高中数学导数专题复习

合集下载

高中数学专题练习《导数的概念及其几何意义》含详细解析

高中数学专题练习《导数的概念及其几何意义》含详细解析

5.1.2 导数的概念及其几何意义基础过关练题组一 导数的定义及其应用1.函数y=f(x)的自变量x 由x 0变化到x 0+Δx 时,函数值的改变量Δy 为( )A.f(x 0+Δx)B.f(x 0)+ΔxC.f(x 0)·ΔxD.f(x 0+Δx)-f(x 0)2.函数f(x)在x=x 0处的导数可表示为( )A.f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)ΔxB.f'(x 0)=lim Δx→0[f(x 0+Δx)-f(x 0)]C.f'(x 0)=f(x 0+Δx)-f(x 0)D.f'(x 0)=f (x 0+Δx )-f (x 0)Δx3.已知函数f(x)=ax+4,若f'(1)=2,则a= .4.如图是函数y=f(x)的图象.(1)函数f(x)在区间[-1,1]上的平均变化率为 ; (2)函数f(x)在区间[0,2]上的平均变化率为 . 5.求函数y=x 2+1在x=0处的导数.题组二 导数的几何意义及其应用6.函数y=f(x)在x=x0处的导数f'(x0)的几何意义是( )A.在点(x0,f(x0))处与y=f(x)的图象只有一个交点的直线的斜率B.过点(x0,f(x0))的切线的斜率C.点(x0,f(x0))与点(0,0)的连线的斜率D.函数y=f(x)的图象在点(x0,f(x0))处的切线的斜率7.某司机看见前方50m处有行人横穿马路,这时司机开始紧急刹车,在刹车的过程中,汽车的速度v是关于刹车时间t的函数,其图象可能是( )8.已知函数f(x)在R上有导函数,且f(x)的图象如图所示,则下列不等式正确的是( )A.f'(a)<f'(b)<f'(c)B.f'(b)<f'(c)<f'(a)C.f'(a)<f'(c)<f'(b)D.f'(c)<f'(a)<f'(b)9.如图,函数y=f(x)的图象在P点处的切线方程是y=-x+8,若点P的横坐标是5,则f(5)+f'(5)=( )B.1C.2D.0A.12题组三 求曲线的切线方程10.若曲线f(x)=x2+ax+b在点(1,1)处的切线方程为3x-y-2=0,则( )A.a=-1,b=1B.a=1,b=-1C.a=-2,b=1D.a=2,b=-111.函数f(x)=x3+x-2的图象在点P处的切线平行于直线y=4x-1,则P点的坐标为( )A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)或(-1,-4)12.若点A(2,1)在曲线y=f(x)上,且f'(2)=-2,则曲线y=f(x)在点A处的切线方程是 .13.(2020广东实验中学高二上期末)与直线2x-y+4=0平行且与抛物线y=x2相切的直线方程是 .14.试求过点M(1,1)且与曲线y=x3+1相切的直线方程.能力提升练题组一 导数的定义及其应用1.(2020浙江宁波中学高二下期中测试,)甲、乙两厂污水的排放量W与时间t的关系如图所示,则治污效果较好的是( )A.甲厂B.乙厂C.两厂一样D.不确定2.(2020河南新乡高二上期末,)若f'(2)=3,则lim Δx→0f (2+2Δx )-f (2)Δx= . 3.()服用某种药物后,人体血液中药物的质量浓度f(x)(单位:μg/mL)与时间t(单位:min)的函数关系式是y=f(t),假设函数y=f(t)在t=10和t=100处的导数分别为f'(10)=1.5和f'(100)=-0.6,试解释它们的实际意义.题组二 导数的几何意义及其应用4.(2020黑龙江佳木斯一中高二上期末,)函数f(x)的图象如图所示,则下列数值排序正确的是( )A.0<f'(2)<f'(3)<f(3)-f(2)B.0<f'(3)<f(3)-f(2)<f'(2)C.0<f'(3)<f'(2)<f(3)-f(2)D.0<f(3)-f(2)<f'(2)<f'(3)5.()已知函数f(x)和g(x)在区间[a,b]上的图象如图所示,则下列说法正确的是( )A.f(x)在a到b之间的平均变化率大于g(x)在a到b之间的平均变化率B.f(x)在a到b之间的平均变化率小于g(x)在a到b之间的平均变化率C.对于任意x0∈(a,b),函数f(x)在x=x0处的瞬时变化率总大于函数g(x)在x=x0处的瞬时变化率D.存在x0∈(a,b),使得函数f(x)在x=x0处的瞬时变化率小于函数g(x)在x=x0处的瞬时变化率6.(多选)()已知函数f(x)的定义域为R,其导函数f'(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是( )A.(x1-x2)[f(x1)-f(x2)]<0B.(x1-x2)[f(x1)-f(x2)]>0>f(x1)+f(x2)2<f(x1)+f(x2)2题组三 求曲线的切线方程7.(2020浙江金华一中高二下期中,)已知f(x)=x2+2x+3,P为曲线C:y=f(x)上的点,且曲线C在点P处的切线的倾斜角的取值范围为,则点P的横坐标的取值范围为( )A.-∞,-B.[-1,0]C.[0,1]D.-1,+∞28.(2020浙江丽水高二下期末,)已知过点P(-1,1)的直线m交x轴于点A,若抛物线y=x2上有一点B,使得PA⊥PB,且AB是抛物线y=x2的切线,则直线m的方程为 .,过9.(2020福建厦门二中高二上期中,)已知曲线y=f(x)=x2,y=g(x)=1x两条曲线的交点作两条曲线的切线,求两切线与x轴围成的三角形的面积.(请用导数的定义求切线的斜率,否则只得结论分)答案全解全析基础过关练1.D 分别写出x=x 0和x=x 0+Δx 时对应的函数值f(x 0)和f(x 0+Δx),两函数值相减就得到了函数值的改变量,所以Δy=f(x 0+Δx)-f(x 0).2.A 由导数的定义知A 正确.3.答案 2解析 由题意得,Δy=f(1+Δx)-f(1)=a(1+Δx)+4-a-4=aΔx,∴lim Δx→0ΔyΔx =a,∴f'(1)=a=2.4.答案 (1)12 (2)34解析 (1)函数f(x)在区间[-1,1]上的平均变化率为f (1)-f (-1)1―(―1)=2―12=12.(2)由函数f(x)的图象知,,-1≤x ≤1,<x ≤3,所以函数f(x)在区间[0,2]上的平均变化率为f (2)-f (0)2―0=3―322=34.5.解析 Δy=(0+Δx )2+1-0+1=(Δx )2+1―1(Δx )2+1+1=(Δx )2(Δx )2+1+1,∴ΔyΔx =Δx (Δx )2+1+1,∴y'x=0=lim Δx→0ΔyΔx =lim Δx→0Δx (Δx )2+1+1=0.6.D f'(x 0)的几何意义是函数y=f(x)的图象在点(x 0,f(x 0))处的切线的斜率.7.A 在刹车过程中,汽车速度呈下降趋势,排除选项C,D;由于是紧急刹车,所以汽车开始时速度下降非常快,图象较陡,排除选项B,故选A.8.A 由题意可知,f'(a),f'(b),f'(c)分别是函数f(x)在x=a 、x=b 和x=c 处切线的斜率,则有f'(a)<0<f'(b)<f'(c),故选A.9.C ∵函数y=f(x)的图象在x=5处的切线方程是y=-x+8,∴f'(5)=-1,又f(5)=-5+8=3,∴f(5)+f'(5)=3-1=2.故选C.10.B 由题意得,f'(1)=lim Δx→0ΔyΔx=lim Δx→0(1+Δx )2+a(1+Δx )+b -1-a -bΔx =lim Δx→0(Δx )2+2Δx +aΔxΔx =2+a.∵曲线f(x)=x 2+ax+b 在点(1,1)处的切线方程为3x-y-2=0,∴2+a=3,解得a=1.又∵点(1,1)在曲线y=x 2+ax+b 上,∴1+a+b=1,解得b=-1,∴a=1,b=-1.故选B.11.C f'(x)=lim Δx→0ΔyΔx=lim Δx→0(x +Δx )3+(x +Δx )-2-x 3-x +2Δx=3x 2+1.设P(x 0,y 0),则f'(x 0)=3x 20+1=4,所以x 0=±1,当x 0=1时,f(x 0)=0,当x 0=-1时,f(x 0)=-4,因此P 点的坐标为(1,0)或(-1,-4).12.答案 2x+y-5=0解析 由题意知,切线的斜率k=-2.∴在点A(2,1)处的切线方程为y-1=-2(x-2),即2x+y-5=0.13.答案 2x-y-1=0解析 设切点坐标为(x 0,y 0),y=f(x)=x 2,则由题意可得,切线斜率f'(x 0)=limΔx→0f (x 0+Δx )-f (x 0)Δx=2x 0=2,所以x 0=1,则y 0=1,所以切点坐标为(1,1),故所求的直线方程为y-1=2(x-1),即2x-y-1=0.14.解析 Δy Δx =(x +Δx )3+1―x 3-1Δx =3x (Δx )2+3x 2Δx +(Δx )3Δx=3xΔx+3x 2+(Δx)2,则lim Δx→0ΔyΔx =3x 2,因此y'=3x 2.设过点M(1,1)的直线与曲线y=x 3+1相切于点P(x 0,x 30+1),根据导数的几何意义知曲线在点P 处的切线的斜率为k=3x 20①,过点M 和点P 的切线的斜率k=x 30+1―1x 0-1②,由①-②得3x 20=x 30x 0-1,解得x 0=0或x 0=32,所以k=0或k=274,因此过点M(1,1)且与曲线y=x 3+1相切的直线有两条,方程分别为y-1=274(x-1)和y=1,即27x-4y-23=0和y=1.能力提升练1.B 在t 0处,虽然有W 甲(t 0)=W 乙(t 0),但W 甲(t 0-Δt)<W 乙(t 0-Δt),所以在相同时间Δt 内,甲厂比乙厂的平均治污率小,所以乙厂治污效果较好.2.答案 6解析 limΔx→0f (2+2Δx )-f (2)Δx=2lim Δx→0f (2+2Δx )-f (2)2Δx =2f'(2)=6.3.解析 f'(10)=1.5表示服药后10 min 时,血液中药物的质量浓度上升的速度为1.5 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将上升1.5 μg/mL. f'(100)=-0.6表示服药后100 min 时,血液中药物的质量浓度下降的速度为0.6 μg/(mL ·min).也就是说,如果保持这一速度,每经过1 min,血液中药物的质量浓度将下降0.6 μg/mL.4.B 如图所示, f'(2)是函数f(x)的图象在x=2(即点A)处切线的斜率k 1, f'(3)是函数f(x)的图象在x=3(即点B)处切线的斜率k 2,f (3)-f (2)3―2=f(3)-f(2)=k AB 是割线AB 的斜率.由图象知0<k 2<k AB <k 1,即0<f'(3)<f(3)-f(2)<f'(2).故选B.5.D ∵f(x)在a 到b 之间的平均变化率是f (b )-f (a )b -a,g(x)在a 到b 之间的平均变化率是g (b )-g (a )b -a ,f(b)=g(b),f(a)=g(a),∴f (b )-f (a )b -a=g (b )-g (a )b -a,∴A 、B 错误;易知函数f(x)在x=x 0处的瞬时变化率是函数f(x)在x=x 0处的导数,即函数f(x)在该点处的切线的斜率,同理函数g(x)在x=x 0处的瞬时变化率是函数g(x)在该点处的导数,即函数g(x)在该点处的切线的斜率,由题中图象知C 错误,D 正确.故选D.6.AD 由题中图象可知,导函数f'(x)的图象在x 轴下方,即f'(x)<0,且其绝对值越来越小,因此过函数f(x)图象上任一点的切线的斜率为负,并且从左到右切线的倾斜角是越来越大的钝角,由此可得f(x)的大致图象如图所示.A 选项表示x 1-x 2与f(x 1)-f(x 2)异号,即f(x)图象的割线斜率f (x 1)-f(x 2)x 1-x 2为负,故A 正确;B 选项表示x 1-x 2与f(x 1)-f(x 2)同号,即f(x) 图象的割线斜率f (x 1)-f(x 2)x 1-x 2为正,故B 不正确表示x 1+x 22对应的函数值,即图中点B 的纵坐标,f (x 1)+f(x 2)2表示当x=x 1和x=x 2时所对应的函数值的平均值,即图中点A 的纵坐标,显然有<f (x 1)+f(x 2)2,故C 不正确,D 正确.故选AD.7.D 设点P 的横坐标为x 0,则点P 处的切线倾斜角α与x 0的关系为tan α=f'(x 0)=lim Δx→0f (x 0+Δx )-f (x 0)Δx =2x 0+2.∵α,∴tan α∈[1,+∞),∴2x 0+2≥1,即x 0≥-12,∴点P 的横坐标的取值范围为-12,+∞.8.答案 x-y+2=0或x+3y-2=0解析 令y=f(x)=x 2,设B(t,t 2),则k AB =lim Δx→0f (t +Δx )-f (t )Δx =2t,则直线AB 的方程为y=2tx-t 2.当t=0时,符合题意,此时A(-2,0),∴直线m 的方程为x-y+2=0.当t ≠0时,0,PA=+1,―1,PB =(t+1,t 2-1),∵PA ⊥PB,∴PA ·PB =0,+1(t+1)-(t 2-1)=0,解得t=4或t=-1(B,P重合,舍去),此时A(2,0),∴直线m 的方程为x+3y-2=0.综上,直线m 的方程为x-y+2=0或x+3y-2=0.9.解析 由y =x 2,y =1x,得x =1,y =1,故两条曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f'(1)=lim Δx→0f (Δx +1)―f (1)Δx =lim Δx→0(Δx +1)2-12Δx =lim Δx→0(Δx+2)=2,g'(1)=lim Δx→0g (Δx +1)―g (1)Δx =lim Δx→01Δx +1-11Δx=lim Δx→0-所以两条切线的方程分别为y-1=2(x-1),y-1=-(x-1),即y=2x-1与y=-x+2,两条切线与x,0,(2,0),所以两切线与x轴围成的三角形的面积为12×1×|2―12|=34.。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。

高中《导数》知识点总结

高中《导数》知识点总结

《导数》知识点一.导数公式:0='C 1)(-='n n nx x x x cos )(sin =' x x sin )(cos -='a a a x x ln )(=' x x e e =')( a x x a ln 1)(log =' xx 1)(ln =' 二.运算法则:(1) )()(])()([x g x f x g x f '±'='±; (2) )()()()(])()([x g x f x g x f x g x f '+'='⋅;(3) )(])([x f C x f C '⋅='⋅,C 为常数; (4) 2)]([)()()()()()(x g x g x f x g x f x g x f '-'='⎥⎦⎤⎢⎣⎡. 三.导数的物理意义:位移的导数是速度,速度的导数是加速度.四.导数的几何意义:导数就是切线斜率.函数)(x f y =在0x x =处的导数是曲线)(x f y =在点())(,00x f x 处切线的斜率,即)(0x f k '=.注:点())(,00x f x 是切点五.对于函数)(x f y =给定区间[,]a b 内,1.(1)若0)(>'x f ,则()f x 在[,]a b 内是增函数;若0)(<'xf ,则()f x 在[,]a b 内是减函数.(2)若()f x 在[,]a b 内是增函数,则0)(≥'x f 在[,]a b 内恒成立;若()f x 在[,]a b 内是减函数,则0)(≤'x f 在[,]a b 内恒成立. 注:0)(>'x f ⇒()f x 递增;()f x 递增⇒0)(≥'x f 2.极值:图中1x ,3x 是极大值点,相应的函数值为极大值;2x ,4x 为极小值点,相应的函数值为极小值. 且=')(1x f =')(2x f =')(3x f 0)(4='x f 3.已知)(x f y =是可导函数,则“0x 为极值点”是“0)(0='x f ”的充分不必要条件.(0x 为极值点⇒0)(0='x f ;但满足0)(0='x f 的0x 不一定...是极值点.例如:函数3)(x x f =,虽然0)0(='f ,但0=x 不是其极值点,因为3)(x x f =在定义域内单调递增,没有极值点)4.利用导数求极值的步骤:第一步:求导数)(x f '; 第二步:令0)(='x f ,解方程; 第三步:由方程的根将定义域分为若干个区间; 第四步:判断)(x f '在每个区间上的正负; 第五步:确定极值点,并求出极值.5.利用导数求函数)(x f y =在闭区间],[b a 内最值:(1)若)(x f y =在闭区间],[b a 内有唯一的极大(小)值,那么这个极大(小)值就是函数的最大(小)值;(2)若)(x f y =在闭区间],[b a 内的极值不唯一,那么将所有的极值和)(a f ,)(b f 比大小,最大者为 函数的最大值,最小者为函数的最小值.六.含参数的恒成立问题:(分离参数法)(1)若)(x f a ≥恒成立,则)(max x f a ≥; (2)若)(x f a ≤恒成立,则)(min x f a ≤; )(x f。

导数知识点总结大全高中

导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。

函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。

当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。

2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。

当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。

3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。

导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。

4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。

二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。

函数在某一点可导的条件是函数在这一点存在切线。

2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。

3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。

三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。

高中数学专题练习《数列、导数知识点》含详细解析

高中数学专题练习《数列、导数知识点》含详细解析

数列、导数知识点一、等差数列1.概念:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,即a n+1-a n =d(n∈N *,d 为常数).2.等差中项:由三个数a,A,b 组成的等差数列可以看成是最简单的等差数列.这时,A 叫做a 与b 的等差中项,且2A=a+b.3.通项公式:等差数列{a n }的首项为a 1,公差为d,则其通项公式为a n =a 1+(n-1)d.4.前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d(n∈N *).5.性质:(1)通项公式的推广:a n =a m +(n-m)d(m,n∈N *).(2)若m+n=p+q(m,n,p,q∈N *),则有a m +a n =a p +a q .(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(4)数列{a n }是等差数列⇔S n =An 2+Bn(A,B 为常数).(5)在等差数列{a n }中,若a 1>0,d<0,则S n 存在最大值;若a 1<0,d>0,则S n 存在最小值.二、等比数列1.概念:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,即a n a n -1=q(n≥2,n∈N *,q 为非零常数).2.等比中项:如果在a 与b 中间插入一个数G,使a,G,b 成等比数列,那么G 叫做a 与b 的等比中项.此时,G 2=ab.3.通项公式:等比数列{a n }的首项为a 1,公比为q,则其通项公式为a n =a 1q n-1.4.前n 项和公式:S n ={na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q,q ≠1.5.性质:(1)通项公式的推广:a n=a m q n-m(m,n∈N*).(2)若k+l=m+n(k,l,m,n∈N*),则有a k·a l=a m·a n.(3)当q≠-1或q=-1且n为奇数时,S n,S2n-S n,S3n-S2n,…仍成等比数列,其公比为q n.三、求一元函数的导数1.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数) f'(x)=0f(x)=xα(α∈Q,且α≠0)f'(x)=αxα-1f(x)=sin x f'(x)=cos xf(x)=cos x f'(x)=-sin xf(x)=a x(a>0,且a≠1)f'(x)=a x ln af(x)=e x f'(x)=e xf(x)=log a x(a>0,且a≠1)f'(x)=1xlnaf(x)=ln x f'(x)=1x2.导数的四则运算法则已知两个函数f(x),g(x)的导数分别为f'(x),g'(x).若f'(x),g'(x)存在,则有:(1)[f(x)±g(x)]'=f'(x)±g'(x);(2)[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x);(3)[f(x)g(x)]'=f'(x)g(x)-f(x)g'(x)[g(x)]2(g(x)≠0).3.简单复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y'x =y'u ·u'x .四、导数在研究函数中的应用 1.函数的单调性与导数一般地,函数f(x)的单调性与导函数f'(x)的正负之间具有如下的关系: 在某个区间(a,b)上,如果f'(x)>0,那么函数y=f(x)在区间(a,b)上单调递增; 在某个区间(a,b)上,如果f'(x)<0,那么函数y=f(x)在区间(a,b)上单调递减. 2.函数的极值与导数条件 f'(x 0)=0x 0附近的左侧f'(x)>0,右侧f'(x)<0x 0附近的左侧f'(x)<0,右侧f'(x)>0图象极值 f(x 0)为极大值 f(x 0)为极小值 极值点 x 0为极大值点x 0为极小值点3.函数的最大(小)值与导数(1)如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值, f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值, f(b)为函数的最小值.(3)求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤如下:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a), f(b)比较,其中最大的一个是最大值,最小的一个是最小值.。

(完整版)高三复习导数专题

(完整版)高三复习导数专题

导 数一、导数的基本知识 1、导数的定义:)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000. 2、导数的公式: 0'=C (C 为常数) 1')(-=n n nxx (R n ∈) xx e e =')(a a a x x ln )('= xx 1)(ln '= exx a a log 1)(log '=x x cos )(sin '= x x sin )(cos '-=3、导数的运算法则: [()()]f x g x '+ =()()f x g x ''+ [()()]()()f x g x f x g x '''-=-[()]()af x af x ''= [()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f x g x f x g x g x g x ''-'= 4、掌握两个特殊函数 (1)对勾函数()bf x ax x=+ ( 0a > ,0b >) 其图像关于原点对称(2)三次函数32()f x ax bx cx d =+++(0)a ≠导数导数的概念 导数的运算导数的应用导数的定义、几何意义、物理意义 函数的单调性 函数的极值函数的最值 常见函数的导数导数的运算法则 比较两个的代数式大小导数与不等式讨论零点的个数求切线的方程导数的基本题型和方法1、、导数的意义:(1)导数的几何意义:()k f x'=(2)导数的物理意义:()v s t'=2、、导数的单调性:(1)求函数的单调区间;()0()b]f x f x'≥⇔在[a,上递增()0()b]f x f x'≤⇔在[a,上递减(2)判断或证明函数的单调性;()f x c≠(3)已知函数的单调性,求参数的取值范围。

高中数学导数知识点归纳总结

高中数学导数知识点归纳总结
1.设函数 f x ex (2x 1) ax a ,其中 a 1 ,若存在唯一的整数 x0 ,使得 f (x0 ) 0 ,则 a 的取值
范围是( )
A.
3 2e
,1
B.
3 2e
,
3 4
【解析】方法一:分离函数---数形结合法
C.
3 2e
,
3 4
D.
3 2e
,1
-7-
巧辨“任意性问题”与“存在性问题” 一.方法综述
注意:当 x=x0 时,函数有极值 f/(x0)=0。但是,f/(x0)=0 不能得到当 x=x0 时,函数有极值;
判断极值,还需结合函数的单调性说明。
题型一、求极值与最值
题型二、导数的极值与最值的应用
题型四、导数图象与原函数图象关系
导函数
原函数
f '(x) 的符号
f (x) 单调性
f '(x) 与 x 轴的交点且交点两侧异号
(2)分离参数:将含参不等式转化为转化为 f (x) a; f (x) a ,进而研究直线 y a与y f (x) 图像位
置关系,寻找临界状态,求参数的范围。
(3)分离函数:通过变形将不等式转化为形如( f (x) 或 g(x); f (x) 或 g(x) 的形式,参数通常
在直线形式的函数里),进而研究两个函数图像的位置关系,寻找临界状态,求解参数的范围。 (4)特殊点法:根据图形从特殊点的值入手求参数范围。 【典例分析】
(3)下结论
① f '(x) 0 f (x) 该区间内为增函数; ② f '(x) 0 f (x) 该区间内为减函数;
题型二、利用导数求单调区间
求函数 y f (x) 单调区间的步骤为: (1)分析 y f (x) 的定义域; (2)求导数 y f (x) (3)解不等式 f (x) 0 ,解集在定义域内的部分为增区间 (4)解不等式 f (x) 0 ,解集在定义域内的部分为减区间

导数知识点总结及例题

导数知识点总结及例题

导数知识点总结及例题一、导数的定义1.1 函数的变化率在生活中,我们经常会遇到函数随着自变量的变化而发生变化的情况,比如一辆汽车的速度随着时间的变化而变化、货物的销售量随着价格的变化而变化等。

这种情况下,我们就需要考虑函数在某一点处的变化率,也就是导数。

对于函数y=f(x),在点x处的变化率可以用函数的增量Δy和自变量的增量Δx的比值来表示:f'(x) = lim(Δx→0) (Δy/Δx)其中f'(x)表示函数f(x)在点x处的导数。

利用导数的定义,我们可以计算得到函数在某一点处的变化率。

1.2 导数的几何意义导数还有一个重要的几何意义,它表示了函数曲线在某一点处的切线的斜率。

例如,对于函数y=x^2,在点(1,1)处的导数就代表了曲线在这一点处的切线斜率。

这也意味着,导数可以帮助我们理解函数曲线在不同点处的形状和走向。

1.3 导数存在的条件对于一个函数f(x),它在某一点处的导数存在的条件是:在这一点处函数曲线的切线存在且唯一。

也就是说,如果函数在某一点处导数存在,那么这个点就是函数的可导点。

二、导数的性质2.1 导数与函数的关系导数是函数的一个重要属性,它可以帮助我们理解函数的性质。

例如,导数可以表示函数在某一点处的斜率,可以告诉我们函数曲线的凹凸性,还可以帮助我们找到函数的极值点等。

2.2 导数与导函数当一个函数在某一点处的导数存在时,我们可以使用导数的定义来求出函数在该点处的导数。

我们把这个过程称为求导,求出的导数称为导函数。

导函数的值就是原函数在对应点处的导数值。

2.3 导数的性质导数具有一些重要的性质,比如导数存在的条件、可导函数的和、差、积、商的导数求法则等。

这些性质是我们求解导数的问题时的重要依据,也是我们理解函数性质的基础。

三、求导法则3.1 基本求导法则基本求导法则是求解导数问题的基础,它包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等函数的导数求法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 第5讲 导数及其应用一、选择题(每小题4分,共24分)1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)= A .-e B .-1 C .1D .e解析 f ′(x )=2f ′(1)+1x ,令x =1,得f ′(1)=2f ′(1)+1, ∴f ′(1)=-1.故选B. 答案 B2.(2012·泉州模拟)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为A .3B .2!C .1解析 设切点为(x 0,y 0). ∵y ′=12x -3x , ∴12x 0-3x 0=12,解得x 0=3(x 0=-2舍去). 答案 A3.(2012·聊城模拟)求曲线y =x 2与y =x 所围成图形的面积,其中正确的是 A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y解析 两函数图象的交点坐标是(0,1),(1,1),%故积分上限是1,下限是0,由于在[ 0,1]上,x ≥x 2,故求曲线y =x 2与y =x 所围成图形的面S =⎠⎛01(x -x 2)d x .答案 B4.函数f(x)=32231,0,e,0axx x xx⎧++≤⎪⎨>⎪⎩在[-2,2]上的最大值为2,则a的取值范围是2,+∞)) 2))C.(-∞,0] 2))解析当x≤0时,f′(x)=6x2+6x,函数的极大值点是x=-1,极小值点是x =0,当x=-1时,f(x)=2,故只要在(0,2]上e ax≤2即可,即ax≤ln 2在(0,2]上恒成立,即a≤ln2x 在(0,2]上恒成立,故a≤12ln 2.答案D5.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是·解析设h(x)=f(x)e x,则h′(x)=(2ax+b)e x+(ax2+bx+c)e x=(ax2+2ax+bx +b+c)e x.由x=-1为函数f(x)e x的一个极值点,得当x=-1时,ax2+2ax+bx +b+c=c-a=0,∴c=a.∴f(x)=ax2+bx+a.若方程ax2+bx+a=0有两根x1、x2,则x1x2=aa=1,D中图象一定不满足该条件.答案D6.设a∈R,若函数f(x)=e ax+3x(x∈R)有大于零的极值点,则a的取值范围是A .(-3,2)B .(3,+∞)C .(-∞,-3)D .(-3,4)解析 由已知得f ′(x )=3+a e ax ,若函数f (x )在x ∈R 上有大于零的极值点,则f ′(x )=3+a e ax =0有正根.当3+a e ax =0成立时,显然有a <0,此时x =1a ln ⎝ ⎛⎭⎪⎫-3a ,由x >0得到参数a 的取值范围为a <-3.答案 C二、填空题(每小题5分,共15分)7.(2012·济南三模)曲线y =e x +x 2在点(0,1)处的切线方程为________.~解析 y ′=e x +2x ,∴所求切线的斜率为e 0+2×0=1, ∴切线方程为y -1=1×(x -0),即x -y +1=0. 答案 x -y +1=08.(2012·枣庄市高三一模)⎠⎛014-x 2d x =________.解析 ⎠⎛014-x 2d x 表示圆x 2+y 2=4中阴影部分的面积的大小,易知∠AOB =π6,OC =1,∴⎠⎛014-x 2d x =S △OBC +S 扇形AOB =12×1×3+12×π6×22=32+π3. 答案 32+π39.(2012·泉州模拟)若函数f (x )=x -a x +ln x (a 为常数)在定义域上是增函数,则实数a 的取值范围是________.解析 ∵f (x )=x -a x +ln x 在(0,+∞)上是增函数,|∴f ′(x )=1-12a x x+≥0在(0,+∞)上恒成立,即a ≤2x +2x. 而2x +2x≥222x x ⨯=4,当且仅当x =1x, 即x =1时等号成立,∴a ≤4. 答案 (-∞,4]三、解答题(每小题12分,共36分)10.(2012·泉州模拟)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值.~解析 (1)f ′(x )=3x 2+2ax +b ,则⎩⎨⎧ f ′1=3+2a +b =0f 1=1+a +b +a 2=10⇒⎩⎨⎧ a =4b =-11或⎩⎨⎧a =-3b =3. 当⎩⎨⎧a =4b =-11时,f ′(x )=3x 2+8x -11, Δ=64+132>0,所以函数有极值点;当⎩⎨⎧a =-3b =3时,f ′(x )=3(x -1)2≥0,所以函数无极值点. 则b 的值为-11.(2)解法一 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)单调递增或为常数函数,所以得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , "又-3x 2+8x =-3⎝⎛⎭⎪⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163, 所以b 的最小值为163.解法二 f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max ,令F (x )=-3x 2-2ax =-3⎝⎛⎭⎪⎫x +a 32+a 23. ①当a ≥0时,F (x )max =0,∴b ≥0; ②当-4≤a <0时,F (x )max =a 23,∴b ≥a 23. 又∵⎝ ⎛⎭⎪⎫a 23max =163,∴b ≥163.综上,b 的最小值为163.。

11.已知函数f (x )=e x ln x . (1)求函数f (x )的单调区间; (2)设x >0,求证:f (x +1)>e 2x -1;(3)设n ∈N +,求证:ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1]>2n -3. 解析 (1)由题知,函数f (x )的定义域为(0,+∞), 由f ′(x )=e x ln x (ln x +1). 令f ′(x )>0,解得x >1e ; 令f ′(x )<0,解得0<x <1e .故f (x )的增区间为⎝ ⎛⎭⎪⎫1e ,+∞,减区间为⎝ ⎛⎭⎪⎫0,1e .(2)证明 要证f (x +1)>e 2x -1,即证(x +1)ln(x +1)>2x -1⇔ln(x +1)>2x -1x +1⇔ln(x +1)-2x -1x +1>0. —令g (x )=ln(x +1)-2x -1x +1,则g ′(x )=1x +1-3x +12=x -2x +12,令g ′(x )=0,得x =2, 且g (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以g (x )min =g (2)=ln 3-1,故当x >0时,有g (x )≥g (2)=ln 3-1>0, 即f (x +1)>e 2x -1得证.(3)证明 由(2)得ln(x +1)>2x -1x +1,即ln(x +1)>2-3x +1, ^所以ln[k (k +1)+1]>2-3k k +1+1>2-3k k +1,所以ln(1×2+1)+ln(2×3+1)+…+ln[n (n +1)+1] >⎝ ⎛⎭⎪⎫2-31×2+⎝ ⎛⎭⎪⎫2-32×3+…+⎣⎢⎡⎦⎥⎤2-3n n +1=2n -3+3n +1>2n -3.12.设函数f (x )=-a x 2+1+x +a ,x ∈(0,1],a ∈R * (1)若f (x )在(0,1]上是增函数,求a 的取值范围; (2)求f (x )在(0,1]上的最大值.解析 (1)当x ∈(0,1]时,f ′(x )=-a ·xx 2+1+1.要使f (x )在x ∈(0,1]上是增函数,需使f ′(x )=-axx 2+1+1≥0在(0,1]上恒成立.即a ≤x 2+1x =1+1x 2在(0,1]上恒成立.~而1+1x 2在(0,1]上的最小值为2,又a ∈R *,∴0<a ≤2为所求. (2)由(1)知:①当0<a ≤2时,f (x )在(0,1]上是增函数. ∴[f (x )]max =f (1)=(1-2)a +1; ②当a >2时,令f ′(x )=0,得x =1a 2-1∈(0,1].∵0<x <1a 2-1时,f ′(x )>0; ∵1a 2-1<x ≤1时,f ′(x )<0. ∴[f (x )]max =f ⎝⎛⎭⎪⎫1a 2-1=a -a 2-1. 综上,当0<a ≤2时,[f (x )]max =(1-2)a +1; 当a >2时,[f (x )]max =a -a 2-1.。

相关文档
最新文档