数学同底数幂的除法教案

合集下载

北师大版数学七年级下册教学设计:1.3《同底数幂的除法》

北师大版数学七年级下册教学设计:1.3《同底数幂的除法》
5.强化练习,巩固所学知识。
设想:布置分层作业,针对不同水平的学生设计不同难度的练习题,使学生在练习中巩固同底数幂的除法知识,提高运算速度和准确度。
6.注重课堂小结,提高学生的总结能力。
设想:在课堂尾声,引导学生自主总结同底数幂的除法法则及其应用,教师进行点评和补充,帮助学生形成完整的知识体系。
7.课后反思,提升教学质量。
设想:通过幻灯片、实物演示等教学手段,形象地展示同底数幂除法中指数相减的含义,帮助学生理解底数不变的概念。同时,结合实际例题,让学生在实际操作中感受指数相减的意义。
4.创设情境,培养学生的知识运用能力。
设想:设计实际问题,如计算物体的速度、密度等,让学生运用同底数幂的除法知识解决问题,提高学生的实践能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情,增强学生学习数学的自信心。
2.培养学生勇于探索、善于发现的精神,使学生在解决问题中体验到成功的喜悦。
3.培养学生合作交流的意识,让学生在合作中学会倾听、尊重他人意见,提高沟通能力。
4.通过解决实际问题,培养学生将所学知识应用于实际生活的意识,提高学生的实践能力。
2.教学内容:让学生尝试用已学的幂的乘法法则解决导入问题,为新课的学习打下基础。
过程:学生尝试用幂的乘法法则解决问题,教师给予适当的指导。在此基础上,引出同底数幂的除法法则,激发学生的求知欲望。
(二)讲授新知
1.教学内容:讲解同底数幂的除法法则,让学生理解并掌握其运算规律。
过程:以具体的例题为例,讲解同底数幂的除法法则,即当底数相同时,幂相除等于指数相减。通过详细的讲解和示范,让学生理解并掌握该法则。
北师大版数学七年级下册教学设计:1.3《同底数幂的除法》

北师大版七下数学1.3同底数幂的除法教案

北师大版七下数学1.3同底数幂的除法教案

北师大版七下数学1.3同底数幂的除法教案一. 教材分析《北师大版七下数学》1.3节主要介绍同底数幂的除法运算。

本节内容是在学习了同底数幂的乘法运算的基础上进行的,是指数运算的一个重要组成部分。

同底数幂的除法运算规则是:同底数幂相除,底数不变,指数相减。

本节内容通过实例讲解和练习,使学生掌握同底数幂的除法运算方法,并能灵活运用。

二. 学情分析学生在学习本节内容之前,已经学习了同底数幂的乘法运算,对指数运算有一定的了解。

但学生在运用规则时,容易出错,特别是对底数和指数的理解不够深入,容易混淆。

因此,在教学过程中,需要加强对学生的引导,让学生深刻理解同底数幂的除法运算规则,并通过大量练习,提高学生的运算能力。

三. 教学目标1.理解同底数幂的除法运算规则,能正确进行同底数幂的除法运算。

2.培养学生逻辑思维能力和运算能力。

3.培养学生独立思考和合作交流的能力。

四. 教学重难点1.同底数幂的除法运算规则的理解和运用。

2.指数的减法运算的准确性。

五. 教学方法1.采用实例讲解,让学生通过观察和分析,发现同底数幂的除法运算规则。

2.采用小组合作交流的方式,让学生在讨论中加深对运算规则的理解。

3.通过大量练习,提高学生的运算能力。

六. 教学准备1.准备相关的实例,用于讲解和引导学生发现运算规则。

2.准备练习题,用于巩固所学内容。

3.准备多媒体教学设备,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过一个实例,让学生计算两个同底数幂的除法运算,引导学生发现运算规则。

2.呈现(10分钟)讲解同底数幂的除法运算规则,并用多媒体展示,让学生深刻理解。

3.操练(15分钟)让学生进行同底数幂的除法运算练习,教师巡回指导,纠正错误。

4.巩固(10分钟)让学生进行小组合作交流,共同完成一些综合性的练习题,加深对运算规则的理解。

5.拓展(5分钟)引导学生思考同底数幂的除法运算在实际生活中的应用,让学生体会数学的实用性。

6.小结(5分钟)总结本节课所学内容,强调同底数幂的除法运算规则,提醒学生注意事项。

七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版

七年级数学下册《1.3.2 同底数幂的除法》教案 (新版)北师大版
C.4×10-6D.4×10-7
4.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000007平方毫米,那么这个数用科学记数法表示为__________平方毫米.
5.1本100张纸的书大约厚0.9 cm,则一张纸约厚______m.
6.一种塑料颗粒是边长为1毫米的小正方体,它的体积是多少立方米(用科学记数法表示)?若用这种塑料颗粒制成一个边长为1米的正方体塑料块,要用多少个颗粒?
同底数幂的除法公式为am÷an=am-n,有一个附加条件:m>n,即被除数的指数大于除数的指数.当被除数的指数不大于除数的指数,即m=n或m<n时,情况怎样呢?
从学生已有的知识入手,引入课题
新知探索
例题
精讲
合作探究
探究点:用科学记数法表示较小的数
【类型一】用科学记数法表示绝对值小于1的数
2014年6月18日中商网报道,一种重量为0.000106千克,机身由碳纤维制成,且只有昆虫大小的机器人是全球最小的机器人,0.000106用科学记数法可表示为()
A.3.5×104米B.3.5×10-5米
C.3.5×10-4米D.3.5×10-9米
2.一块10000 m2的足球场,它的百万分之一大约有 【】
A.一个大拇指头大B.一只手掌大
C.一张桌子大D.一张床大
3.1 ml的水大约可以滴10滴,1杯水约250 ml,则一滴水占一杯水的【】
A.4×10-4B.4×10-5
1.3.2同底数幂的除法
教学目标
1.理解并掌握科学记数法表示小于1的数的方法;
2.能将用科学记数法表示的数还原为原数.
教学重、难点
重点:理解并掌握科学记数法表示小于1的数的方法;

同底数幂的除法教案及反思

同底数幂的除法教案及反思

同底数幂的除法教案:教学建议1.知识结构:2.教材分析(1)重点和难点重点:准确、熟练地运用法则进行计算.同底数幂的除法性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础.难点:根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.所以乘、除互逆的运算关系得出法则是本节的难点.(2)教法建议:1.教科书中根据除法是乘法的逆运算,从计算和这两个具体的同底数的幂的除法,到计算底数具有一般性的,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则. 2.性质归纳出后,不要急于讲例题,要对法则做几点说明、强调,以引起学生的注意.(1)要强调底数是不等于零的,这是因为,若为零,则除数为零,除法就没有意义了.(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数都是正整数,并且,要让学生运用时予以注意.重点、难点分析1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(,、都是正整数,且). 2.指数相等的同底数的幂相除,商等于1,即,其中. 3.同底数幂相除,如果被除式的指数小于除式的指数,则出现负指数幂,规定(其中,为正整数). 4.底数可表示非零数,或字母或单项式、多项式(均不能为零). 5.科学记数法:任何一个数(其中1,为整数).同底数幂的除法(第一课时)一、教学目标1.掌握同底数幂的除法运算性质.2.运用同底数幂的除法运算法则,熟练、准确地进行计算.3.通过总结除法的运算法则,培养学生的抽象概括能力.4.通过例题和习题,训练学生的综合解题能力和计算能力.5.渗透数学公式的简洁美、和谐美.二、重点难点1.重点准确、熟练地运用法则进行计算.2.难点根据乘、除互逆的运算关系得出法则.三、教学过程1.创设情境,复习导入前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.(1)叙述同底数幂的乘法性质.(2)计算:①②③学生活动:学生回答上述问题..(m,n都是正整数)【教法说明】通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.2.提出问题,引出新知思考问题:().(学生回答结果) 这个问题就是让我们去求一个式子,使它与相乘,积为,这个过程能列出一个算式吗?由一个学生回答,教师板书.这就是我们这节课要学习的同底数幂的除法运算.3.导向深入,揭示规律我们通过同底数幂相乘的运算法则可知,那么,根据除法是乘法的逆运算可得也就是同样,,∴. 那么,当m,n都是正整数时,如何计算呢? (板书)学生活动:同桌研究讨论,并试着推导得出结论.师生共同总结:教师把结论写在黑板上.请同学们试着用文字概括这个性质:【公式分析与说明】提出问题:在运算过程当中,除数能否为0?学生回答:不能.(并说明理由)由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:一般地,这就是说,同底数幂相除,底数不变,指数相减.4.尝试反馈,理解新知例1 计算:(1)(2)例2 计算:(1)(2)学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.教师活动:统计做题正确的人数,同时给予肯定或鼓励.注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.5.反馈练习,巩固知识练习一(1)填空:①②③④(2)计算:①②③④学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.练习二下面的计算对不对?如果不对,应怎样改正?(1)(2)(3)(4)学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.四总结、扩展我们共同总结这节课的学习内容.学生活动:①同底数幂相除,底数__________,指数________。

北师大版七年级册下数学1.3.1同底数幂的除法(教案)

北师大版七年级册下数学1.3.1同底数幂的除法(教案)
首先,我们要了解同底数幂除法的基本概念。同底数幂的除法是指当两个幂的底数相同时,我们可以直接将它们的指数相减。这个法则非常重要,因为它可以简化我们的计算过程。
2.案例分析:接下来,我们来看一个具体的案例。假设我们有2^5 / 2^2,通过同底数幂除法,我们可以直接得到2^3。这个案例展示了同底数幂除法在实际中的应用,以及它如何帮助我们解决问题。
-同底数幂除法的应用:通过典型例题,重点训练学生将同底数幂除法应用于实际问题的能力,如科学计数法、比例计算等。
举例:讲解同底数幂除法概念时,可举例2^5 / 2^2 = 2^(5-2) = 2^3,强调指数相减的重要性。
2.教学难点
-理解同底数幂除法法则:学生可能难以理解为什么底数相同、指数相减的幂可以相除,需要通过具体实例和图形直观展示。
本节课的核心素养目标旨在培养学生具备扎实的数学基础和良好的数学思维能力,为学生的终身发展奠定基础。
三、教学难点与重点
1.教学重点
-同底数幂除法的概念:重点讲解同底数幂除法的定义,即a^m / a^n = a^(m-n),强调底数相同且指数相减的规律。
-同底数幂除法的运算性质:详细阐述同底数幂除法的运算性质,如负指数、零指数幂的特殊情况,以及如何与其他幂运算结合。
-难点2:讲解负指数和零指数幂时,可用2^0 = 1(任何数的零次幂都是1)和2^(-3) = 1 / 2^3(负指数表示倒数)来具体说明。
-难点3:针对高级运算,如(2^5 / 2^2) * (3^2 / 3^4),需要引导学生先进行同底数幂的除法运算,再进行乘法运算,即2^3 * 3^(-2) = 2^3 / 3^2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案

北师大版数学七年级下册《同底数幂的除法》教案一. 教材分析《同底数幂的除法》是北师大版数学七年级下册第9章幂的运算中的一节内容。

本节课主要让学生掌握同底数幂的除法法则,并能灵活运用该法则进行计算。

教材通过引入实际问题,引导学生探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在七年级上册已经学习了幂的定义、幂的运算性质等基础知识,对幂的概念有一定的了解。

但是,对于同底数幂的除法运算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际问题进行讲解,帮助学生理解和掌握同底数幂的除法运算。

三. 教学目标1.知识与技能目标:让学生掌握同底数幂的除法法则,能够正确进行同底数幂的除法运算。

2.过程与方法目标:通过探讨同底数幂的除法运算,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的学习兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:同底数幂的除法法则。

2.难点:同底数幂的除法运算的灵活运用。

五. 教学方法采用问题驱动法、案例教学法、分组讨论法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学素养。

六. 教学准备1.教师准备:熟练掌握同底数幂的除法运算,了解学生的学习情况,准备相关案例和问题。

2.学生准备:回顾幂的定义和运算性质,准备好笔记本和笔。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾幂的定义和运算性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示同底数幂的除法运算的案例,引导学生观察和分析,提出问题:“如何进行同底数幂的除法运算?”3.操练(10分钟)教师引导学生分组讨论,共同探讨同底数幂的除法法则。

学生在小组内进行练习,教师巡回指导。

4.巩固(10分钟)教师挑选几组学生代表的答案,进行讲解和分析,巩固学生对同底数幂的除法法则的理解。

5.拓展(10分钟)教师提出一些有关同底数幂的除法运算的实际问题,引导学生运用所学知识进行解决,提高学生的解决问题的能力。

人教版八年级数学上册4.1.4同底数幂的除法教学设计

人教版八年级数学上册4.1.4同底数幂的除法教学设计
3.教和必要性,鼓励学生在课后继续巩固练习。
五、作业布置
为了巩固本节课所学的同底数幂的除法知识,培养学生的自主学习和问题解决能力,特布置以下作业:
1.基础题:完成课本第XX页的练习题1-5,让学生通过实际操作,加深对同底数幂除法法则的理解和掌握。
4.教师关注学生的作业反馈,根据实际情况调整教学策略,提高教学效果。
4.通过适量的练习,巩固所学知识,提高学生的运算技能和逻辑思维能力。
(三)情感态度与价值观
1.增强对数学学科的兴趣和好奇心,提高学习数学的积极性。
2.树立正确的数学观念,认识到数学知识在实际生活中的重要作用。
3.培养良好的学习习惯,如认真审题、细心计算、及时总结等。
4.培养学生的团队意识,学会尊重他人、倾听他人意见,形成团结协作的氛围。
三、教学重难点和教学设想
(一)教学重点
1.同底数幂的除法法则的理解与应用。
2.能够运用同底数幂的除法进行数学表达式的简化。
3.掌握同底数幂除法在解决实际问题中的应用。
(二)教学难点
1.同底数幂除法法则的推导和理解。
2.在复杂问题中,运用同底数幂的除法进行简化和求解。
3.对学生在运用同底数幂除法过程中出现的错误进行诊断和纠正。
a.同底数幂相除,底数不变,指数相减。
b.教师通过具体例题,演示同底数幂的除法运算过程。
2.教师讲解同底数幂的除法在实际问题中的应用,如打折、分数、百分比等。
3.教师强调同底数幂的除法运算中的注意事项,如指数相减、底数不变等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组4-6人,针对以下问题进行讨论:
人教版八年级数学上册4.1.4同底数幂的除法教学设计
一、教学目标

《同底数幂的除法》教学设计

《同底数幂的除法》教学设计

《同底数幂的除法》教学设计师总结:a0=1(a≠0)即:任何不等于0的数的0次幂都等于1.3、最终结论:同底数幂相除:a m÷a n=a m-n(a≠0,m、n都是正整数,且m≥n).出正是基于这个考虑。

培养学生发现、归纳、概括的能力。

发展符号感16、师:下面请同学们完成一组闯关训练,看哪一组完成得最出色.随堂练习课本P187练习1、由学生练习,并由三名学生板演。

让学生独立运算,然后交流计算心得,从而达到熟悉运算法则的目的.(五)、学习小结与反思:17、师:通过这节课的学习:(1)你们学会了什么?(2)你们还发现了什么?(3)你们还想知道什么?学生在师的引导下,回顾这节课所学的知识,谈学习心得体会,互相学习。

总结同底数幂的除法与同底数幂的乘法间的互逆关系,对比联系法是一种学习新知识的好方法,总结中注意让学生加深体验。

培养学生善于总结和反思的学习方法与习惯。

(六)教师简评与课后学习指导:1、教师对本节课的学习活动进行简要的评价。

2、课后作业的布置。

3、指导学生预习。

1、学生认真听讲,进行自我反思,发扬优点,改正不足。

2、知道课后作业。

3、了解预习内容和方法。

1、对学生好的学习习惯和行为进行表扬和鼓励。

2、对不良的学习习惯和行为提出希望和要求。

板书设计教学反思____________________________________________________________________________ _____________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学同底数幂的除法教案
1、掌握同底数幂的除法法则
2、掌握应用运算法则进行计算.
重点:同底数幂的法则的推导过程和法则本身的理解.
难点:灵活应用同底数幂相除法则来解决问题.
认真阅读教材p123~124页,弄清楚以下知识:
1、同底数幂相除的法则:(注意指数的取值范围)
2、同底数幂相除的一般步骤:
1、完成课内练习部分(写在预习本上)
2. 计算
(1)a9a3
(2) 21227
(3)(-x)4(-x)
(4)(-3)11(-3)8
(5)10m10n (mn)
(6)(-3)m(-3)n (mn)
你还有哪些地方不是很懂?请写出来。

___________________________________________________________ ___________________________________________________________ ___________________________________________________________ _____________________
预习检测:
1. 一种液体每升含有1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1 滴杀菌剂可以杀死109 个此
种细菌。

要将1升液体中的有害细菌全部杀死需要这种杀菌剂多少滴?
2.计算下列各式:
(1)108 105 (2)10m10
(3)(3)m(3)n (4)(-ab)7(ab)4
计算:
(1) a7
(2) (-x)6(-x)3;
(3) (xy)4(-xy) ;
(4) b2m+2b2 .
注意
①幂的指数、底数都应是最简的;
②底数中系数不能为负;
③幂的底数是积的形式时,要再用一次(ab)n=an an.
2 、练一练:
(1)下列计算对吗?为什么?错的请改正.
①a6a2=a3 ②S2S=S3
③(-C)4(-C)2=-C2
④(-x)9(-x)9=-1
(1) x4n+1x 2n-1x2n+1= ?
(2)已知ax=2 ay=3 则ax-y= ?
(3)已知ax=2 ay=3 则 a2x-y= ?
(4)已知am=4 an=5 求a3m-2n的值。

(5)已知2x-5y-4=0,求4x32y的值。

1.判断题(对的打,错的打)
(1)a9a3=a3; ( )
(2)(-b)4(-b)2=-b2;( )
(3)s11s11=0;( )
(4)(-m)6(-m)3=-m3;( )
(5)x8x4x2=x2;( )
(6)n8(n4n2)=n2.( )
2.填空:
(1)1010______=109;
(2)a8a4=_____;
(3)(-b)9(-b)7=________;
(4)x7_______=1;
(5)(y5)4y10=_______;
(6)(-xy)10(-xy)5=_________.
3.计算:(s-t)7(s-t)6(s-t).
4.若a2m=25,则a-m等于( )[
A. B.-5 C. 或- D.
5.现定义运算a*b=2ab-a-b,试计算6*(3*2)的值.
同底数幂的除法法则其实与我们之前学习的同底数幂的乘法法则类似,所以本节课采用对比的方法来学习,让学生更好的理解同底数幂的除法法则。

内容仅供参考。

相关文档
最新文档