2012高考冲刺-数学1

合集下载

2012高考数学押题卷全国卷(一)

2012高考数学押题卷全国卷(一)

A. (3,5)
B.
⎛ ⎜⎝
1 2
,
+∞
⎞ ⎟⎠
C. (−1, 2)
D.
⎛ ⎜⎝
1 3
,1⎞⎟⎠
⎧1, x > 0
7. 已知符号函数 sgn(x) = ⎨⎪0, x = 0 ,则函数 f (x) = sgn (ln x) − ln2 x 的零点个数为( ).
⎪⎩−1, x < 0
A. 4
B. 3
C. 2
B. 2
3
C.
2
2
D.
3
班级

学校
《洞穿高考数学解答题核心考点》配套密押试卷 第 1 页,共 8 页
《洞穿高考数学解答题核心考点》配套密押试卷 第 2 页,共 8 页
密封线内不得答题
∫ 10.
设函数 f (x) = ax2 + c (a ≠ 0) ,若
1
f (x)dx =
0
f (x0 ) , 0 - x0 -1,则 x0 的值为(
24.(本小题满分 10 分)选修 4—5:不等式选讲
设函数 f (x) = x − a + 3x ,其中 a > 0 . (1)当 a = 1时,求不等式 f (x) . 3x + 2 的解集;
{ } (2)若不等式 f (x) - 0 的解集为 x x -�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2012年高考前汇境一中数学理试题(校内试题) 数学理

2012年高考前汇境一中数学理试题(校内试题) 数学理

i=12 s=1DOs = s * ii = i -1 LOOP UNTIL 条 件PRINT s END (第7题)程序2012年高考前汇境一中数学理试题(校内试题)(满分:150分,考试时间:120分钟)第I 卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2,1,0,1,2A =--,集合{}|||B x Z x a =∈≤,则满足 的实数可以取的一个值为( )A .0B .1C .2D .32.若复数)2)((i i a z ++=(a ∈R )是纯虚数,则实数的值为 ( )A .5.0B .1-C .D .0 3. 如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( )A .36π B .12π C .33π D .433π 4.若将函数x y 2sin =的图像平移后得到函数)42sin(π+=x y 的图像,则下面说法正确的是 ( )A .向右平移8πB. 向左平移8πC. 向左平移4πD.向右平移4π5. 已知点O 、、不在同一条直线上,点为该平面上一点,且BA OA OP +=22,则( )A .点P 在线段AB 上 B .点P 在线段AB 的反向延长线上C .点P 在线段AB 的延长线上D .点P 不在直线AB 上6.在等差数列}{n a 中,21232a a +=,则1532a a +的值是( ) A. 24 B. 48 C. 96 D. 无法确定7.如果下面的程序执行后输出的结果是11880,那么在程序UNTIL 后面的条件应为( )A .10<i B. 10i <= C. 9<=i D. 9<i8.已知直线和平面,那么//a α的一个充分条件是 ( )A .存在一条直线b ,//a b 且b α⊂B .存在一条直线b ,a b ⊥且b α⊥C .存在一个平面β,a β⊂且//αβD .存在一个平面β,β//a 且//αβ9.已知动点P 到两个定点)0,1(),0,1(21F F -的距离之和为)1(32≥λλ,则点P 轨迹的离心率的取值范围为( ) A .3[,1)3B .33(,]32C .3(0,]3D .3(,1)210.如果有穷数列m a a a a ,...,,,321(为正整数)满足1121,...,,a a a a a a m m m ===-.即),...,2,1(1m i a a i m i ==+-,我们称其为“对称数列“例如,数列,,5,,与数列8,,,,,8都是“对称数列”.设}{n b 是项数为),1(2*N m m m ∈>的“对称数列”,并使得,,22,32,…,12-m 依次为该数列中连续的前项,则数列}{n b 的前2010项和2010S 可以是⑴201021- ⑵100622- (3)122201021---+m m 其中正确命题的个数为 ( ) A .0 B .1 C .2 D .3⊂≠A B正视图 俯视图 侧视图2009~2010学年第一学期高三期末考数学试题 第1页 共4页第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案写在答题卡的相应位置上 11.求曲线2,x y x y ==所围成图形的面积 。

2012年高考数学一轮复习资料 第1讲 走进高考综合概述.doc

2012年高考数学一轮复习资料 第1讲 走进高考综合概述.doc

第一部分:2011全国统一考试数学(江苏卷)一.填空题(14题,每题5分,满分70分)1、已知集合A={-1,1,2,4},B={-1,0,2},则A ⋂B=_________ 简析:A ⋂B={-1,2}2、函数f(x)=log 5(2x+1)的单调增区间是__________简析:由2x+1>0,知x>-12;所以,增区间为(-12,+∞) 3、设复数z 满足i(z+1)=-3+2i (i 是虚数单位),则z 的实部是_________简析:由已知,z=-3+2ii -1=1+3i ,所经z 的实部是14、根据如图所示的伪代码,当输入a,b 分别为2,3时,最后输出的m 的值是________ 简析:由伪代码知,这是比较a,b 大小并输出大者的一段程序,故最后输出的m 值是35、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 简析:从四个不同数中一次取两个数共有6种取法,其中一个数是另一个的2倍只有12,24两种,故其概率为136、某老师从星期一到星期五收到的信件数分别是10,6,8,5,6,则该组数据的方差s 2_____简析:5天收到信件数的平均数为10+6+8+5+65=7,所以,该组数据方差s 2=32+12+12+22+125=1657、已知tan(x+π4)=2,则tanx tan2x的值为__________简析:由tan(x+π4)=2解得tanx=13,所以,tanx tan2x = tanx 2tanx 1-tan 2x=1-tan 2x 2=498、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数f(x)=2x的图象交于P 、Q 两点,则线段PQ 长的最小值是________简析:法一——数形结合,在同一坐标系中作出简图,观察知,过原点的直线为y=x 时,被y=2x的图象截得的弦PQ 长最短,此时,PQ=4; 法二——转化求解,设过原点直线方程为y=kx (k>0),联立⎩⎪⎨⎪⎧y=kxy=2x ,解得⎩⎪⎨⎪⎧x=2k y=2k 或⎩⎪⎨⎪⎧x=-2k y=-2k, 不妨设P(2k ,2k),由对称性知,|PQ|=2|OP|=22k +2k ≥224=4,当且仅当2k=2k ,即k=1时等号成立;9、函数f(x)=Asin(ωx+ϕ) (A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=_______简析:观察图象知,A=2,T 4=7π12-π3=π4,f(π3)=0;由T=π=2πω,得ω=2;由f(π3)=2sin(2π3+ϕ)=0,知2π3+ϕ=k π (k ∈Z),取k=1得ϕ=π3;Read a,bIf a>b Then m ←a Else m ←bEnd If Print m所以,f(x)=2sin(2x+π3),所以,f(0)=2sin π3=6210、已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a ·b =0,则实数k的值为_____简析:由已知,有(e 1-2e 2)·(k e 1+e 2)=0,注意到e 1,e 2是夹角为2π3的两个单位向量,整理得,k -2+(1-2k)cos 2π3=0,即4k=5,k=5411、已知实数a ≠0,函数f(x)=⎩⎨⎧2x+a , x<1-x -2a ,x ≥1,若f(1-a)=f(1+a),则a 的值为________简析:分段函数,分段考虑。

2012高考数学冲刺 不等式

2012高考数学冲刺 不等式

不等式 知识点总结精华考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │不 等 式 知识要点三.不等式、线性规划、算法1.掌握课本上的几个不等式性质,注意使用条件,另外需要特别注意: ①若0ab >,b a >,则11ab>.即不等式两边同号时,不等式两边取倒数,不等号方向要改变.②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论.③取倒数:0a b <<⇔011ab>>;0a b >>⇔011ab<<;如112x-<<,等价于110x-<<或102x <<2.掌握几类不等式(一元一次、二次、绝对值不等式、简单的指数、对数不等式)的解法,尤其注意用分类讨论的思想解含参数的不等式;勿忘数轴标根法,零点分区间法.3.掌握重要不等式,(1)均值不等式:若0,>b a ,2211a b a b++≥(当且仅当b a =时取等号)使用条件:“一正二定三相等 ”, 常用的方法为:拆、凑、平方等; (2),,a b c R ∈,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); (3)公式注意变形如:22222()ab a b ++≥,22()a b ab +≤;若0,0a b m >>>,则b b m aa m++<(真分数的性质);4.证明不等式常用方法:⑴比较法:作差比较:0A B A B -≤⇔≤.注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小;⑵综合法:由因导果;⑶分析法:执果索因.基本步骤:要证…需证…,只需证…; ⑷反证法:正难则反;⑸放缩法:将不等式一侧适当的放大或缩小以达证题目的.放缩法的方法有:①添加或舍去一些项,||a >n >.②将分子或分母放大(或缩小)③利用基本不等式,如:(1)2n n ++<.④利用常用结论:0111-=<;2211111111(1)(1)1kk k kkk kk k++---=<<=-(程度大);0322111111211()kkk k --+<=-(程度小);⑹换元法:减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元、代数换元.如:知222x y a +=,可设cos ,sin x a y a θθ==;22221xy ab+=,可设cos ,sin x a y b θθ==;6.(1)一元二次不等式ax bx c a 200++>≠()或ax bx c a 200++<≠⇒()分a >0及a <0情况分别解之,如设0a >,12,x x 是方程20ax bx c ++=的两实根,且12x x <,则其解集如下表:如解关于x 的不等式:01)1(2<++-x a ax 。

2012年高考数学冲刺复习资料

2012年高考数学冲刺复习资料

2012年高考数学冲刺复习资料(共分五大专题)专题一:三角与向量的交汇题型分析及解题策略【命题趋向】三角函数与平面的向量的综合主要体现为交汇型,在高考中,主要出现在解答题的第一个试题位置上,其难度中等偏下,分值一般为12分,交汇性主要体现在:三角函数恒等变换公式、性质与图象与平面的向量的数量积及平面向量的平行、垂直、夹角及模之间都有着不同程度的交汇,在高考中是一个热点.如08年安徽理科第5题(5分),考查三角函数的对称性与向量平移、08年山东文第8题理第15题(5分)考查两角和与差与向量垂直、08福建文理第17题(12分)考查三角函数的求值与向量积、07的天津文理第15题(4分)考查正余弦定理与向量数量积等.根据2012年考纲预计在2012年高考中解答题仍会涉及三角函数的基本恒等变换公式、诱导公式的运用、三角函数的图像和性质、向量的数量积、共线(平行)与垂直的充要条件条件.主要考查题型:(1)考查纯三角函数函数知识,即一般先通过三角恒等变换公式化简三角函数式,再求三角函数的值或研究三角函数的图象及性质;(2)考查三角函数与向量的交汇,一般是先利用向量知识建立三角函数关系式,再利用三角函数知识求解;(3)考查三角函数知识与解三角形的交汇,也就是将三角变换公式与正余弦定理交织在一起.【考试要求】1.理解任意角的正弦、余弦、正切的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.2.掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.3.能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.4.理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx φ)的简图,理解A,ω,φ的物理意义.5.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.掌握向量的加法和减法.掌握实数与向量的积,理解两个向量共线的充要条件.7.了解平面向量的基本定理.理解平面向量的坐标的概念,掌握平面向量的坐标运算.8.掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.9.掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.【考点透视】向量具有代数运算性与几何直观性的“双重身份”,即可以象数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换.而三角函数是以“角”为自变量的函数,函数值体现为实数,因此平面向量与三角函数在“角”之间存在着密切的联系.同时在平面向量与三角函数的交汇处设计考题,其形式多样,解法灵活,极富思维性和挑战性.主要专题二:函数与导数的交汇题型分析及解题策略【命题趋向】函数的观点和方法既贯穿了高中代数的全过程,又是学习高等数学的基础,是高考数学中极为重要的内容,纵观全国及各自主命题省市近三年的高考试题,函数与导数在选择、填空、解答三种题型中每年都有试题,分值26分左右,如08年福建文11题理12题(5分)为容易题,考查函数与导函数图象之间的关系、08年江苏14题(5分)为容易题,考查函数值恒成立与导数研究单调性、08年北京文17题(12分)为中档题考查函数单调性、奇偶性与导数的交汇、08年湖北理20题(12分)为中档题,考查利用导数解决函数应用题、08年辽宁理22题(12分)为中档题,考查函数利用导数确定函数极值与单调性问题等.预测2012年关于函数与导数的命题趋势,仍然是难易结合,既有基本题也有综合题,函数与导数的交汇的考查既有基本题也有综合题,基本题以考查基本概念与运算为主,考查函数的基础知识及函数性质及图象为主,同时考查导数的相关知识,知识载体主要是三次函数、指数函数与对数函数综合题.主要题型:(1)利用导数研究函数的单调性、极值与最值问题;(2)考查以函数为载体的实际应用题,主要是首先建立所求量的目标函数,再利用导数进行求解.【考试要求】1.了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.2.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.3.掌握有理指数幂的运算性质.掌握指数函数的概念、图象和性质.4.掌握对数的运算性质;掌握对数函数的概念、图像和性质.5.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.6.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.7.熟记基本导数公式(c,xm(m为有理数),sinx,cosx,ex,ax,lnx,logax的导数);掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.8.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【考点透视】高考对导数的考查主要以工具的方式进行命题,充分与函数相结合.其主要考点:(1)考查利用导数研究函数的性质(单调性、极值与最值);(2)考查原函数与导函数之间的关系;(3)考查利用导数与函数相结合的实际应用题.从题型及考查难度上来看主要有以下几个特点:①以填空题、选择题考查导数的概念、求函数的导数、求单调区间、求函数的极值与最值;②与导数的几何意义相结合的函数综合题,利用导数求解函数的单调性或求单调区间、最值或极值,属于中档题;③利用导数求实际应用问题中最值,为中档偏难题.【典例分析】题型一导函数与原函数图象之间的关系如果原函数定义域内可导,则原函数的图象f(x)与其导函数f¢(x)的图象有密切的关系:1.导函数f¢(x)在x轴上、下方图象与原函数图象上升、下降的对应关系:(1)若导函数f¢(x)在区间D上恒有f¢(x)>0,则f(x)在区间D上为增函数,由此进一步得到导函数f¢(x)图象在x轴上方的图象对应的区间D为原函数图象中的上升区间D;(2)若导函数f¢(x)在区间D上恒有f¢(x)<0,则f(x)在区间D上为减函数,由此进一步得到导函数f¢(x)图象在x轴下方的图象对应的区间为原函数图象中的下降区间.2.导函数f¢(x)图象的零点与原函数图象的极值点对应关系:导函数f¢(x)图象的零点是原函数的极值点.如果在零点的左侧为正,右侧为负,则导函数的零点为原函数的极大值点;如果在零点的左侧为负,右侧为正,则导函数的零点为原函数的极小值点.题型二利用导数求解函数的单调性问题若f(x)在某区间上可导,则由f¢(x)>0(f¢(x)<0)可推出f(x)为增(减)函数,但反之则不一定,如:函数f(x)=x3在R上递增,而f¢(x)≥0.f(x)在区间D内单调递增(减)的充要条件是f¢(x0)≥0(≤0),且f¢(x)在(a,b)的任意子区间上都不恒为零.利用导数求解函数单调性的主要题型:(1)根据函数解析式,求函数的单调区间;(2)根据函数的单调性函数求解参数问题;(3)求解与函数单调性相关的其它问题,如函数图象的零点、不等式恒成立等问题.题型三求函数的极值问题极值点的导数一定为0,但导数为0的点不一定是极值点,同时不可导的点可能是极值点.因此函数的极值点只能在导数为0的点或不可导的点产生.利用导数求函数的极值主要题型:(1)根据函数解析式求极值;(2)根据函数的极值求解参数问题.解答时要注意准确应用利用导数求极值的原理求解题型四求解函数的最值问题函数在闭区间上的最值是比较所有极值点与端点的函数值所得结果,因此函数在闭区间[a,b]上的端点函数值一定不是极值,但它可能是函数的最值.同时,函数的极值不一定是函数的最值,最值也不一定是极值.另外求解函数的最值问题,还可以直接结合函数的单调性来求解.利用导数求解函数最值问题的主要题型:(1)根据函数的解析式求函数的最大值;(2)根据函数在一个区间上的最值情况求解参数问题.题型五导数与数学建模的问题此类试题主要是利用函数、不等式与导数相结合设计实际应用问题,旨在考查考生在数学应用方面阅读、理解陈述的材料,能综合应用所学数学知识、思想和方法解决实际问题的能力,这是高考中的一个热点.专题三:数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2012年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.【考试要求】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

资料复习参考高考数学冲刺复习1

资料复习参考高考数学冲刺复习1

改革开放的三十多年, 我国经济得到了巨大的发展, 已经从依赖资源、廉价劳动力的时代进入知识经济时代。

知识经济条件下, 创新将成为经济增长的根本所在。

何以创新? 人力资源管理成为关键。

公司若要在竞争的社会中立于不败之地, 必须把人才资源放在第一位, 只有有效、合理、科高考数学冲刺复习资料专题一: 三角与向量的交汇题型分析及解题策略【典例分析】题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题, 虽然平移在两个知识系统中讲法不尽相同, 但它们实质是一样的, 它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定: (1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y =sin2x 的图象按向量 =(- , -3)平移后, 得到函数y =Asin(ωx +()(A >0, ω>0, |(|= )的图象, 则(和B 的值依次为题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手, 将向量问题转化为三角问题, 然后再利用三角函数的相关知识再对三角式进行化简, 或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强, 有利于考查学生的基础掌握情况, 因此在高考中常有考查.【例2】 已知A 、B 、C 为三个锐角, 且A +B +C =π.若向量 =(2-2sinA, cosA +sinA)与向量 =(cosA -sinA, 1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题, 解答时与题型二的解法差不多, 也是首先利用向量垂直的充要条件将向量问题转化为三角问题, 再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量 =(3sin α,cos α), =(2sin α, 5sin α-4cos α), α∈( , 2π), 且 ⊥ .(Ⅰ)求tanα的值;(Ⅱ)求cos( + )的值.【例3】 已知向量 =(cos α,sin α), =(cos β,sin β), | - |= .(Ⅰ)求cos(α-β)的值;(Ⅱ)若- <β<0<α< , 且sin β=- , 求sin α的值.题型五 三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式: (1)三角函数与向量的积直接联系;(2)利用三角函数与向量的夹角交汇, 达到与数量积的综合.解答时也主要是利用向量首先进行转化, 再利用三角函数知识求解.【例5】 设函数f(x)= · .其中向量 =(m, cosx), =(1+sinx, 1), x ∈R, 且f( )=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.六、解斜三角形与向量的综合在三角形的正弦定理与余弦定理在教材中是利用向量知识来推导的, 说明正弦定理、余弦定理与向量有着密切的联系.解斜三角形与向量的综合主要体现为以三角形的角对应的三角函数值为向量的坐标, 要求根据向量的关系解答相关的问题.【例6】已知角A.B.C为△ABC的三个内角, 其对边分别为a、b、c, 若=(-cos , sin ), =(cos , sin ), a=2 , 且·=.(Ⅰ)若△ABC的面积S=, 求b+c的值.(Ⅱ)求b+c的取值范围.【专题训练】一、选择题1. 已知=(cos40(, sin40(), =(cos20(, sin20(), 则·=__________3. 已知△ABC中, =, =, 若·<0, 则△ABC是__________4. 设=( ,sin(), =(cos(, ), 且∥, 则锐角(为__________6.已知向量=(6, -4), =(0, 2), =+( , 若C点在函数y=sin x的图象上,实数(=()A. B. C. - D. -8.设0≤θ≤2π时, 已知两个向量=(cosθ, sinθ), =(2+sinθ, 2-cosθ), 则向量长度的最大值是__________ ()A. B. C. 3 D. 29.若向量=(cos(,sin(), =(cos(,sin(), 则与一定满足()A. 与的夹角等于(-(B. ⊥C. ∥D. ( +)⊥( -)10. 已知向量=(cos25(,sin25(), =(sin20(,cos20(), 若t是实数, 且=+t , 则| |的最小值为__________11. O是平面上一定点, A.B.C是该平面上不共线的3个点, 一动点P满足: =+(( +), (∈(0,+∞), 则直线AP一定通过△ABC的__________12. 对于非零向量我们可以用它与直角坐标轴的夹角(,((0≤(≤(,0≤(≤()来表示它的方向, 称(,(为非零向量的方向角, 称cos(,cos(为向量的方向余弦, 则cos2(+cos2(=__________13. 已知向量=(sin(, 2cos(), =( ,-).若∥, 则sin2(的值为____________.14. 已知在△OAB(O为原点)中, =(2cos(, 2sin(), =(5cos(, 5sin(), 若·=-5, 则S△AOB的值为_____________.15.将函数f(x)=tan(2x+)+1按向量a平移得到奇函数g(x), 要使|a|最小, 则a=____________.16. 已知向量=(1, 1)向量与向量夹角为, 且·=-1.则向量=__________.三、解答题17. 在△ABC中, 角A.B.C的对边分别为a、b、c, 若·=·=k(k∈R).(Ⅰ)判断△ABC的形状;(Ⅱ)若c=, 求k的值.18. 已知向量=(sinA,cosA), =( ,-1), ·=1, 且为锐角.(Ⅰ)求角A的大小;(Ⅱ)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.19. 在△ABC中, A.B.C所对边的长分别为a、b、c, 已知向量=(1, 2sinA), =(sinA, 1+cosA), 满足∥, b +c=a.(Ⅰ)求A的大小;(Ⅱ)求sin(B+)的值.20. 已知A.B.C的坐标分别为A(4, 0), B(0, 4), C(3cosα, 3sinα).(Ⅰ)若α∈(-π, 0), 且| |=| |, 求角α的大小;(Ⅱ)若⊥, 求的值.21. △ABC的角A.B.C的对边分别为a、b、c, =(2b-c, a), =(cosA, -cosC), 且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时, 求角的大小.22. 已知=(cosx+sinx, sinx), =(cosx-sinx, 2cosx),(Ⅰ)求证: 向量与向量不可能平行;(Ⅱ)若f(x)=·, 且x∈[-, ]时, 求函数f(x)的最大值及最小值.专题二: 函数与导数的交汇题型分析及解题策略【典例分析】题型一导函数与原函数图象之间的关系【例1】如果函数y=f(x)的图象如右图, 那么导函数y=f((x)的图象可能是()【例2】设f((x)是函数f(x)的导函数, y=f((x)的图象如图所示, 则y=f(x)的图象最有可能是()题型二利用导数求解函数的单调性问题若f(x)在某区间上可导, 则由f((x)>0(f((x)<0)可推出f(x)为增(减)函数, 但反之则不一定, 如: 函数f(x)=x3在R上递增, 而f((x)≥0.f(x)在区间D内单调递增(减)的充要条件是f((x0)≥0(≤0), 且f((x)在(a, b)的任意子区间上都不恒为零.利用导数求解函数单调性的主要题型: (1)根据函数解析式, 求函数的单调区间;(2)根据函数的单调性函数求解参数问题;(3)求解与函数单调性相关的其它问题, 如函数图象的零点、不等式恒成立等问题.【例3】(08全国高考)已知函数f(x)=x3+ax2+x+1, a∈R.(Ⅰ)讨论函数f(x)的单调区间;(Ⅱ)设函数f(x)在区间(-, -)内是减函数, 求a的取值范围.题型三求函数的极值问题【例4】(08·四川)设x=1和x=2是函数f(x)=x5+ax3+bx+1的两个极值点.(Ⅰ)求a和b的值;(Ⅱ)略.【例5】(08陕西高考)已知函数f(x)=(c>0, 且c≠1, k∈R)恰有一个极大值点和一个极小值点, 其中一个是x=-c. (Ⅰ)求函数f(x)的另一个极值点;(Ⅱ)求函数f(x)的极大值M和极小值m, 并求M-m≥1时k的取值范围.题型四求解函数的最值问题【例6】(08浙江高考)已知a是实数, 函数f(x)=x2(x-a).(Ⅰ)略;(Ⅱ)求f(x)在区间[0, 2]上的最大值.题型五导数与数学建模的问题【例7】(08·湖北)水库的蓄水量随时间而变化, 现用表示时间, 以月为单位, 年初为起点, 根据历年数据, 某水库的蓄水量(单位: 亿立方米)关于t的近似函数关系式为V(t)=,(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以i-1<t<i表示第1月份(i=1, 2, …, 12),同一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).【例8】(2006年福建卷)统计表明, 某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为: y= x2-x+8 (0<x≤120).已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时, 从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时, 从甲地到乙地耗油最少?最少为多少升?【专题训练】一、填空题1. 函数f(x)=x3+ax2+3x-9, 已知f(x)有两个极值点x1, x2, 则x1·x2=__________.2. 函数f(x)= x3+ax+1在(-∞, -1)上为增函数, 在(-1, 1)上为减函数, 则f(1)为__________.3. 函数f(x)=x3-3ax-a在(0, 1)内有最小值, 则a的取值范围为__________.4. 已知函数f(x)=x2(ax+b)(a, b∈R)在x=2时有极值, 其图象在点(1, (1))处的切线与直线3x+y=0平行,则函数f(x)的单调减区间为__________.6. 设函数f(x)=sin(ωx+)-1(ω>0)的导数f((x)的最大值为3, 则f(x)的图象的一条对称轴的方程是__________.7.函数f(x)的定义域为开区间(a, b), 导函数f((x)在(a, b)内的图象如下图所示.则函数f(x)在开区间(a, b)内有极小值点__________. ()A.1个B.2个C.3个D.4个13. 右图是一个三次多项式函数f(x)的导函数f((x)的图象,则当x=______时, 函数取得最小值.14. 已知函数f(x)=x3-x2+2x+1, 且x1, x2是f(x)的两个极值点, 0<x1<1<x2<3, 则a的取值范围_________.15.已知函数f(x)=x3+bx2+cx+d在区间[-1, 2]上是减函数, 那么b+c最大值为___________. 16. 曲线y=2x4上的点到直线y=-x-1的距离的最小值为____________.三、解答题17. 设函数f(x)=2x3-3(a-1)x2+1, 其中a≥1.(Ⅰ)求f(x)的单调区间;(Ⅱ)讨论f(x)的极值.18. 已知定义在R上的函数f(x)=x2(ax-3), 其中a为常数.(Ⅰ)若x=1是函数f(x)的一个极值点, 求a的值;(Ⅱ)若函数f(x)在区间(-1, 0)上是增函数, 求a的取值范围.19. 已知函数f(x)=x3+bx2+ax+d的图象过点P(0, 2), 且在点M(-1, f(-1))处的切线方程为6x-y+7=0.(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间.20. 设函数f(x)=(x+1)ln(x+1), 若对所有的x≥0, 都有f(x)≥ax成立, 求实数a的取值范围.21. 已知函数f(x)=-x2+8x, g(x)=6lnx+m.(Ⅰ)求f(x)在区间[t, t+1]上的最大值h(t);(Ⅱ)是否存在实数m, 使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在, 求出m的取值范围;, 若不存在, 说明理由。

2012高考文科数学冲刺题及答案

2012高考文科数学冲刺题及答案

2012届高三下学期4月冲刺题文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页,满分150分。

考试用时120分钟。

参考公式:柱体的体积公式:,其中表示柱体的底面积,表示柱体的高.圆柱的侧面积公式:,其中c是圆柱的底面周长,是圆柱的母线长.球的体积公式V=, 其中R是球的半径.球的表面积公式:S=4π,其中R是球的半径.用最小二乘法求线性回归方程系数公式 .如果事件互斥,那么.第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则为()A. B. C.{-1,0,1} D.2.若复数是实数,则的值为()A. B.3 C.0 D.3.曲线C:y = x2 + x 在 x = 1 处的切线与直线ax-y+1= 0互相垂直,则实数a的值为()A. B.-3 C. D.-4.已知变量x,y满足的最大值为()A.5 B.6 C.7 D.85.如图是一个几何体的三视图,则此三视图所描述几何体的表面积为()A.B.20C.D.286.下列命题中:①若p,q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件.②若p为:,则为:.③命题“”的否命题是“”.④命题“若则q”的逆否命题是“若p,则”.其中正确结论的个数是()A.1 B.2 C.3 D.47.双曲线的离心率为,则它的渐近线方程是()A. B. C. D.8.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移个单位,所得函数的最小正周期为()A.π B.2π C.4π D.8π9.数列的前n项和;(n∈N*);则数列的前50项和为()A.49 B.50 C.99 D.10010.中,三边之比,则最大角的余弦值等于()A. B. C. D.11.数列中,如果数列是等差数列,则()A.B.C.D.12.已知,若在上恒成立,则实数的取值范围是()A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题:(本大题共4小题,每小题4分,共16分。

2012高考理科数学冲刺题及答案

2012高考理科数学冲刺题及答案

{}{}1|,02|2-==<-=x y x N x x x M =)(N C M R I {|01}x x <<{|02}x x <<{|1}x x <∅1z i i=-2012高考理科数学冲刺题及答案 理 科 数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页,满分150分。

考试用时120分钟。

参考公式:柱体的体积公式:v sh =,其中s 表示柱体的底面积,h 表示柱体的高. 圆柱的侧面积公式:s cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长.球的体积公式V=34R 3π, 其中R 是球的半径. 球的表面积公式:S=4πR 2,其中R 是球的半径. 用最小二乘法求线性回来方程系数公式1221ˆˆˆ,ni ii nii x y nx ybay bx xnx==-⋅==--∑∑ . 如果事件A B 、互斥,那么()()()P A B P A P B +=+. 第I 卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知实数集R , ,则( )A .B .C .D .2.i 为虚数单位,则复数的虚部是 ( )A .2iB .2i -C .2D .—23.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为A .73B .53C .5D .32(20)()2cos (0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩4.已知函数()()32120f x x ax x a a=++>,则()2f 的最小值为 ( ) A .32 B .16 C .288a a++D .1128a a++5.设a 、b 是两条不同直线,α、β是两个不同平面,则下列命题错误的是 ( )A .若a α⊥,//b α,则a b ⊥B .若a α⊥,//b a ,b β⊂,则αβ⊥C .若a α⊥,b β⊥,//αβ,则//a bD .若//a α,//a β,则//αβ6.若把函数3y x sinx =-的图象向右平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 ( )A .3πB .23πC .6πD .56π 7.如图,若程序框图输出的S 是126,则判定框①中应为 ( )A .?5≤nB .?6≤nC .?7≤nD .?8≤n8.ABC ∆的外接圆的圆心为O ,半径为1,2AO AB AC =+u u u r u u u r u u u r且OA AB =u u u r u u u r ,则向量BA u u u r在向量BC u u u r 方向上的投影为() A .21 B .23 C .21- D .23-9.已知数列{}n a 满足*331log 1log ()n n a a n ++=∈N 且2469a a a ++=,则15793log ()a a a ++ 的值是( )A .5-B .51-C .5D .5122221(0,0)x y a b a b -=>>c bx ax x x f +++=2213)(2310.函数 的图象与x 轴所围成的封闭图形的面积 ( )A .3B .72 C .92D . 411 ,过左焦点F1作斜率为33的直线交双曲线的右支于点P ,且y 轴平分线段F1P ,则双曲线的离心率是 ( )A .2B .51+C .3D .23+12.已知21x x 、分不是函数 的两个极值点,且)1,0(1∈x ,)2,1(2∈x ,则12--a b 的取值范畴是( )A .)41,(-∞Y ),1(+∞ B . )41,1(-- C . )2,41( D . )1,41( 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,将答案填在题后的横线上.)13.关于x 的二项式41(2)x x -展开式中的常数项是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年高考冲刺数学强化训练
上海南汇中学 王海平
2012年5月15日星期二(高考倒数第22天)
集合与简易逻辑
1. 例1.集合R x x y y M ∈==,2,R x x y y N ∈+-==,12,则=N M
例2.集合{}R x x y y x M ∈==,),(2,{}
R x x y y x N ∈+-==,1),(2
,=N M
例3.集合()(){}R M ∈+==λλ,4,32,1,集合()(){}
R N ∈+==λλ,5,43,2,则=N M
2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。

例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x
3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。

② 空集是任何集合P 的子集,记为P ⊆∅。

③ 空集是任何非空集合P 的真子集,记为P ≠
⊂∅。

注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。

例5.集合}012|{2
=--=x ax x A ,如果∅=+
R A ,实数a 的取值范围
集合的运算:
④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C A B C A C B = 、()()()U U U C A B C A C B = 。

⑤ ∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。

⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为:n
2、
12-n 、12-n 、22-n 。

例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠
A 的集合A 共有 个。

4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。

例7.已知{}N k k x x M ∈+==,12,{}
N k k x x N ∈±==,14,则N M _____。

5.补集思想....
常运用于解决否定型或正面较复杂的有关问题。

例8.设函数()()1222422+----=p p x p x x f 在区间[]1,1-上至少存在一个实数C ,使()0>c f ,求实数p 的取值范围
6.命题是表达判断的语句。

判断正确的叫做真命题;判断错误的叫做假命题。

① 命题的四种形式及其内在联系: 原命题:如果α,那么β;
逆命题:如果β,那么α; 否命题:如果α,那么; 逆否命题:如果β,那么α;
② 等价命题:对于甲、乙两个命题,如果从命题甲可以推出命题乙,同时从命题乙也可以推出命题甲,既“甲⇔乙”,那么这样的两个命题叫做等价命题。

③ 互为逆否命题一定是等价命题,但等价命题不一定是互为逆否命题。

④ 当某个命题直接考虑有困难时,可通过它的逆否命题来考虑。

例9.“βαs i n s i n ≠”是“βα≠”的 条件。

⑤ 注意命题“如果α,那么β”的否定与它的否命题的区别:
命题“如果α,那么β”的否定是“如果α,那么”;否命题是“如果α,那么”。

*例10.“若a 和b 都是偶数,则b a +是偶数”的否命题是 否定是
7.常见结论的否定形式:
8在判断“充要条件”的过程中,应注意步骤性:
首先必须区分谁是条件、谁是结论,然后由推导关系判断结果。

【参考答案】§集合与简单逻辑 1.[]1,0
2. ⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛21,22,21,22 3. (){}2,2--
4. 2-
5. 0≤a
6. 7
7. N M ≠
⊂ 8. ⎪⎭
⎫ ⎝⎛
-23,3
9. 充分非必要条件
10. 否命题是“若a 和b 不都是偶数,则b a +是奇数”;否定是“若a 和b 都是偶数,则b a +是奇数”。

相关文档
最新文档