;(3)由旋转知,∠EAC=∠DAB,∵=∴△ABD∽△ACE,∴=∵AD=p,BD=n,∴AE=AD=p,CE=BD=n,∵△ABD∽△ACE,∴∠ABD=∠ACE,∵∠ACD+∠ABD=90°,∴∠ACE+∠ACD=90°,∴∠DCE=90°,在Rt△CDE中,DE2=CD2+CE2=m2+n2,∵DE=AE=p,∴p2=m2+n2,∴9p2=25m2+9n2.【点评】此题是相似三角形综合题,主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,直角三角形的判定,解本题的关键是得出∠DCE=90°和利用两边对应成比例夹角相等来判断两三角形相似的方法应用,还用到类比的方法解决问题.24.(12分)(2017•某某模拟)如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E为(0,n).(1)求点D的坐标及直线BC的解析式;(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n 的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直?【考点】FI:一次函数综合题.【分析】(1)利用待定系数法即可解决问题;(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,推出DM=EH=1,EM=FH=n﹣2,推出F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,即可解决问题;②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,即可解决问题;(3)分三种情形①如图3中,当AE′⊥AC时,②如图4中,当AE′⊥BC时,延长AE′交BC于G,③如图5中,当AE′⊥AB时,分别求解即可;【解答】解:(1)由题意A(﹣2,0),C(0,4),把D(m,2)代入y=2x+4解得m=﹣1,∴D(﹣1,2),∵OB=3OC,OC=4,∴OB=12,∴B(12,0),设直线BC的解析式为y=kx+b则有,解得,∴直线BC的解析式为y=﹣x+4.(2)①如图1中,当点F在BC上时,作FH⊥y轴于H,作DM⊥y轴于M.由△EDM≌△FEH,∴DM=EH=1,EM=FH=n﹣2,∴F(n﹣2,n﹣1),把F点坐标代入y=﹣x+4,得到n﹣1=﹣(n﹣2)+4,∴n=.②如图2中,当点F在AB上时,作DH⊥OC于H.由△DHE≌△EOF,可得DH=EO=1,∴n=1,综上所述,满足条件的n的值为或1.(3)①如图3中,当AE′⊥AC时,。
中考数学模拟试卷(4)含答案解析

中考数学模拟试卷(四)一.选择题(共9小题,满分45分,每小题5分)1.(5分)在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.82.(5分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.43.(5分)若分式的值为0,则x的值等于()A.0 B.±3 C.3 D.﹣34.(5分)下列事件是随机事件的是()A.购买一张福利彩票,中奖B.在一个标准大气压下,加热到100℃,水沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球5.(5分)下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.(5分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.(5分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣158.(5分)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.×(1+)=D.9.(5分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共6小题,满分30分,每小题5分)10.(5分)分解因式:16m2﹣4=.11.(5分)如果反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,那么请你写出一个满足条件的反比例函数解析式(只需写一个).12.(5分)一个扇形统计图,某一部分所对应扇形的圆心角为120°,则该部分在总体中所占有的百分比是%.13.(5分)元旦到了,商店进行打折促销活动.妈妈以八折的优惠购买了一件运动服,节省30元,那么妈妈购买这件衣服实际花费了元.14.(5分)如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP 为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.15.(5分)如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=.三.解答题(共4小题,满分30分)16.(6分)计算:.17.(6分)解关于x的不等式组:,其中a为参数.18.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.四.解答题(共4小题,满分45分)20.(10分)小王同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).月均用水量频数百分比(单位:t)2≤x<324%3≤x<41224%4≤x<55≤x<61020%6≤x<712%7≤x<836%8≤x<924%(1)请根据题中已有的信息补全频数分布表和频数分布直方图;(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你估计总体小王所居住的小区中等用水量家庭大约有多少户?(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,请用列举法(画树状图或列表)求抽取出的2个家庭来自不同范围的概率.21.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?22.(12分)如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.(1)若AC=,OB=BD.①求证:CD是⊙O的切线.②阴影部分的面积是.(结果保留π)(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.23.(13分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.中考数学模拟试卷(四)参考答案与试题解析一.选择题(共9小题,满分45分,每小题5分)1.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选:C.2.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.3.【解答】解:∵分式的值为0,∴x2﹣9=0且x﹣3≠0,解得:x=﹣3,故选:D.4.【解答】解:A、购买一张福利彩票,中奖是随机事件;B、在一个标准大气压下,加热到100℃,水沸腾是必然事件;C、有一名运动员奔跑的速度是80米/秒是不可能事件;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件;故选:A.5.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选:D.6.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.7.【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.8.【解答】解:甲班每人的捐款额为:,乙班每人的捐款额为:.根据(2)中所给出的信息,方程可列为:×(1+)=.故选:C.9.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,O G⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共6小题,满分30分,每小题5分)10.【解答】解:原式=4(4m2﹣1)=4(2m+1)(2m﹣1),故答案为:4(2m+1)(2m﹣1)11.【解答】解:∵反比例函数y=(k≠0)的图象在每个象限内,y随着x的增大而减小,∴k>0,∴满足条件的反比例函数解析式可以是y=.故答案为:y=(答案不唯一).12.【解答】解:该部分在总体中所占有的百分比=120°÷360°=33.3%.13.【解答】解:设这件运动服的标价为x元,则:妈妈购买这件衣服实际花费了0.8x元,∵妈妈以八折的优惠购买了一件运动服,节省30元∴可列出关于x的一元一次方程:x﹣0.8x=30解得:x=1500.8x=120故妈妈购买这件衣服实际花费了120元,故答案为120.14.【解答】解:作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=5,MG=|10﹣2x|,在Rt△MNG中,由勾股定理得:MN2=MG2+GN2,即y2=52+(10﹣2x)2.∵0<x<10,∴当10﹣2x=0,即x=5时,y2最小值=25,MN的最小值为5;∴y最小值=5.即故答案为:5.15.【解答】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,∵AD是∠BOC的平分线,∴DE=DF,∵DP是BC的垂直平分线,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL).∴∠BDE=∠CDF,∴∠BDC=∠EDF,∵∠DEB=∠DFC=90°,∴∠EAF+∠EDF=180゜,∵∠BAC=84°,∴∠BDC=∠EDF=96°,故答案为:96°.三.解答题(共4小题,满分30分)16.【解答】解:原式=1﹣2+4+﹣1=4﹣.17.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.18.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.19.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.四.解答题(共4小题,满分45分)20.【解答】解:(1)调查的总数是:2÷4%=50(户),则6≤x<7部分调查的户数是:50×12%=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.故答案为:15,30%,6;补全频数分布表和频数分布直方图,如图所示:(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.画树状图:则抽取出的2个家庭来自不同范围的概率是:=.21.【解答】解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B 到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=﹣1.5,b=330所以s1=﹣1.5t+330;设L2为s2=k′t,把点(60,60)代入得k′=1所以s2=t;(4)当t=120时,s1=150,s2=120 150﹣120=30(千米);所以2小时后,两车相距30千米;(5)当s1=s2时,﹣1.5t+330=t解得t=132即行驶132分钟,A、B两车相遇.22.【解答】(1)①证明:连接BC,OC,∵AB是直径,∴∠ACB=90°,在Rt△ANC中:BC==1,∴BC=OC=OB,∴△BOC为等边三角形,∴∠BOC=∠OBC=60°,∵OB=BD,OB=BC,∴BC=BD,∴∠ODC=∠BCD=∠OBC=30°,∴∠BOC+∠ODC=90°,∴∠OCD=180°﹣∠BOC﹣∠ODC=90°,∴CD是⊙O切线.②过C作CE⊥AB于E,∵S△ABC=•AC•BC=•AB•CE,∴CE=,∴S阴=S扇形OAC﹣S△A OC,=﹣•1•,=﹣.故答案为﹣.(2)①当AC>BC时,∵CD是⊙O的切线,∴∠OCD=90°,即∠1+∠2=90°,∵AB是O直径,∴∠ACB=90°即∠2+∠3=90°,∴∠1=∠3,∵OC=OA,∴∠OAC=∠3,∴∠OAC=∠1,∵∠4=∠1+∠ODC,∴∠4=∠DAC+∠ODC,∵OB=OC,∴∠2=∠4,∴∠2=∠OAC+∠ODC,∵∠1+∠2=90°,∴∠OAC+∠OAC+∠ODC=90°,即∠ODC+2∠OAC=90°.②当AC<BC时,同①∠OCD=90°,∴∠COD=90°﹣∠ODC,∵DA=OC,∴∠OCA=∠OAC,∵∠OAC+∠OCA+∠COD=180°,∴∠OAC+∠OAC+90°﹣∠ODC=180°,∴2∠OAC﹣∠ODC=90°,综上:2∠OAC﹣∠ODC=90°或∠ODC+2∠OAC=90°.23.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x=﹣=﹣,∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=, (3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。
2022年浙江省杭州市拱墅区中考4月数学试题(解析版)

A. 2B. 2 C. 3D.
【答案】D
【解析】
【分析】
根据三角形面积求法,得出△OCB与△ACB同底等高面积相等,再利用切线的性质得出∠COB=60°,利用三角形的面积求出即可.
∴ = .
故选:C.
【点睛】此题考查勾股定理以及黄金分割的运用,正确掌握勾股定理是解题的关键.
二.填空题(满分24分,每小题4分)
11.(2020·杭州拱墅区模拟)因式分解:9a3b﹣ab=_____.
【答案】ab(3a+1)(3a-1).
【解析】
试题分析:原式提取公因式后,利用平方差公式分解即可.
4.(2020·杭州拱墅区模拟)某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是()
A.20分,22.5分B.20分,18分
C.20分,22分D.20分,20分
【答案】D
【解析】
【分析】
众数是指一组数据中出现次数最多的数;中位数是指将一组数据按照大小顺序排列后位于中间的那个数或位于中间位置的两个数的平均数;据此进一步判断即可.
(2)根据(1)中的结果可以求得喜欢跳绳和乒乓球的人数,从而可以求得“乒乓球”所在扇形的圆心角的度数;
(3)根据(2)中计算出的喜爱跳绳和乒乓球的人数可以将条形统计图补充完整;
(4)根据统计图中的数据可以计算出七年级600名学生中喜欢“乒乓球”的人数有多少.
【详解】解:(1)这次调查活动中,一共调查了:40÷40%=100名学生,
2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(4月5月)含答案

2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(4月)一、选一选:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算1122--的结果是()A.0B.1C.﹣1D.142.下列语句描述的中,是随机的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.下列图形中,没有是轴对称图形的是()A. B. C. D.4.若单项式a m ﹣1b 2与212na b 的和仍是单项式,则n m 的值是()A.3B.6C.8D.95.最接近的整数是()A.5B.6C.7D.86.一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A. B.C.D.7.化简21211a aa a----的结果为()A.11aa+-B.a﹣1C.aD.18.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.09.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.83πC.34πD.43π10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-= D.6060(125%)30x x⨯+-=11.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.D.812.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为()A.94+B.92+C.18+D.182+二、填空题(每题4分,共5个小题,满分20分,将直接填写结果)13.如图,直线a ∥b ,若∠1=140°,则∠2=__________°.14.分解因式:2x 3﹣6x 2+4x =__________.15.在如图所示的平行四边形ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O ,则△ADE 的周长等于__________.16.已知抛物线y =x 2+2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m (m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧),若B ,C 是线段AD 的三等分点,则m 的值为__________.17.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.先化简,再求值:a (a +2b )﹣(a +1)2+2a ,其中1,1a b =+=-.19.已知:如图,△ABC 是任意一个三角形,求证:∠A +∠B +∠C =180°.20.“推进全科阅读,培育时代新人”.某学校为了地开展学生读书,随机了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书,其中被抽到学生的读书时间没有少于9小时的概率是多少?21.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,没有等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.22.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB 的平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)的长是一元二次方程x2﹣5x+6=0的两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若没有存在,说明理由.23.(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件没有变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件没有变,试判断△GMN的形状,并给与证明.24.如图,抛物线y=ax2+bx△OAB的三个顶点,其中点A(1,点B(3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和时,求∠BOC的大小及点C的坐标.2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(4月)一、选一选:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算1122--的结果是()A.0B.1C.﹣1D.1 4【正确答案】A【详解】分析:先计算值,再计算减法即可得.详解:1122--=12﹣12=0,故选A.点睛:本题主要考查值和有理数的减法,解题的关键是掌握值的性质和有理数的减法法则.2.下列语句描述的中,是随机的为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【正确答案】D【分析】直接利用随机以及必然、没有可能的定义分别分析得出答案.【详解】解:A、水能载舟,亦能覆舟,是必然,故此选项错误;B、只手遮天,偷天换日,是没有可能,故此选项错误;C、瓜熟蒂落,水到渠成,是必然,故此选项错误;D、心想事成,万事如意,是随机,故此选项正确.故选D.此题主要考查了随机以及必然、没有可能,正确把握相关定义是解题关键.3.下列图形中,没有是轴对称图形的是()A. B. C. D.【正确答案】A【分析】观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A 中的图形没有是轴对称图形.故选A .此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.4.若单项式a m ﹣1b 2与212na b 的和仍是单项式,则n m 的值是()A.3B.6C.8D.9【正确答案】C【详解】分析:首先可判断单项式a m-1b 2与12a 2b n是同类项,再由同类项的定义可得m 、n 的值,代入求解即可.详解:∵单项式a m-1b 2与12a 2b n的和仍是单项式,∴单项式a m-1b 2与12a 2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m =8.故选C .点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.5.最接近的整数是()A.5B.6C.7D.8【正确答案】B【详解】分析:由题意可知36与37最接近,从而得出答案.详解:∵36<37<49,,即6<7,∵37与36最接近,最接近的是6.故选B.最接近.6.一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A. B.C. D.【正确答案】A【详解】分析:先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.详解:sinA=150.15100BCAC==,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选A.点睛:本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.化简21211a aa a----的结果为()A.11aa+-B.a﹣1C.aD.1【正确答案】B【分析】根据同分母分式加减法的运算法则进行计算即可求出答案.【详解】解:原式=212 11 a a a a-+--=2 (1)1 aa--=a-1故选:B.本题考查了同分母分式加减法的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.甲、乙、丙、丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲、乙、丙胜的场数相同,则丁胜的场数是()A.3B.2C.1D.0【正确答案】D【详解】分析:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.详解:四个人共有6场比赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲、乙、丙各胜2场,此时丁三场全败,也就是胜0场.答:甲、乙、丙各胜2场,此时丁三场全败,丁胜0场.故选D.点睛:此题是推理论证题目,解答此题的关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为()A.2πB.83πC.34πD.43π【正确答案】D【分析】连接OC,根据∠BAC=50°,求出∠COA的度数,再根据弧长公式即可求出弧AC的长.【详解】连接OC.则∠BAC=∠OCA=50°,∴∠AOC=80°,∴6 8042 1803ACππ⨯⨯==故选D此题考查了扇形的弧长公式的应用,连接OC,由等边对等角及三角形内角和定理得到∠AOC=80°是解题的关键.10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x -=+ B.606030(125%)x x -=+C.60(125%)6030x x⨯+-= D.6060(125%)30x x⨯+-=【正确答案】C【分析】设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率提前30天完成任务,即可得出关于x 的分式方程.【详解】解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x -=+,即()60125%6030xx⨯+-=.故选C .考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.如图,在Rt △ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,若AN =1,则BC 的长为()A.4B.6C. D.8【正确答案】B【分析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.【详解】解:∵在Rt △ABC 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,∴∠AMN =∠NMC =∠B ,∠NCM =∠BCM =∠NMC ,∴∠ACB =2∠B ,NM =NC ,∴∠B =30°,∵AN =1,∴MN =2,∴AC =AN +NC =3,∴BC =6,故选B .本题考查30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形的思想解答.12.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为()A.25394+B.25392+C.18+D.253182+【正确答案】A【详解】分析:将△BPC 绕点B 逆时针旋转60°得△BEA ,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长BP ,作AF ⊥BP 于点F .AP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB 的度数,在直角△APF 中利用三角函数求得AF 和PF 的长,则在直角△ABF 中利用勾股定理求得AB 的长,进而求得三角形ABC 的面积.详解:∵△ABC 为等边三角形,∴BA=BC ,可将△BPC 绕点B 逆时针旋转60°得△BEA ,连EP ,且延长BP ,作AF ⊥BP 于点F .如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE 为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,AP=3,PE=4,∴AE 2=PE 2+PA 2,∴△APE 为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF 中,AF=12AP=32,PF=32∴在直角△ABF 中,AB 2=BF 2+AF 2=(2+(32)2则△ABC 的面积是34•AB 2=34•(25+12)=9+2534.故选A .点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转的连线段的夹角等于旋转角,对应点到旋转的距离相等.二、填空题(每题4分,共5个小题,满分20分,将直接填写结果)13.如图,直线a ∥b ,若∠1=140°,则∠2=__________°.【正确答案】40【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案.【详解】解:∵a ∥b ,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为40.本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.14.分解因式:2x3﹣6x2+4x=__________.【正确答案】2x(x﹣1)(x﹣2).【详解】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于__________.【正确答案】10【详解】分析:要计算周长首先需要证明E、C、D共线,DE可求,问题得解.详解:∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=2由折叠,∠DAC=∠EAC∵∠DAC=∠ACB∴∠ACB=∠EAC∴OA=OC∵AE过BC的中点O∴AO=12 BC∴∠BAC=90°∴∠ACE=90°由折叠,∠ACD=90°∴E、C、D共线,则DE=4∴△ADE的周长为:3+3+2+2=10故答案为10点睛:本题考查了平行四边形的性质、轴对称图形性质和三点共线的证明.解题时注意没有能忽略E、C、D三点共线.16.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.【正确答案】2或8【分析】分两种情况:当点C在点B左侧时,如图,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,进一步即可求出m的值;当点C在点B右侧时,根据m=2AB求解即可.【详解】解:①如图,当点C在点B左侧时,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2;当点C在点B右侧时,AB=BC=CD=4,∴m=AB+BC=4+4=8;故2或8.本题考查了抛物线与x 轴的交点、抛物线的平移及解一元二次方程等知识,属于常考题型,利用数形的思想和三等分点的定义解决问题是关键.17.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【正确答案】2018【详解】分析:观察图表可知:第n 行个数是n 2,可得第45行个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n 行个数是n 2,∴第45行个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)18.先化简,再求值:a (a +2b )﹣(a +1)2+2a ,其中1,1a b =+=-.【正确答案】2ab ﹣1,=1.【详解】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,代入计算即可.详解:原式=a 2+2ab﹣(a 2+2a+1)+2a =a 2+2ab﹣a 2﹣2a﹣1+2a =2ab﹣1,当1a =+,1b =时,原式=2(+1)-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.19.已知:如图,△ABC 是任意一个三角形,求证:∠A +∠B +∠C =180°.【正确答案】证明见解析【详解】分析:过点A 作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.详解:如图,过点A 作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.点睛:本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键.20.“推进全科阅读,培育时代新人”.某学校为了地开展学生读书,随机了八年级50名学生最近一周的读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间的众数、中位数、平均数;(2)根据上述表格补全下面的条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织的读书,其中被抽到学生的读书时间没有少于9小时的概率是多少?【正确答案】(1)众数是9;中位数是8.5;平均数是8.34;(2)补图见解析;(3)1 2【详解】分析:(1)先根据表格提示的数据得出50名学生读书的时间,然后除以50即可求出平均数;在这组样本数据中,9出现的次数至多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,从而求出中位数是8.5;(2)根据题意直接补全图形即可.(3)从表格中得知在50名学生中,读书时间没有少于9小时的有25人再除以50即可得出结论.详解:(1)观察表格,可知这组样本数据的平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据的平均数为8.34;∵这组样本数据中,9出现了15次,出现的次数至多,∴这组数据的众数是9;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数是8和9,∴这组数据的中位数为12(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时的有15人,读书时间是10小时的有10人,∴读书时间没有少于9小时的有15+10=25人,∴被抽到学生的读书时间没有少于9小时的概率是251= 502点睛:本题考查了加权平均数、众数以及中位数,用样本估计总体的知识,解题的关键是牢记概念及公式.21.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,没有等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.【正确答案】(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【详解】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,没有等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3 x;(2)∵A(1,3),∴当x>0时,没有等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=9 4,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与函数的交点问题:求反比例函数与函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.如图,以AB 为直径的⊙O 外接于△ABC ,过A 点的切线AP 与BC 的延长线交于点P ,∠APB 的平分线分别交AB ,AC 于点D ,E ,其中AE ,BD (AE <BD )的长是一元二次方程x 2﹣5x +6=0的两个实数根.(1)求证:PA •BD =PB •AE ;(2)在线段BC 上是否存在一点M ,使得四边形ADME 是菱形?若存在,请给予证明,并求其面积;若没有存在,说明理由.【正确答案】(1)证明见解析;(2)存在,453【详解】分析:(1)易证∠APE=∠BPD ,∠EAP=∠B ,从而可知△PAE ∽△PBD ,利用相似三角形的性质即可求出答案.(2)过点D 作DF ⊥PB 于点F ,作DG ⊥AC 于点G ,易求得AE=2,BD=3,由(1)可知:23PA PB,从而可知cos ∠BDF=cos ∠BAC=cos ∠APC=23,从而可求出AD 和DG 的长度,进而证明四边形ADFE 是菱形,此时F 点即为M 点,利用平行四边形的面积即可求出菱形ADFE 的面积.详解:(1)∵PD 平分∠APB ,∴∠APE=∠BPD ,∵AP 与⊙O 相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB 是⊙O 的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B ,∴△PAE ∽△PBD ,∴PA PBAE BD=,∴PA•BD=PB•AE ;(2)如图,过点D 作DF ⊥PB 于点F ,作DG ⊥AC 于点G ,∵PD 平分∠APB ,AD ⊥AP ,DF ⊥PB ,∴AD=DF ,∵∠EAP=∠B ,∴∠APC=∠BAC ,易证:DF ∥AC ,∴∠BDF=∠BAC ,由于AE ,BD (AE <BD )的长是x 2﹣5x+6=0的两个实数根,解得:AE=2,BD=3,∴由(1)可知:23PA PB=,∴cos ∠APC=23PA PB =,∴cos ∠BDF=cos ∠APC=23,∴23DF BD =,∴DF=2,∴DF=AE ,∴四边形ADFE 是平行四边形,∵AD=DF ,∴四边形ADFE 是菱形,此时点F 即为M 点,∵cos ∠BAC=cos ∠APC=23,∴sin ∠BAC=3,∴3DG AD,∴DG=253,∴菱形ADME 的面积为:DG•AE=2×253=453.点睛:本题考查圆的综合问题,涉及圆周角定理,锐角三角函数的定义,平行四边形的判定及其面积公式,相似三角形的判定与性质,综合程度较高,考查学生的灵活运用知识的能力.23.(1)操作发现:如图①,小明画了一个等腰三角形ABC ,其中AB =AC ,在△ABC 的外侧分别以AB ,AC 为腰作了两个等腰直角三角形ABD ,ACE ,分别取BD ,CE ,BC 的中点M ,N ,G ,连接GM ,GN .小明发现了:线段GM 与GN 的数量关系是__________;位置关系是__________.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB >AC ,其它条件没有变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC 的内侧分别作等腰直角三角形ABD ,ACE ,其它条件没有变,试判断△GMN 的形状,并给与证明.【正确答案】(1)MG =NG ;MG ⊥NG ;(2)成立,MG =NG ,MG ⊥NG ;(3)等腰直角三角,证明见解析【分析】(1)利用SAS 判断出△ACD ≌△AEB ,得出CD =BE ,∠ADC =∠ABE ,进而判断出∠BDC +∠DBH =90°,即:∠BHD =90°,用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,利用三角形中位线定理和等量代换即可得出结论.【详解】解:(1)连接BE,CD相交于H,如图1,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG∥CD且MG=12 CD,同理:NG∥BE且NG=12 BE,∴MG=NG,MG⊥NG;(2)连接CD,BE,相交于H,如图2,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG∥CD且MG=12 CD,同理:NG∥BE且NG=12 BE,∴MG=NG,MG⊥NG;(3)连接EB,DC并延长相交于点H,如图3,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.∴△GMN是等腰直角三角形.此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.24.如图,抛物线y=ax2+bx△OAB的三个顶点,其中点A(1,点B(3),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C 为线段AB 上的一个动点,当点A ,点B 到直线OC 的距离之和时,求∠BOC 的大小及点C的坐标.【正确答案】(1)2235333y x x =-+;(2)t >4;(3)∠BOC =60°,C 322【详解】分析:(1)将已知点坐标代入y=ax 2+bx ,求出a 、b 的值即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A ,点B 到直线OC 的距离之和小于等于AB ;同时用点A (1,),点B (3详解:(1)把点A (1,点B (3y=ax 2+bx得93a b a b⎧+⎪⎨=+⎪⎩,解得233533a b ⎧=-⎪⎪⎨⎪=⎪⎩∴y=﹣2235333x x +(2)由(1)抛物线开口向下,对称轴为直线x=54,当x >54时,y 随x 的增大而减小,∴当t >4时,n <m .(3)如图,设抛物线交x 轴于点F ,分别过点A 、B 作AD ⊥OC 于点D ,BE ⊥OC 于点E∵AC≥AD,BC≥BE,∴AD+BE≤AC+BE=AB,∴当OC⊥AB时,点A,点B到直线OC的距离之和.∵A(1),点B(3),∴∠AOF=60°,∠BOF=30°,∴∠AOB=90°,∴∠ABO=30°.当OC⊥AB时,∠BOC=60°,点C坐标为3232.点睛:本题考查综合考查用待定系数法求二次函数解析式,抛物线的增减性.解答问题时注意线段最值问题的转化方法.2022-2023学年北京市西城区中考数学专项提升仿真模拟卷(5月)一、选一选1.2的倒数是()A.2B.12C.12-D.-22.下列运算正确的是()A.236=a a a ⋅ B.2=a a a- C.()326=a a D.824=a a a ÷3.如图,点D 在△ABC 的边AB 的延长线上,DE ∥BC ,若∠A =35°,∠C =24°,则∠D 的度数是()A.24°B.59°C.60°D.69°4.函数11y x =-中,自变量x 的取值范围是()A.x≠0B.x <1C.x >1D.x≠15.若a <b ,则下列结论没有一定成立的是()A.a -1<b -1B.2a <2bC.33a b < D.22a b <6.若实数m 、n 满足02m =-,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC的周长是()A.12B.10C.8或10D.67.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,点E 为边CD 的中点,若菱形ABCD 的周长为16,∠BAD =60°,则△OCE 的面积是()A.B.2C. D.48.在平面直角坐标系中,过点(1,2)作直线l ,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l 的条数是()A.5B.4C.3D.2二、填空题9.一组数据:2,5,3,1,6,则这组数据的中位数是________.10.地球上海洋总面积约为360000000km 2,将360000000用科学记数法表示是________.11.分解因式:2x y y -=_________.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.13.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.14.在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是_____.15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.16.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,取完者获胜.若由小明先取,且小明获胜是必然,则小明次应该取走火柴棒的根数是________.17.如图,在平面直角坐标系中,反比例函数2y x =(x >0)与正比例函数y=kx 、k y x=(k >1)的图象分别交于点A 、B ,若∠AOB =45°,则△AOB 的面积是________.18.如图,将含有30°角的直角三角板ABC 放入平面直角坐标系,顶点A ,B 分别落在x 、y 轴的正半轴上,∠OAB =60°,点A 的坐标为(1,0),将三角板ABC 沿x 轴向右作无滑动的滚动(先绕点A 按顺时针方向旋转60°,再绕点C 按顺时针方向旋转90°,…)当点B 次落在x 轴上时,则点B 运动的路径与坐标轴围成的图形面积是________.三、解答题19.解方程组:20346x y x y +=⎧⎨+=⎩20.计算:()(020222sin60π---++21.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m 分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下没有完整的两幅统计图表.请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数. 22.如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.23.有2部没有同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)24.某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)(1)求y与x之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量没有低于油箱容量的四分之一,按此建议,求该辆汽车至多行驶的路程.25.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.。
中考模拟数学试题及答案

中考模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 以下哪个方程是一元一次方程?A. 2x + 3 = 0B. x^2 - 4 = 0C. 3x - 2y = 5D. x/2 + 3 = 0答案:A4. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 以下哪个选项是整式的乘法?A. (x + 2)(x - 2)B. x^2 + 2x + 1C. x/(x + 1)D. x^2 - 4x + 4答案:A7. 一个圆的半径为3,那么这个圆的面积是:A. 9πB. 18πD. 36π答案:C8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 以下哪个选项是不等式?A. x + 2 = 3B. 2x - 3 > 0C. 4x^2 - 9 = 0D. 3x + 2y = 510. 以下哪个选项是二次函数?A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 1/xD. y = √x答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。
答案:±512. 一个角的余角是30°,那么这个角是______。
答案:60°13. 一个数的平方是16,这个数是______。
答案:±414. 一个等腰直角三角形的斜边长为5,那么这个三角形的面积是______。
九年级中考数学四月模拟试卷(含答案)

中考数学四月模拟试卷一.选择题(每题3分,满分36分)1.在实数0,﹣,π,|﹣3|中,最小的数是()A.0 B.﹣C.πD.|﹣3|2.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷20×23=32C.(﹣ab2)•(﹣2a2b)3=a3b3D.a3•(﹣a)5•a12=﹣a203.支原体是细胞外生存的最小微生物,其中球形支原体的直径大约为0.4um.已知1um=10﹣6m,用科学记数法表示“0.4um”正确的是()A.0.4×10﹣6m B.4×10﹣1m C.4×10﹣5m D.4×10﹣7m4.下列图形中,可以看作是轴对称图形的是()A.B.C.D.5.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°6.在Rt△ABC中,∠C=90°,AC=3,BC=1,则sin A的值为()A.B.C.D.7.在函数,y=,y=x+3,y=x2的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1 B.m<﹣1 C.m≥﹣1 D.m>﹣19.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A.B.C.D.10.如图.BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.5011.如果A(﹣2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图象上,那么这个函数的解析式可能是()A.y=2x B.y=﹣C.y=﹣x2D.y=x212.如图,在Rt△ABC中,∠ACB=90°,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则∠BED的度数为()A.100°B.120°C.135°D.150°二.填空题(满分40分,每小题5分)13.如果关于x的一元二次方程ax2+x+1=0没有实数根,则a的取值范围是.14.若分式的值为零,则x的值为.15.如图,O是△ABC的内心,∠BOC=100°,则∠A=.16.如图,在平面直角坐标系xOy中,以原点为位似中心,线段CD与线段AB是位似图形,若C(2,3),D(3,1),A(4,6),则B的坐标为.17.如图,某海防哨所(O)发现在它的北偏西30°,距离为500m的A处有一艘船,该船向正东方向航行,经过几分钟后到达哨所东北方向的B处,此时该船距哨所的距离(OB)为米.18.如图,在⊙O中,点C为弧AB的中点,OC交弦AB于D,如果AB=8,OC=5,那么OD的长为.19.如图,四边形OABC为菱形,OA=2,以点O为圆心,OA长为半径画,恰好经过点B,连接OE,OE⊥BC,则图中阴影部分的面积为.20.不等式组的解集为.三.解答题21.(12分)(1)计算:(3.14﹣π)0+﹣2sin45°+()﹣1(2)解方程:+1=(3)先化简,再求值,(1+)÷,其中x=﹣1.22.(12分)“好的环境营设好的氛围,好的氛围创造好的成绩”,经过我校老师们的精心辅导、同学们的扎实学习,初中各年级学生的综合素质逐步提升.现随机抽取了部分学生的综合成绩,按“A(优秀)、B(良好)、C(一般)、D(合格)”四个等级进行统计,并将统计结果制成如下两幅不完整统计图,请你结合图表所给信息解答下列问题:(1)此次共调查了名初中生,其中,学生的综合成绩的中位数处于等级;并将折线统计图补充完整(在图上完成);(2)初三(l)班的部分同学也参与了调查,其中A等级的有四人,其中两名女生;B 等级的有兰人,其中一名男生,若该班准备分别从这两组中随机选出一名同学参加学校的经验交流活动,请用列表或画树状图的方法求出所选两名同学恰好是一名女生和一名男生的概率.23.(12分)某玩具销售商试销某一品种的玩具(出厂价为每个30元),以每个40元销售时,平均每月可销售100个,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的试场调查,3月份调整价格后,月销售额达到5760元,已知该玩具价格每个下降1元,月销售量将上升10个.(1)求1月份到3月份销售额的月平均增长率.(2)求三月份时该玩具每个的销售价格.24.(12分)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,求菱形AFCE的边长.25.(12分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2,CE=,求AE的长.26.(14分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.①试用含m的代数式表示线段PN的长;②求线段PN的最大值.参考答案一.选择题1.解:∵|﹣3|=3,∴实数0,﹣,π,|﹣3|按照从小到大排列是:﹣<0<|﹣3|<π,∴最小的数是﹣,故选:B.2.解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷20×23=2,故此选项错误;C、(﹣ab2)•(﹣2a2b)3=(﹣ab2)•(﹣8a6b3)=4a7b5,故此选项错误;D、a3•(﹣a)5•a12=﹣a20,正确.故选:D.3.解:0.4um=0.4×10﹣6m=4×10﹣7m.故选:D.4.解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意;故选:B.5.解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.6.解:∵在Rt△ABC中,∠C=90°,AC=3,BC=1,∴由勾股定理得到:AB===.∴sin A===.故选:A.7.解:y=x2的图形是轴对称图形而不是中心对称图形,y=﹣x+3的图象不过原点,不是关于原点对称的中心对称图形;y=的图象是中心对称图形且对称中心是原点.故选:B.8.解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.解:∵点P在函数y=(x>0)的图象上,PA∥x轴,PB∥y轴,∴设P(x,),∴点B的坐标为(x,﹣),A点坐标为(﹣x,),∴△PAB的面积=(x+)(+)=.故选:D.10.解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°﹣∠B=42°;故选:A.11.解:∵A(﹣2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图象上,∴A、B关于y轴对称,在y轴的右侧,y随x的增大而增大,A、对于函数y=2x,y随x的增大而增大,故不可能;B、对于函数y=﹣,图象位于二、四象限,每个象限内y随x的增大而增大,故不可能;C、对于函数y=﹣x2,对称轴为y轴,当x>0时,y随x的增大而减小,故不可能;D、对于函数y=x2,对称轴为y轴,当x>0时,y随x的增大而增大,故有可能;故选:D.12.解:如图,连接BD,∵将△ABC绕点A逆时针旋转60°,得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD为等边三角形,∴∠ABD=60°,AB=BD,且AE=DE,BE=BE,∴△ABE≌△DBE(SSS)∴∠ABE=∠DBE=30°∴∠ABE=∠DBE=30°,且∠BDE=∠ADB﹣∠ADE=15°,∴∠BED=135°.故选:C.二.填空题13.解:根据题意得a≠0且△=12﹣4a<0,解得a>.故答案为:a>.14.解:∵分式的值为零,∴x(x﹣1)=0,且x﹣1≠0,解得:x=0.故答案为:0.15.解:∵O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠OBC+∠OCB=180°﹣∠BOC=180°﹣100°=80°,∴(∠ABC+∠ACB)=80°,即∠ABC+∠ACB=160°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣160°=20°;故答案为20°.16.解:∵以原点为位似中心线段CD与线段AB是位似图形,C(2,3),A(4,6),∴D(3,1)的对应点B的坐标为:(6,2).故答案为:(6,2).17.解:如图,由题意可知,∠AOC=30°,∠BOC=45°,OA=500,AB⊥OC,在Rt△AOC中,OC=OA•cos30°=500×=250,在Rt△BOC中,OB=OC=250×=250,故答案为:250.18.解:连接AO,∵点C为弧AB的中点,∴=,∴CO⊥AB,AD=AB=4,∵CO=5,∴AO=5,∴DO==3,故答案为:3.19.解:连接OB,OE与BC的交点为F,∵四边形OABC为菱形,∴OA=AB=BC=CO,由题意得,OA=OB,∴OA=AB=OB=OC=BC,即△AOB、△OBC为等边三角形,∴∠AOB=60°,∠BOC=60°,∵OE⊥BC,∴BF=FC=BC=1,∠BOE=∠BOC=30°,∴∠AOE=90°,OF=OB•cos∠BOE=,则图中阴影部分的面积=﹣×(1+2)×=π﹣,故答案为:π﹣.20.解:∵解不等式①得:x<﹣6,解不等式②得:x≤1,∴不等式组的解集是x<﹣6,故答案为:x<﹣6.三.解答题21.解:(1)原式=1+2﹣2×+3=1+2﹣+3=4+;(2)方程两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,解得:x=1,检验:当x=1时,x﹣2=1﹣2=﹣1≠0,所以分式方程的解为x=1;(3)原式=•=,当x=﹣1时,原式===.22.解:(1)本次调查的学生总人数为20÷10%=200(人),则C等级人数为200×30%=60(人),D等级人数为200﹣(20+90+60)=30(人),由于第100、101个数据都在B等级,所以学生的综合成绩的中位数处于B等级,补全折线统计图如下:故答案为:200、B.(2)画树状图如下:由树状图可知,共有12种等可能结果,其中所选两名同学恰好是一名女生和一名男生的有6种结果,∴所选两名同学恰好是一名女生和一名男生的概率为=.23.解:(1)设1月份到3月份销售额的月平均增长率为x,由题意得:40×100(1+x)2=5760∴(1+x)2=1.44∴1+x=±1.2∴x1=0.2=20%,x2=﹣2.2(舍去)∴1月份到3月份销售额的月平均增长率为20%.(2)设三月份时该玩具的销售价格在每个40元销售的基础上下降y元,由题意得:(40﹣y)(100+10y)=5760∴y2﹣30y+176=0∴(y﹣8)(y﹣22)=0∴y1=8,y2=22当y=22时,3月份该玩具的销售价格为:40﹣22=18<30,不合题意,舍去∴y=8,3月份该玩具的销售价格为:40﹣8=32元∴3月份该玩具的销售价格为32元.24.解;(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则AE=,CE=8﹣x,则=8﹣x,化简有16x﹣28=0,解得:x=,将x=代入原方程检验可得等式两边相等,即x=为方程的解.则菱形的边长为:8﹣=.25.(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠1=∠3.又OA=OC,∴∠2=∠3,∴∠1=∠2,∴CE=CB;(2)解:∵AB是直径,∴∠ACB=90°,∵AC=2,CB=CE=,∴AB===5.∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴==,即==,∴AD=4,DC=2.在直角△DCE中,DE==1,∴AE=AD﹣ED=4﹣1=3.26.解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①M(m,0),则P(m,),N(m,﹣),∴PN==﹣(0≤m≤3);②∵PN=﹣=,∴m=时,线段PN有最大值为3.。
2023年福建省福州市连江县重点学校中考数学模拟试卷(4月份)(含解析)

2023年福建省福州市连江县重点学校中考数学模拟试卷(4月份)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列平面图形中,是中心对称图形的是( )A. B. C. D.2. 下列各数中,负数是( )A. −(−2)B. (−2)0C. (−2)2D. −|−2|3. 在数轴上,点A表示−2.若从点A出发,沿数轴的正方向移动4个单位长度到达点B,则点B表示的数是( )A. −6B. −4C. 2D. 44. 下列计算正确的是( )A. 3a2−a2=2B. (−3a3)2=6a6C. (a−2)2=a2−4D. a3⋅a2=a55. 下列说法正确的是( )A. 要了解一批灯泡的使用寿命,应采用普查的方式B. 一组数据2,2,2,2,2,2,2,它的方差是0C. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次D. 一组数据4,6,7,6,7,8,9,它的中位数和众数都是66. 方程x2=2x的根是( )A. x=2B. x=0C. x1=−2,x2=0D. x1=2,x2=07. 《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?译文为:现有一些人共同购买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共同购买该物品的有x人,该物品的价格是y元,则根据题意,列出的方程组为( )A. {8x−y=−37x−y=4 B. {8y−x=37y−x=4 C.{8y−x=−37y−x=−4 D.{8x−y=37x−y=−48. 如图,△ABC中,∠BAC=90°,将△ABC绕着点A旋转至△ADE,点B的对应点点D恰好落在BC边上,若AC=23,∠B=60°,则CD的长为( )A. 2B. 3C. 23D. 49. 在反比例函数y=−3图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,x则下列结论正确的是( )A. y3<y2<y1B. y1<y3<y2C. y2<y3<y1D. y3<y1<y210. 已知二次函数y=−(x−ℎ)2+1(ℎ为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为−3,则ℎ的值为( )A. 3或4B. 0或4C. 0或7D. 7或3二、填空题(本大题共6小题,共18.0分)11. “比a的2倍小1的数”用代数式表示是______.12. 分解因式:a3−4a=______.13. 已知x2−4x−13=0,则代数式−3x2+12x+5的值是______ .14. 方程ax2+bx+c=0(a≠0)的系数a,b,c满足4a+2b+c=0,则方程有一个根为______ .15. 在平面直角坐标系xOy中,已知点A(−3,−4),将OA绕坐标原点O逆时针旋转90°至OA′,则线段OA′的中点坐标是______ .16.如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1=k2x>y2时,x的取值范围是______ .三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学中考模拟试题(4月)
姓名 班级 座次
一,选择题(10*3=30)
1. “世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民
生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为 ( ) (A )11.69×14
10 (B )1410169.1⨯ (C )13
10169.1⨯ (D )14101169.0⨯ 2,如图1所示,对a 、b 、c 三种物体的重量判断正确的是( ) A .a <c B .a <b C .a >c D .b <c
3.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,过t 小时两车相
距50千米,则t 的值是 ( )
A .2或2.5
B .2或10
C .10或12.5
D .2或12.5 4,若半径为3,5的两个圆相切,则它们的圆心距为 ( )
A .2
B .8
C .2或8
D .1或4
5,如图,四边形ABCD 内接于⊙O ,若∠BOD=100
,
则∠DAB 的度数为 ( ) A .50 B .80 C .100 ; D .130
6, 下列多边形中,能够铺满地面的是 ( ) A 正五边形 B 、正六边形 C 、 正七边形 D 、正八边形
7、某反比例函数图象上任意一点到两坐标轴的距离的积都是3;且图象经过二、四象限,
则这个反比例函数的解析式是 ( ) A .x y 3=
B. x y 3-=
C. x
y 3-= D. x y 3=
8、在平面镜里看到背后墙上,电子钟示数
如图所示,这时的时间应是 ( ) A 、21:02 B 、21:05 C 、20:15 D 、20:05
9. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走 到点P 时,发现他的身影顶部正好接触路灯B 的底部,这 时他离路灯A 25米,离路灯B 5米,如果小亮的身高 为 1.6米,那么路灯高度为 ( ) (A )6.4米 (B ) 8米 (C )9.6米 (D )11.2米
10.如图,四边形ABCD 内接于⊙O ,如果它的一个外角
∶
P A B
7题 A
∠DCE=64°,那么∠BOD= ( ) (A)128° (B)100° (C)64° (D)32°
二、填空题:(10*3=30)
11、汉字中,有很多字是轴对称图形,如“王”、“工”等,请你再写出三个不同的轴对称汉字 。
12, 如右图,圆锥底面圆的直径为6cm ,高为4cm ,则它的 全面积为 cm 2 (结果保留π).
13. 如图,把等腰Rt △ABC 沿AC 方向平移到等腰Rt △A ′B ′C ′的位置时,它们重叠的部分的面积是Rt △ABC 面积的一半.若
AB=2cm, 则它移动的距离AA ′= _cm ;
14. 已知直角三角形两边x 、y 的长满足2
40x -+=,则第三边长为 .
15,如图,已知函数y ax b =+和y kx =的图象交于点P,
则根据图象可得,关于y ax b y kx =+⎧⎨=⎩
的二元一次方
程组的解是 ______
16. 点A (2m,-3) 与点B (-4,-n) 关于x 轴对称,则 m= , n = . 17、如图,在等腰梯形ABCD 中,AB ∥CD ,DC=3 cm , ∠A=60°,BD 平分∠ABC ,则这个梯形的周长是 18. 一组数据 –1、2、0、1、3的方差为
19用换元法解分式方程71
6)1(222=+++x x x x 时,如果设21
x y x +=,那么将原方程化为关
于y 的一元二次方程的一般形式是
20, 等边三角形的边长为a ,则它的内切圆的面积是
三,解答(证明)题(60分)
21,计算:130cos 230cos 60cot 45tan 2+---o o o o (6分)
22. 如图中的折线ABC 表示甲地向乙地打长途电话所需付的电话费y (元)与通话时间
B C
P
A
A ′
C ′
B ′
x(分)之间的变化情况。
(9分)
(1)图中线段AB表示的实际意义是_________________________________。
(3分) (2)当通话时间x 3分时,需付话费y(元)与时间x(分)之间的函数关系式是_____________________________________。
(写出解题过程) (6分) 23,如图,⊙O1在⊙O内,⊙O的弦AB是⊙O1的切线,且A B∥O1O,如果AB=12㎝,那么阴影部分的面积是多少?(8分)
24, 如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(9分)
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.
25, 如图,正方形OEFG的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD,OEFG边长都是a cm,则图形中重合部分的面积是? (8分)
26,取三枚硬币,在第一枚的正面贴上红色标签,反面贴上蓝色标签;在第二枚的正面贴上蓝色标签,反面贴上黄色标签;在第三枚的正面贴上黄色标签,反面贴上红色标签,同时抛三枚硬币,写出所有可能出现的结果,将下列事出现的机会从小到大在直线上排
列:硬币落地后(1)颜色各不相同;(2)都是红色;(3)两红一蓝;(4)两蓝一红。
(8分) 27,已知:直线y=-3x+6与x轴,y轴分别交于A、B,抛物线y=ax2+bx+c经过点A、B及点M(-4,6)。
求:
(1)此抛物线的解析式;
(2)抛物线顶点P的坐标;
(3)当函数值y>0时,写出自变量x的取值范围。