最新北师大版七年级数学下册教材分析(1)
北师大版数学七年级下册1.4《整式的乘法》说课稿1

北师大版数学七年级下册1.4《整式的乘法》说课稿1一. 教材分析《整式的乘法》是北师大版数学七年级下册第1.4节的内容,本节课的主要任务是让学生掌握整式乘法的基本运算方法。
整式乘法是代数学习的基础,也是后续学习多项式乘法、因式分解等知识的关键。
在本节课中,学生将通过具体的例子,学习如何进行整式的乘法运算,并理解其运算规律。
二. 学情分析面对七年级的学生,他们对整数四则运算已经有一定的基础,但对于代数式的运算还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,引导他们从具体到抽象,逐步理解整式乘法的运算规律。
此外,学生的学习动机、学习习惯和学习能力各有不同,我需要在教学中关注每一个学生的个体差异,充分调动他们的学习积极性。
三. 说教学目标本节课的教学目标有三:1.让学生掌握整式乘法的基本运算方法,能够正确进行整式的乘法运算。
2.让学生理解整式乘法的运算规律,能够灵活运用所学知识解决实际问题。
3.培养学生的逻辑思维能力,提高他们的数学素养。
四. 说教学重难点本节课的重难点是整式乘法的运算方法和运算规律。
对于这部分内容,学生需要通过大量的练习,才能熟练掌握。
因此,在教学过程中,我需要合理安排练习题,引导学生通过自主学习、合作学习等方式,克服困难,掌握重难点。
五. 说教学方法与手段在本节课的教学中,我将采用“引导发现法”和“实践操作法”相结合的教学方法。
通过引导学生观察、思考、讨论,发现整式乘法的运算规律;同时,通过让学生亲自动手进行实践操作,加深他们对整式乘法的理解。
此外,我还将利用多媒体教学手段,为学生提供丰富的学习资源,激发他们的学习兴趣。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行整式的乘法运算。
2.新课讲解:通过具体的例子,讲解整式乘法的运算方法,引导学生发现运算规律。
3.练习巩固:安排一系列练习题,让学生亲自动手进行整式的乘法运算,巩固所学知识。
4.拓展延伸:引导学生思考如何将整式乘法应用到实际问题中,提高他们的应用能力。
北师大版初中数学七年级下同教材分析

本章学习活动的设置关注学生 在符号表达、有理数运算、合并同 类项、去括号、探索规律等方面技 能与能力的螺旋上升,在知识学习 上关注各部分知识之间的联系。
再版的少许变化
• 主要体现在习题:
知识技能
问题解决
数学理解
第二节
整式的加减
• 教学目标: • 1.继续经历用字母表示数的过程,发展 符号感; • 2.会进行整式加减运算,并能说明其中 的算理,发展有条理的思考及语言表达 能力。
2、学习整式的乘法体现与本章前边内 容的综合,关注学生整式的加减、幂运 算、去括号等基本技能的发展。对于学 生出现的错误要分析其根源,必要时引 导学生再看书,自行查漏补缺。 3、由于有运算律和数形结合,所以学 生很容易产生算法多样化,我们要及时 鼓励和肯定。
第七节 平方差公式 教学目标: 1.经历探索平方差公式的过程,进一步发展 学生的符号感与推理能力。会推导平方差公 式,并能运用公式进行简单的计算,了解平 方差公式的几何背景。 2.学生的认知现实分析学生已经学习了整式 的乘法,特别是多项式乘以多项式,从知识 储备来说学生可以独立推导平方差公式。
第一章
整式的运算
本章内容及教育价值 (共计18课时) 1. 整式 2.整式的加减 3.同底数幂的乘法 4.幂的乘方与积的乘方 5. 同底数幂的除法
• 6.整式的乘法 • 7.平方差公式 • 8.完全平方公式 • 9.整式的除法 • 回顾与思考
《数学课程标准》中的要求:
• 教学目标: • 1.经历用字母表示数量关系的过程,在现
第三节 同底数幂的乘法 经历探索同底数幂乘法运算性质的整个过 程,进一步体会幂的意义,发展推理能力与 有条理思考的能力。 了解同底数幂乘法的运算性质并能解决一 些实际问题。
初中数学_北师大版数学七年级下册第一章《整式的乘除》讲评课教学设计学情分析教材分析课后反思

四、巩固提升归纳第一章《整式的乘除》中出现的三类典型的蕴含重要数学思想的题型,让学生对知识的运用形成体系,明确在具体题目当中出现的数学方式,并能较好的进行分析和解决。
1.公式的灵活应用将多项式4x2+1加上一个单项式后,使它能成为一个形如(a+b)的完全平方,则添加单项式的方法共有多少种2.数形结合思想我们知道,有些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用如图所示的面积关系来说明。
(1)根据图形请你写出一个等式:(2)根据等式请你画出一个能说明等式成立的图形:(2a+b)(a+3b)=2a2+7ab+3b2从代数到图形,从图形到代数,彼此是互相支撑互相补充的关系。
对于给出的代数恒等式(2a+b)(a+b)=2a2+3ab+b2,可以用同一个图形的面积相等去解释等号左右相等,所谓“以形助数”使代数问题几何化。
另外一方面,给出一个图形,学生也可以根据面积相等列出一个代数恒等式,所谓的“以数辅形”,使几何问题代数化。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,初中数学中实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系。
学情分析学生的知识技能基础:学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
但这一章的运算法则较多,公式也容易混淆,而且学生对这些知识的理解缺乏整体认知,还没形成体系.学生活动经验基础:在学习整式乘除法的过程中,学生经历了许多数学活动,积累了一定的经验.但是学生有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的经验,需要进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
学生在进行完章测试之后,迫切希望知道成绩以及自己知识点上的欠缺,所以讲评课要抓住学生的这种心理,趁热打铁,促进知识的稳固和提升。
初中数学教学内容课标解读与教材分析——北师大版七年级下册

3.了解图形的全等,理解全等三角形的概念,经历探索三角形全等的过程,掌握两个三 角形全等的条件,能应用三角形的全等解决一些实际问题。
4.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。 5.尝试用多种方式表达自己的想法,表述问题解决的理由,发展初步的演绎推理能力和 有条理表达的能力。 6.感受数学与现实世界的密切联系。
第五章:生活中的轴对称
• (1)通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两 个图形中,对应点的连线被对称轴垂直平分。
• (2)能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴 的对称图形。
• (3)了解轴对称图形的概念;探索等腰三角形、矩形、菱形、正多边形、 圆的轴对称性质。
三
三角形的高、中线、角平分线
角
形 丰
三角形全等的表示及特征
富
三角形的全等 探索三角形全等的条件
的 情
三角形全等的应用
尺规作三角形 解决实际问题
景
图
形 图形全等的概念
的 图形全等特征
全 图形全等应用 图案设计 等
(三)本章主要教学目标
1.在探索图形性质的过程中,经历观察、操作(包括折、拼、画)、想象、推理、交流 等活动,积累数学活动经验,进一步发展空间观念和推理能力(合情推理能力和演绎推理能 力)。
2. 通过丰富的生活实例认识轴对称,探索它的性质,理解对应点所连的线段 被对称轴垂直平分的性质。
3. 探索并了解基本图形(线段、角、等腰三角形)的轴对称性及相关行性质。 4. 能够按要求作出简单平面图形经过轴对称的图形,探索简单图形之间的轴 对称关系,并能指出对称轴。 5. 欣赏轴对称图形,在探索轴对称和利用轴对称进行设计的过程,进一步体 会轴对称在现实生活中的广泛应用和丰富的文化价值,增强数学学习的兴趣。
北师大版数学七年级下册第1课时幂的乘方课件(共14张)

解:(1)原式 = 103×3 = 109.
(2)原式 = x12·x2 = x14.
(3)原式 = –x6.
(4)原式 = x5 – x5 = 0.
3.已知 am = 2,an = 3.求: (1) a2m,a3n 的值; (2) am+n 的值; (3) a2m+3n 的值.
解:(1) a2m = (am)2 = 22 = 4, a3n = (an)3 = 33 = 27.
当堂小结 法则
幂的乘方 注意
(am)n = amn (m,n 都是正整数)
幂的乘方,底数不变,指数相乘
幂的乘方与同底数幂的乘法的 区分:(am)n = amn,am﹒an = am+n
幂的乘方法则的逆用: amn = (am)n = (an)m
课堂练习
1. 判断下面计算是否正确,正确的说出理由,不正确 的请改正.
(2) am+n = am . an = 2×3 = 6. (3) a2m+3n = a2m. a3n = (am)2 . (an)3 = 4×27 = 108.
拓展提升 4. 已知 a = 355,b = 444,c = 533,试比较 a,b,c 的大小. 解:a = 355 = (35)11 = 24311,
探究新知
1 幂的乘方
合பைடு நூலகம்探究
1. 计算下列各式,并说明理由.
(1) ( 62 )4; (2) ( a2 )3;
(3) ( am )2; (4) ( am )n.
合作探究 (1) ( 62 )4=62×62×62×62=62+2+2+2=68=62×4; (2) ( a2 )3=a2 ·a2 ·a2=a2+2+2=a6=a2×3; (3) ( am )2=am ·am=am+m=a2m;
北师大版七年级数学下册教材分析

北师大版七年级数学下册教材分析一、教材简介北师大版七年级数学下册教材是在学生已经掌握了一定的数学基础知识和技能的基础上,进一步深化和提高数学能力的关键教材。
本册教材以《义务教育数学课程标准(2011年版)》为依据,结合北师大版初中数学教材的特点和七年级学生的认知发展水平,通过多种形式的活动和练习,帮助学生加深对数学的理解和掌握,提高其解决实际问题的能力。
二、内容体系本册教材主要包括以下内容:相交线与平行线、平面直角坐标系、三角形、全等三角形、轴对称等。
各部分内容相互联系,形成一个完整的数学知识体系。
在内容安排上,本册教材遵循由浅入深、由易到难的原则,便于学生逐步加深对数学的理解和掌握。
三、编写特点1.注重知识探究:本册教材注重知识点的探究性,通过引导学生进行探索和思考,培养其自主学习和解决问题的能力。
2.联系实际应用:本册教材在编写过程中注重联系实际,通过生活中的实例和问题引入数学知识,培养学生的数学应用意识和实践能力。
3.图文并茂:本册教材采用图文并茂的方式呈现内容,使抽象的数学知识更加生动形象,易于学生理解和记忆。
4.习题丰富:本册教材配备了大量的习题,通过练习巩固所学知识,提高学生的数学解题能力。
四、结构框架本册教材的结构框架清晰明了,主要分为以下几个部分:1.引言:介绍本册教材的主要内容和教学目标,激发学生的学习兴趣和求知欲。
2.正文:详细介绍各章节的数学知识,包括定义、定理、公式等,以及相关例题的解析和练习题。
3.探究活动:引导学生进行探究性学习,培养其自主探究和解决问题的能力。
4.复习题:对本册教材中的重点和难点进行复习和巩固,帮助学生加深对数学的理解和掌握。
5.附录:提供一些重要的数学资料和数据,方便学生进行查阅和学习。
五、学科领域核心素质培养通过本册教材的学习,学生将能够培养以下学科领域核心素质:1.数学思维能力:通过知识点的探究和学习,培养学生的数学逻辑思维、推理能力和问题解决能力。
七年级数学下册教材分析

北师大版七年级数学教材分析一、课程目标和课程基本理念(一)、课程目标:1.掌握本册教科书各单元的知识,经历从生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,逐渐形成综合运用数学解决问题的能力。
2.体会解决问题策略的多样性及运用优化的数学思想方法解决问题的有效性,感受数学的魅力。
形成发现生活中数学的意识,初步形成观察、分析推理能力。
3.在学习和探究中体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
(二)、课程基本理念•应突出体现基础性、普及性和发展性。
•是人们生活、劳动和学习必不可少的工具。
•学习内容要有利于学生主动地进行(观察、实验、猜测、验证、推理与交流等)数学活动。
•教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,坚持“在体现新理念的同时注意具体措施的可行性”“处理好继承与发展的关系”两个基本原则,力求使实验教材具有创新、实用、开放的特点。
,。
•评价的主要目的是为了了解学生的学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。
•现代信息技术的发展对数学教育产生了重大的影响。
二、编者意图和教学内容(一)、编者意图1.提供丰富的培养学习数学兴趣爱好素材,使学生在学习数学的同时,受到情感、态度、价值观的熏陶。
2.采用阅读材料的形式,结合教学内容编排一些有关数学史料,丰富学生对数学发展的整体认识,培养学生探索数学、学习数学的兴趣与欲望。
3.通过动手操作、自主探究活动,让学生获得学习成功的体验,增进学好数学的信心。
(二)、教学内容本学期学习的章节:有《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、《生活中的轴对称》。
各章教学内容概述如下:《整式的运算》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。
北师大版七年级数学下册教学设计(含解析):第六章概率初步1感受可能性

北师大版七年级数学下册教学设计(含解析):第六章概率初步1感受可能性一. 教材分析本节课为人教版七年级数学下册第六章概率初步的第一节,主要内容是让学生感受可能性。
通过本节课的学习,学生能够理解随机事件的概念,并能用概率来描述事件的可能性。
教材通过丰富的实例,引导学生感受概率在生活中的应用,培养学生的数学应用意识。
二. 学情分析学生在之前的学习中已经掌握了集合的概念,对一些基本的数学运算也有所了解。
但是,对于概率这一概念,学生可能比较陌生,难以理解。
因此,在教学过程中,教师需要通过生动的实例和生活中的现象,帮助学生理解和掌握概率的概念。
三. 教学目标1.知识与技能:让学生理解随机事件的概念,学会用概率来描述事件的可能性。
2.过程与方法:通过实例分析,让学生感受概率在生活中的应用,培养学生的数学应用意识。
3.情感态度与价值观:激发学生对概率学习的兴趣,培养学生的数学思维能力。
四. 教学重难点1.重点:让学生理解随机事件的概念,会用概率来描述事件的可能性。
2.难点:让学生理解概率的计算方法,并能运用到实际问题中。
五. 教学方法1.情境教学法:通过生活中的实例,让学生感受概率的存在,激发学生的学习兴趣。
2.问题驱动法:引导学生提出问题,并通过分析问题来理解概率的概念。
3.合作学习法:让学生在小组合作中,共同探讨问题的解决方案,培养学生的团队协作能力。
六. 教学准备1.教学素材:准备一些与生活相关的实例,如抛硬币、抽奖等,用于引导学生感受概率的存在。
2.教学工具:多媒体课件、黑板、粉笔等。
七. 教学过程1.导入(5分钟)教师通过抛硬币的实例,引导学生感受概率的存在。
例如,抛一枚硬币,正面朝上的概率是多少?让学生思考并回答。
2.呈现(10分钟)教师通过多媒体课件,呈现一些与概率相关的实例,如抽奖、骰子等,让学生观察并思考其中的概率问题。
3.操练(10分钟)教师提出一些关于概率的问题,让学生进行计算。
例如,抛两枚硬币,同时正面朝上的概率是多少?让学生独立思考并回答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版七年级数学下册教材分析
本学期学习的章节:有《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、《生活中的轴对称》。
各章教学内容概述如下:《整式的运算》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础。
重点是探索整式运算的运算法则,理解整式运算的算理,推导乘法公式。
难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式。
《平行线与相交线》两条直线被第三条直线所截,即所谓的“三线八角”问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值。
让学生通过探索和简单的推理熟悉相关的性质与判定等几何事实,并确信它们成立,成为这册教材“公理化”的经验背景。
在这章的最后设置了“用尺规作线段和角”一节,是理解和运用相关几何知识的极好机会,只要求按步骤作图并保留作图的痕迹,暂时只要求用自己的语言表述出作法。
平行线的条件和平行线的特征是本章的重点,也是难点。
《生活中的数据》包括“数”和“数据的表示”两部分内容。
在数的讨论中,使学生认识“很小”的单位分数(百万分之一)和有效数字的概念,体会其意义和作用。
“数据的表示”则提供了“世界新生儿”图,它是一种有别于条形、折线、扇形图的数据统计图,同样提供了丰富的信息,同时暗示了统计图的多样性。
重点是会用科学记数法表示较小的数据,能按要求取近似数,能读懂统计图并能从中获取信息。
难点是用生活中的事例感受和表述百
万分之一的大小,培养数感和建立统计观念,正确掌握近似数、有效数字的特点及数位的关系;对数据信息的处理、加工的能力。
《概率》一章,在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,当然概率模型仅仅定位于简单的“古典概型”和可化为“古典概型”的“几何概型”(“停留在黑砖上的概率”)。
重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型。
难点是理解概率的意义,并会计算一些事件发生的概率,理解现实世界中不确定现象的特点,树立一定的随机观念。
《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题,给学生提供积累数学经验的可能,建立推理意识,用自己的方式来表达推理过程。
重点是三角形的性质与三角形全等的判定、三角形的分类。
难点是能进行简单的说理。
《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫,因为函数是一种特殊的变量之间的“关系”。
重点是在具体情景中从表格关系式、图像中获取信息找出自变量、因变量及其相互之间的关系。
难点是通过观察和思考能用自己的语言表达,变量之间的关系以及正确把对变量之间关系进行分析和对变化趋势进行预测。
《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质。
轴对称可以看成反射变换,也是一种几何变换。
事实上,平移和旋转可以经过两次反射变换得到,因此它更基本。
重点是研究轴对称及轴对称的基本性质。
难点是从具体的现实情境中抽象出轴对称的过程。