用比例解决问题

合集下载

用比例解决问题

用比例解决问题

用比例解决问题比例的应用1、一条公路长25km,在一幅地图上长5cm,求这幅地图的比例尺。

2、一个手表的精密零件长5mm,画在设计图纸上是12cm,求这幅的纸的比例尺。

3、在一幅比例尺是1:30000000的地图上,量得北京到上海的距离是3.5km,北京到上海的实际距离是多少千米?4、学校有一个长方形的操场,长是80米,宽是50米,把它画在一幅平面图上,长画了16cm,宽应当画多少厘米?5、某实验小学的平面图的比例尺是1:30000,量得长是9cm,宽是5cm,学校的时间占地面积是多少公顷?6、埃及金字塔是著名的景观,某科学家用测量影长的方法计算金字塔的高度。

测量结果如下:竹竿长5m,它的影长是3m,这一时间段金字塔的影长是87.9m,这座金字塔的实际高度是多少米?7、一颗人造卫星绕地球5周需要13小时,用同样的速度绕地球12周需要多少小时?8、50千克花生仁可以榨油19千克,要榨200千克花生油需要多少千克花生仁?9、修一条路,如果每天修180米,8天可以修完,如果每天修160米,几天可以修完?10、一间大厅,用边长6分米的方砖铺地,需要324块,若改用边长4分米的方砖,需要这样的方砖多少块?11、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需要多少天?12、在一幅比例尺是1:6000000的地图上量得甲地到乙地的长是2cm,一辆汽车以每小时70km的速度匀速行驶,如果这辆小汽车上午8:30出发,10:00能到达吗?13、一个车间装配一批电视,如果每天装50台,60天完成任务,如果要少用20天完成任务,每天应装多少台?14、在一幅比例尺是1:3500000的地图上,量得甲乙两地之间的距离是2.4cm,在另一幅地图上,量得这两地间的距离是2.8cm,求另一幅地图的比例尺?15、新兴小学的学生去旅游,用4辆同样的客车每次可以运送224名学生,如果用13辆这样的客车,每次可以运送多少名学生?16、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?17、小明家用收割机收割小麦。

用比例解决问题教案(优秀21篇)

用比例解决问题教案(优秀21篇)

用比例解决问题教案(优秀21篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!用比例解决问题教案(优秀21篇)教学工作计划包括教学目标的设定、教学内容的选择和组织、教学方法的运用以及教学评价的实施等方面。

用比例解决问题

用比例解决问题

一堆煤,原计划每天烧3吨,可以 烧96天,由于改进炉灶,每天烧2.4 吨,这堆煤实际可以烧多少天?
500千克的海水中含盐25千克,120吨 的海水含盐几吨?
每吨水多少元?
12.8÷8=1.6(元)Leabharlann 19.2元可以用多少吨水?
19.2÷1.6=12(吨)
解:设王大爷家上个月用水X吨.
12.8 19.2 = X 8
12.8X = 19.2×8
19.2×8 X= 12.8
X = 12 答:王大爷家上个月用水12吨.
这批书如果每包20 本,要捆18包.
如果每包30本, 要捆多少包?
2、圆的周长公式中当C一定时,π与d成反比例.(× )
× 3、速度与路程成正比例。( )
4、y︰8=x(x不是0),y和x成正比例。( ) √
数学诊所
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
用同样的砖铺地,铺18平方米要用618块。 如果铺24平方米,要用多少块砖?
张大妈
李奶奶
李奶奶家上个月的水费是多少元?
先算出每吨水的价 钱,再算出10吨水 的钱.
每吨水多少元?
12.8÷8=1.6(元)
10吨水多少元?
1.6×10=16(元)
因为每吨水的价钱一定,所以水费和用 水的吨数成正比例.也就是说,两家的 水费和用水吨数的的比值相等. 也可以用比例 的方法解决.
解:设李奶奶家上个月的水费是X元.
20×18 15
X = 24 答:每包24本.
用比例解这类问题的过程可以归 纳为以下几个步骤: (1)设要求的问题为x; (2)用正比例或反比例的意 义判断题中的两种量成正比例 还是成反比例关系; (3)列比例式; (4)解比例,验算,作答。

六年级数学下册用比例解决问题

六年级数学下册用比例解决问题

用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。

到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。

请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。

用比例解决问题

用比例解决问题

用比例解决问题在我们日常生活中,我们经常会遇到各种各样的问题和挑战。

有些问题可能看起来很复杂,难以解决。

然而,用比例解决问题可以为我们提供一种简单而有效的方法。

本文将探讨如何运用比例解决问题,并通过具体实例来说明其应用的实际意义。

一、什么是比例?比例是指两个不同量之间的关系。

在数学中,比例可以表示为分数、百分数或者比的形式。

一个典型的比例问题包括已知其中一个量,求解另一个量。

比例可以帮助我们理解和解决各种实际问题,例如比较物体的大小、计算价格折扣、解决图形相似性等。

二、比例解决问题的步骤1. 理解问题:首先要仔细阅读问题,确保理解问题的背景和要求。

明确已知量和未知量,并明确要求求解的量。

2. 建立比例关系:根据已知条件,建立一个由两个不同量组成的比例关系。

确保比例关系的正确性和合理性。

3. 求解未知量:根据已知量和比例关系,使用代数方法求解未知量。

通常可以通过交叉乘积或者比例的乘除性质来求解未知量。

4. 检验和解释结果:求解出未知量后,需要核对结果是否合理,并解释结果的意义。

如果结果符合实际情况,说明使用比例的方法得到了正确答案。

三、比例解决问题的实际应用1. 商品折扣:假设一家商店打折,已知原价为100元,折扣为20%,我们可以使用比例来计算打折后的价格。

设打折后价格为P元,则可建立比例关系:20/100 = P/100,通过求解P,得到打折后的价格。

2. 长度比较:比例可以用来比较两个物体的大小。

例如,已知一条边长为4厘米的正方形与一条边长为6厘米的矩形相似,求解矩形的另一条边长。

建立比例关系:4/6 = x/6,通过求解x得到矩形的另一条边长。

3. 地图缩放:在使用地图导航时,我们经常会遇到需要调整地图比例的情况。

通过调整地图比例,我们可以放大或缩小地图的范围,以适应不同的需求和尺寸。

使用比例可以帮助我们计算出适当的地图比例。

四、比例解决问题的优势1. 简单易懂:比例是一种直观而简单的数学概念,适用于各种年龄和数学能力的人群。

用比例解决问题

用比例解决问题

用比例解决问题简介在解决问题的过程中,比例是一个常用且强大的工具。

比例在各个领域都有应用,在数学、物理、经济等学科中都起着重要的作用。

本文将介绍比例的基本概念和用途,并探讨如何使用比例解决问题。

比例的定义比例是指两个或多个量之间的量的比较。

比例通常用两个冒号(::)或一个分数符号(:)表示。

比例可以表示两个相似图形的线段之间的关系,也可以表示两个不同事物之间的数量关系。

比例的一般形式为a:b,其中a和b分别代表两个相关量的值。

特别地,当比例的一项为1时,可以省略该项,比如1:2可以简写为1:。

比例的用途比例在日常生活和学术领域中有着广泛的应用。

以下是一些常见的比例应用的例子:建筑和地图在建筑和地图制作过程中,比例非常重要。

比例可以帮助我们将现实世界中较大的物体缩小成适合大小的模型或图纸。

比如,在制作城市地图时,可以利用比例将实际距离缩小到纸上。

经济比例在经济学中,比例也被广泛应用。

比如,通货膨胀率是一个常用的经济指标,它表示物价水平的变化程度。

通货膨胀率可以用物价指数的比例来表示,比如上一个月的物价指数与当前月的物价指数的比例。

科学研究在科学研究中,比例常常用来表示两个相关变量之间的关系。

比例可以帮助科学家们分析实验数据,找出规律和趋势。

比如,在物理学中,压力与体积的关系可以用比例来表示。

商业运营在商业运营中,比例也是一项重要工具。

比例可以帮助企业评估市场需求、利润和成本等方面的关系。

比如,企业可以通过比例分析销售额与广告投入之间的关系,从而优化广告投入。

使用比例解决问题的步骤使用比例解决问题可以帮助我们理清思路,寻找解决方案。

以下是使用比例解决问题的一般步骤:1.确定问题:首先要明确问题的要求和背景。

了解问题的背景和条件是解决问题的关键。

2.寻找已知量和未知量:确定问题中已知的量和需要求解的未知量。

这有助于我们建立比例关系。

3.建立比例关系:根据已知量和未知量建立比例关系。

比例关系可以帮助我们理解和分析问题。

用比例解决问题

用比例解决问题

1.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)2. 某打字员一份稿件,原计划每分钟打240个字,25分钟完成任务,由于某种原因须提前5分钟完成任务,实际每分钟打字多少个?(用比例解)3. 拖拉机厂今年前3个月生产大型拖拉机850台。

照这样计算,全年产量可以达到多少台?(用比例解答)4. 配制一种药水,药粉和水的比是1:18, 3千克的药粉可配制出多少千克的药水?(用比例解)5.甲、乙两个工程队原来人数相等,因工作需要,从甲队调10人到乙队,这时乙队与甲队的人数比为7∶6。

甲队现在有多少人?6、六年级图书角有图书200本,其中新书占80﹪,又运进一批新书后,新书的总本书与现有图书本数的比是5∶6。

求后来运来的新图书是多少本?7. 用同样的砖铺地,铺18平方米要用618块砖。

如果铺24平方米,要用多少块砖?(用比例解)8.一对互相咬合的齿轮,大齿轮有35个齿,每分钟转100转;小齿轮有20个齿,每分钟转多少转? (用比例解)9. 一堆煤,原计划每天烧12吨,可以烧45天;实际每天比计划节约25%,实际烧了多少天?(用比例解)10. 时钟6时敲6下5秒敲完12时敲12下几秒敲完? (用比例解)11. 一段木料锯成5段用了8分钟,那锯8段用了多少分钟?(用比例解)12.把一个圆柱切成两个半圆柱,切面是个正方形,已知每个半圆柱的体积是25.12立方厘米,求每个半圆柱的表面积是多少?13.有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,容器内放着一些石子,石子的体积为196/3∏立方厘米,在容器内倒满水后,再把石子全部拿出来,求此时容器内水面的高度。

14.一个底面半径为5厘米,高为28厘米的圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长56.52厘米。

现把圆柱形水桶的水往圆锥形水桶里倒,当圆锥形水桶装满水时,圆柱形水桶的水还剩13厘米高的水。

六年级数学下册用比例解决问题

六年级数学下册用比例解决问题

六年级数学下册用比例解决问题姓名:班级:1、学校食堂买来900千克大米,6天吃了180千克,照这样计算,剩下的还能吃几天?2、两根同样长的钢筋,其中一根锯成3段用了12分钟,另一根要锯成6段,需要多少分钟?3、电信公司要铺设一条通信光缆线,计划由20人工作12天完成。

因任务紧急,现在必须提前2天完成,如果工作效率不变,应增加多少人才能按时完成任务?4、某小区维修线路,需停电半小时,妈妈找来一根长20厘米的蜡烛,蜡烛燃烧8分钟后,还剩15厘米,请问:这根蜡烛能够燃烧到来电吗?5、一块圆柱形钢坯的底面半径是3cm,高是36cm。

如果把它熔铸成一个底面积是113.04平方厘米的圆锥,那么高是多少厘米?6、如果教室要用方砖铺地,用边长为3分米的方砖,需要96块,如果改用边长是4分米的方砖,需要多少块?7、如果教室要用方砖铺地,用面积为9平方分米的方砖,需要96块,如果改用面积是16平方分米的方砖,需要多少块?8、8、如果教室要用方砖铺地,用面积为9平方分米的方砖,需要96块,如果改用边长是4分米的方砖,需要多少块?9、聪聪在图书馆借到了《三体》第三册,计划每天看10页,需要51天刚好全部看完。

如果聪聪最后还书时共交了0.4元的延时服务费,那么他平均每天看了多少页?10、某工程队铺一段铁路,原计划每天铺3.6千米,实际每天比原计划多铺25%,实际铺完这段铁路用了8天。

原计划用多少天铺完?11、加工一批零件,若每天加工200个,则比原计划提前3天就能完成任务;若每天加工150个,则比原计划延迟5天才能完成任务。

原计划多少天完成任务?这批零件一共有多少个?12、甲乙两人骑自行车从A,B两地同时出发,相向而行。

甲行完全程要6小时,甲、乙相遇时所行的路程比是3:2,乙行完全程要多少小时?(甲、乙速度均保持不变)13、如图,平行四边形ABCD的周长为50厘米,以AD为底边时,高CE是8厘米;以AB 为底边时,高CF是12厘米,那么平行四边形ABCD的面积是多少平方厘米?14、甲、乙两车同时从A,B两城相对开出,经过8小时相遇,相遇后甲车继续开到B城还要4小时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设120吨的海水含盐x吨。
盐 盐 根据含盐率一定 海水 海水
25 x 500 120
给一个教室铺地砖,用边长4分米的方 砖要500块,如果改用边长8分米的方砖, 需要多少块?
解:设需要x块。
根据教室的面积一定 方转的面积X块数=方转的面积X块数
4X4=16平方分米
8X8=64平方分米
16X500=64x
30 x =20×18
小红用一块橡皮泥做圆柱,第一次捏成 了一个底面积是2平方厘米,高是3厘米的圆 柱;第二次捏成了一个底面积是4平方厘米 的圆柱,第二次捏成的圆柱的高是多少厘米?
解:设第二次捏的圆柱的高是x厘米。 根据圆柱的体积一定 底面积X高=底面积X高
2X3=4x
500千克的海水中含盐25千克, 120吨的海水含盐几吨?
生产了300个零件 用了几小时பைடு நூலகம்
一起思考:
把一根木料锯成3段需要6分钟,如果要锯 成6段,需要多少分钟?
想:因锯截成两段只要锯一次,锯成3段只需要锯2次,锯成6
段只需锯5次。
解:设需要x分钟。
锯的时间 锯的时间 根据锯1次的时间一定 锯的次数 锯的次数
6 x 2 5
银坑中心小学 肖斐


做一做
请按照刚才学习例题的方法去分析,只列式不计算。
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元? 解:设买8桶油要 x 元。
总价 总价 根据单价一定 数量 数量 780 = 8 3 2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
x
解:设可以站 x 人。 根据总人数一定 每行人数×行数=每行人数×行数


应交水费 每吨水的价格
用水总量
应交水费:用水总量=每吨水的价格(一定) 应交水费:每吨水的价格=用水总量(一定) 用水总量×每吨水的价格=应交水费(一定)

例5 据调查银坑镇每吨水的价格 是一定的,何李根家上个月用了 8.1吨水,水费是16.2元;陈林 家上个月用了10吨水,陈林家上 个月的水费是多少元?
做一做
先想想下面各题中存在什么比例关系?再填上条 件和问题,并用比例知识解答。
、王师傅要生产一批零件,每小时生产50个, 每小时生产40个 需要4小时完成;( ), ( 需要多少小时完成 )? 用了10小时完成这批零件
每小时要生产多少个
、王师傅4小时生产了200个零件,照这样 计算( 5小时 )(生产了多少个零件 )?
例5 据调查银坑镇每吨水的价格 是一定的,何李根家上个月用了 8.1吨水,水费是16.2元;陈林 家上个月用了10吨水,陈林家上 个月的水费是多少元?
张斌家上个月水费是19.4 元,张斌家上个月用了多少吨 水?
如果要捆15包,每包多少本?
小结
1、找出不变的量。

2、分析数量关系,判断两种量成什么比例关系。 3、根据正、反比例的意义列出等式并解答。 列 4、检验并答题。
相关文档
最新文档