定义和计算公式. 教学内容:第一型曲面积分的定义和计算公
第一型曲面积分

目录 上页 下页 返回 结束
一、有向曲面及曲面元素的投影
• 曲面分类 双侧曲面 单侧曲面
曲面分内侧和 外侧
莫比乌斯带
(单侧曲面的典型)
曲面分左侧和 右侧
曲面分上侧和 下侧
目录
上页
下页
返回
目录 上页 下页 返回 结束
思考: 思考 若 ∑ 是球面 出的上下两部分, 则 被平行平面 z =±h 截
z
0
)
dS ∫∫Σ z = (
Σ
h
y
dS a ∫∫Σ z = ( 4 π a ln h )
x
−h
Σ
目录
上页
下页
返回
结束
例2. 计算
其中∑ 是由平面
z
1
与
坐标面所围成的四面体的表面. 解: 设 Σ1, Σ2, Σ3, Σ4 分别表示∑ 在平面 上的部分, 则 原式 = ∫∫ +∫∫
i=1
∑[
+ Q(ξi ,ηi ,ζ i )(∆Si )zx
n
则称此极限为向量场 A 在有向曲面上对坐标的曲面积 分, 或第二类曲面积分. 记作
∫∫Σ Pdy d z + Qd z d x + Rdxdy
积分曲面. 积分曲面 P, Q, R 叫做被积函数 Σ 叫做积分曲面 被积函数; 被积函数
目录 上页 下页 返回 结束
λ→0i=1
n
+ R(ξi ,ηi ,ζi ) cosγ i ] ∆Si
= lim ∑
λ→0
i=1
目录
曲面积分

Ch 22曲面积分教学目的与要求(1)熟练掌握第一、二型曲面积分的计算方法。
(2)了解两种曲面积分关系。
(3)熟练运用高斯公式,斯托克斯公式计算。
(4)了解场论初步知识,并会求梯度,散度,旋度。
§ 1 第一型曲面积分一. 第一型曲面积分的概念:1。
几何体的质量: 已知密度函数 , 分析曲面块的质量定义及计算2.第一型曲面积分的定义:面积分òòSfdS .1. 第一型曲面积分的性质: (类似第一型曲线积分)二. 第一型曲面积分的计算:Th1 设有光滑曲面 D y x y x z z S Î=),( , ),( :.),,(z y x f 为S 上的连续函数, 则()òòòò++=SDy x dxdy z z y x z y x f dS z y x f 221),(,,),,(.例1 计算积分òòS zdS , 其中S 是球面 2222a z y x =++ 被平面 h z = )0(a h <<所截的顶部 . 课本P 281E1Ex P 362 1⑴⑶,2,3 .§ 4 第二型曲面积分Un Re gi st er ed一. 曲面的侧:1.单侧曲面与双侧曲面:2. 双侧曲面的定向: 曲面的上、下侧,左、右侧,前、后侧. 设法向量为 )cos , cos , (cos g b a ±=,则上侧法线方向对应第三个分量0>, 即选“+”号时,应有0cos >g ,亦即法线方向与Z 轴正向成锐角. 类似确定其余各侧的法线方向闭合曲面分内侧和外侧.二. 第二型曲面积分概念:1. 稳流场的流量: 以磁场为例.2. 第二型曲面积分的定义: 课本P 284—285. 闭合曲面上的积分及记法.3. 第二型曲面积分的性质: 线性 , 关于积分曲面块的可加性.三. 第二型曲面积分的计算:Th2 设),,(z y x R 是定义在光滑曲面Î=),( , ),( :y x y x z z S D xy上的连续函数, 以S 的上侧为正侧( 即0),cos(>z ), 则有()òòòò=S D xydxdy y x z y x R dxdy z y x R ),(,,),,(.证 课本P 286类似地, 对光滑曲面Î=),( , ),( :z y z y x x S D yz , 在其前侧上的积分()òòòò=SD yzdydz z y z y x P dydz z y x P , , ),(),,(.对光滑曲面Î=),( , ),( :x z x z y y S D zx , 在其右侧上的积分Un Re gi st er ed()òòòò=SD yzdzdx z x z y x Q dzdx z y x Q , ),( , ),,(.计算积分òò++SRdxdy Qdzdx Pdydz 时, 通常分开来计算三个积分òòSPdydz , òòSQdzdx , òòSRdxdy .为此, 分别把曲面S 投影到YZ 平面, ZX 平面和XY 平面上化为二重积分进行计算. 投影域的侧由曲面S 的定向决定.例1 计算积分òòSxyzdxdy ,其中S 是球面1222=++z y x 在0 , 0³³y x部分取外侧. 课本P 287 E1 例 2 计算积分òòS++-++dxdy x z dzdx z y dydz y x )3()()(,S 为球面2222R z y x =++取外侧.解 对积分òòS+dydz y x )(, 分别用前S和后S 记前半球面和后半球面的外侧, 则有前S : ,222z y R x --=222 :R z y D yz £+;后S : ,222z y R x ---= 222:R z y D yz £+. 因此, òò+dydz y x )(=òòS 前+òòS 后=()òò-+--=yzD dydz y z y R222()òò=+---yzD dydz y z y R 222=-===========--=òòòò£+==2222022sin ,cos 222 82R z y R r z r y rdr r R d dydz z y R p qq q()3023223432214R rR R r r p p =úûùêëé×--===. 对积分dx dz z y òò-)(, 分别用右S和左S 记右半球面和左半球面的外侧, 则有Un Re gi st er ed右S : ,222x z R y --=222 :R z x D zx £+;左S : ,222x z R y ---= 222:R z x D zx £+. 因此, =-òòS dydz z y )(òòS 右+òòS 左=()()òòòò--------=zxzxD D dzdx z x z R dzdx z x z R 222222òò£+=--=2223222342R z x R dzdx x z R p .对积分dxdy x z òòS+)3(, 分别用上S和下S 记上半球面和下半球面的外侧, 则有上S : ,222y x R z --=222 :R y x D xy £+;下S : ,222y x R x ---= 222:R y x D xy £+. 因此, dxdy x z òòS +)3(=òòS 上+òòS 下=()()òòòò=+----+--=xyxyD D dxdy x y x R dxdy x y x R33222222òò£+=--=2223222342R y x R dxdy y x R p .综上,òòS++-++dxdy x z dzdx z y dydz y x )3()()(=334343R R p p =´. 四. 两类曲面积分的关系:设n 为曲面S 的指定法向, 则 òò=++Sdxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,([]òò++SdS z n z y x R y n z y x Q x n z y x P ),cos(),,(),cos(),,(),cos(),,(Ex P 289—290 1⑴⑵⑷⑸,2.Un Re gi st er ed§ 3 Gauss 公式和Stokes 公式一. Gauss 公式:Th3 设空间区域V 由分片光滑的双侧封闭曲面S 围成 . 若函数R Q P , , 在V 上连续, 且有连续的一阶偏导数 , 则òòòòò++=÷÷øöççèæ¶¶+¶¶+¶¶V Rdxdy Qdzdx Pdydz dxdydz z R y Q x P ,其中S 取外侧.称上述公式为Gauss 公式。
第二章第二节第一型曲面积分doc

第18 章 曲面积分第二节 第一类型曲面积分1、 第一类型曲面积分的定义问题:设∑是3R 中一张有面积的曲面,∑上按面密度)(p ρρ=分布着某种物质,问如何求出分布在∑上物质的总质量?沿用以前用过的作法,将∑分成若干小块n S S S ,,,21 ,并在每一小块i S 上任意取定一点i p ,这时小块i S 上的质量)()(i i i S p m σρ≈,n i ,,2,1 =。
于是曲面片∑上的质量就近似地等于)()(1i ini S pσρ∑= 。
当我们把曲面片∑无限细分时,上面的和式的极限就可以定义为展布在曲面片∑上物质的质量M ,即)()(lim1i ini S pM σρ∑==。
以上的实例引导出下面的第一类型曲面积分的定义。
定义18.2 设∑是3R 中一张可求面积的曲面片,f 是定义在∑上的函数,分割T 把∑分成若干更小的曲面片n S S S ,,,21 。
定义分割T 的宽度为},,2,1,max{||||n i diamS T i ==,在每一小片i S 上任意取定一点i p ,如果和数)()(1i i ni S p f σ∑=当0||||→T 时有有限的极限,并且其极限值不依赖于分割及点ip 在iS上的选择,那么称这个极限值为函数f 沿曲面∑的第一型曲面积分,记作σd f ⎰∑,或dSf ⎰⎰∑。
2、 第一类型曲面积分的计算公式由曲面面积元素的表达式dudv r r d v u ||||⨯=σ,或从定义出发,求出右端的极限,便可得出第一型曲面积分的计算公式:(1) 设正则曲面∑有参数向量方程)),(),,(),,((),(v u z v u y v u x v u r r ==,∆∈),(v u ,f 是定义在∑上的连续函数,则σd f ⎰∑dudvr r v u z v u y v u x f v u ||||)),(),,(),,((⨯=⎰⎰∆dudvF EG v u z v u y v u x f ⎰⎰∆-=2)),(),,(),,((;(2) 当曲面∑是由显式D y x y x z ∈=),(),,(ϕ表达时,其中D 是有面积的平面区域,)(1D C ∈ϕ,f 是定义在∑上的连续函数,则有σd f ⎰∑dxdyzx y x y x f D⎰⎰∂∂+∂∂+=22)()(1)),(,,(ϕϕϕ。
第一型曲面积分

|| T || 为分割 T 的细度,即为诸
Si 中的最大直径.
定义1 设 S 是空间中可求面积的曲面,
f 为( x, y, z)
定义在 S 上的函数. 对曲面 S 作分割 T, 它把 S 分成
n 个小曲面块 Si (i 1, 2, L , n), 以 Si 记小曲面块
Si 的面积, 分割 T 的细度
D
其中
E xu2 yu2 zu2 , F xu xv yu yv zuzv , G xv2 yv2 zv2 .
例2 计算
I z dS , 其中 S 为 S
螺旋面(图22-3)的一部分:
z
x ucos v,
S
:
y
u sin
v,
(u,v)
D
,
2
z v,
O
(a, 0, 0)
I f ( x, y, z)dS .
(1)
S
于是, 前述曲面块的质量可由第一型曲面积表示为:
特别地, 当
块 S 的面积.
m ( x, y, z)dS . S
f ( x, y, z) 1 时,曲面积分
dS 就是曲面
S
二、第一型曲面积分的计算
第一型曲面积分需要化为二重积分来计算.
定理 22.1
z
例1 计算
S z dS , 其中 S
h
是球面 x2 y2 z2 a2 被
平面 z h (0 h a) 所截
O
a
x
y
得的顶部 (图22-1).
图 22 1
解 曲面 S 的方程为 z a2 x2 y2 , 定义域 D 为
圆域 x2 y2 a2 h2 . 由于
1 zx2 zy2
第一型曲面积分计算方法

第一型曲面积分计算方法第一型曲面积分是数学中的一个重要概念,它是对曲面上某个向量场在曲面上的积分。
在实际应用中,第一型曲面积分被广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍第一型曲面积分的定义、计算方法以及应用。
一、第一型曲面积分的定义第一型曲面积分是对曲面上某个向量场在曲面上的积分。
具体来说,设曲面S是一个光滑的有向曲面,其方程为r(u,v)=(x(u,v),y(u,v),z(u,v)),其中(u,v)∈D是S的参数域,f(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))是一个向量场,则第一型曲面积分的定义为:∬Sf·dS=∬Df(r(u,v))·|ru×rv|dudv其中,f(r(u,v))表示向量场在曲面上某一点的值,|ru×rv|表示曲面元素的面积,dudv表示参数域D上的面积元素。
二、第一型曲面积分的计算方法计算第一型曲面积分的方法有两种:参数化计算法和向量场计算法。
1. 参数化计算法参数化计算法是通过将曲面S的参数域D映射到一个矩形区域上,然后将曲面积分转化为二重积分来计算。
具体来说,设曲面S的参数方程为r(u,v)=(x(u,v),y(u,v),z(u,v)),其中(u,v)∈D,D是一个矩形区域,则第一型曲面积分可以表示为:∬Sf·dS=∬Df(r(u,v))·|ru×rv|dudv其中,|ru×rv|表示曲面元素的面积,它可以表示为:|ru×rv|=|(∂x/∂u,∂y/∂u,∂z/∂u)×(∂x/∂v,∂y/∂v,∂z/∂v)|dudv然后,将向量场f(r(u,v))表示为f(x(u,v),y(u,v),z(u,v))=(P(x(u,v),y(u,v),z(u,v)),Q(x(u,v),y(u,v),z(u,v)) ,R(x(u,v),y(u,v),z(u,v))),将|ru×rv|代入上式,得到:∬Sf·dS=∬DP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy其中,P(x,y,z)、Q(x,y,z)、R(x,y,z)分别是向量场f(x,y,z)在x、y、z 方向上的分量。
第四节第一类曲面积分

)
(1)确定 的方程: z z(x, y);
(2)确定在xoy 面上的投影区域 Dx y
(3)将曲面方程 z z(x, y) 及
dS
1
zx2
(
x,
y)
z
2 y
(
x,
y)
d
xd
y
代入 f (x, y, z) d S中即可。 一投、二代、三换
说明: 1) 如果曲面方程为 x x( y, z), ( y, z) Dyz
1
z
2 x
z
2 y
d
xd
y
2d xd y,
Dx2y {( x, y) | x2 y2 1}, xdS x 2d xd y 0,
2
Dx2 y
例5. 计算 xdS , 其中是圆柱面 x2 y2 1,
平面 z x 2 及 z 0 所围成的空间立体的表面.
解: xdS xdS xdS
f (x, y, z) d S f [x( y, z), y, z] 1 xy2 xz2 d y d z
或
Dyz
y y(x, z), (x, z) Dxz
f (x, y, z) d S f [x, y(x, z), z] 1 yx2 yz2 d x d z
Dxz
2)若 是 xoy 面上的一个闭区域 D 时,则
: x2 y2 z2 a2
2
d
1 2
2a
0
0
a r 2 r dr a2 r2
1 a4 (8 5
6
2)
思考: 若例3 中被积函数改为
计算结果如何 ?
例4. 计算| xyz | d S 为抛物面 z x2 y2( 0 z 1).
第一类曲线曲面积分

第一类曲线曲面积分是数学中的一个重要概念,它涉及到对曲线或曲面上的函数进行积分。
在解决实际问题中,第一类曲线曲面积分被广泛应用于物理、工程、经济等领域。
首先,让我们来了解一下第一类曲线积分的概念。
第一类曲线积分是针对平面上曲线上的函数进行积分的一种方法。
它的定义是,给定一条参数曲线 t \in [a, b],如果有一个实值函数 f(t),我们想要求出该函数在曲线上的积分。
具体来说,第一类曲线积分的计算公式为:∫f(t)dt,其中符号∫表示积分,f(t)表示函数,t表示参数。
第一类曲线积分在实际问题中有很多应用。
例如,在物理学中,第一类曲线积分可以用来计算电荷在电线上的分布情况;在工程学中,第一类曲线积分可以用来计算物体在运动过程中的能量变化情况;在经济领域,第一类曲线积分可以用来分析股票价格的波动情况。
接下来,让我们来了解一下第一类曲面积分的概念。
第一类曲面积分是针对空间中曲面上的函数进行积分的一种方法。
它的定义是,给定一个三维空间中的曲面Σ,如果有一个实值函数 f(x,y,z),我们想要求出该函数在曲面上的积分。
具体来说,第一类曲面积分的计算公式为:∫f(x,y,z)dS,其中符号∫表示积分,f(x,y,z)表示函数,S表示曲面的面积。
第一类曲面积分在实际问题中也有很多应用。
例如,在物理学中,第一类曲面积分可以用来计算磁场在导体表面上的分布情况;在工程学中,第一类曲面积分可以用来计算热量的传导情况;在经济领域,第一类曲面积分可以用来分析市场价格的波动情况。
总之,第一类曲线曲面积分是一个非常重要的数学工具,它可以帮助我们解决很多实际问题。
通过深入了解第一类曲线曲面积分的概念和方法,我们可以更好地理解和解决各种问题。
§6.5第一型曲面积分的计算

记d max 1 k n
的直径
k
,k的面积记为Ak .
如果不论将如何分割,点M
k
如何选取,
k
n
当d 0时, f (Mk )Ak有确定的极限,则称 k 1
函数f 在曲面上可积,极限值为f 在上的
第一型曲面积分,即
n
f
( x,
y, z)dA
lim
d 0
k 1
f (k ,k , k )Ak
( x, y) Dx y
A Dxy
Fx2 Fy2 Fz2 dxdy. Fz
例1.求球面 x2 y2 z2 a2在 z b部分的面积(a b 0).
az
S
b
y
x
二. 第一型曲面积分的概念
定义 设是一个分片光滑曲面,函数f 在上有定义.
将任意分割成n个小部分(k k 1,2,L ,n),
'(面积A')
的一个法向量:{0, 0,1}
'的一个法向量:{zx , zy ,1}
| cos |
1
1
z
2 x
z
2 y
x
dAA 11zzx2x2zz2y2yd
o
y
Dxy
P(x, y)
曲面的面积元素
结论: 1.设光滑曲面 的方程为 z z( x, y),Dxy是在 xy平面上的投影区域, 的面积为A,则
y
x
Dxy
例3.计算 ( x2 y2 z2 )dA,其中是由 x 0, y 0, x2 y2 z2 1 ( x 0, y 0)所围成的闭曲面.
z
2 1
y
x 3
§6.5 第一型曲面积分的计算
一.曲面的面积