高中数学选修2-1第二章知识点

合集下载

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

人教版【高中数学】选修2-1第二章曲线与方程的概念讲义

案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。

人教版A版高中数学高二选修2-1 第二章复习如何求圆锥曲线离心率

人教版A版高中数学高二选修2-1 第二章复习如何求圆锥曲线离心率

如何求圆锥曲线离心率在高考中圆锥曲线的分值占总分的15%左右.高考试题和各地的模拟试题中,大凡考查解析几何的,绝大多数以圆锥曲线为背景,而圆锥曲线的离心率,是描述曲线形状的重要参数,求离心率又是一种重要的题型,本文通过列举实例,介绍一些常用的求离心率范围的方法.1.利用离心率定义e=a c直接计算.例1.设双曲线12222=-b y a x (0<a<b)的半焦距为,直线过(a ,0)、 (0,b)两点,且原点到直线的距离为c 43,求双曲线的离心率.解:由过点(a ,0)、 (0,b)得的方程:bx+ay-ab=0.由点到的距离为c 43,得22ba ab +=c 43.将b=22a c -代入,平方后整理,得16(22c a )2-1622ca+3=0,解得332=e 或e=2.因为0<a<b ,故e=a c=221a b +>2,所以应舍去332=e .故所求离心率.点评:如果很容易由题设条件确定、,可直接用离心率定义求解.此题由两点式得直线的方程,再由双曲线中、、的关系及原点到直线的距离建立等式,从而解出a c的值.注意同学们解此题时一不小心易得到错误答案:e=2或332=e .究其原因是未注意到题设条件(0<a<b),从而离心率e>2,而332<2,故应舍去.2.利用曲线定义求离心率.第一种定义和第二种定义的灵活转换常常是打开解析几何思路的钥匙,在题目中挖掘这隐含信息有助于解题.例2. F 1、F 2是椭圆的两个焦点,过F 2作一条直线交椭圆于P 、Q 两点,使PF 1⊥PQ ,且|PF 1|=|PQ |,求椭圆的离心率e.解:设|PF 1|=t ,则|PQ |=t ,|F 1Q |=2t , 由椭圆定义有:| PF 1|+|PF 2|=|QF 1|+|QF 2|=2a ,∴|PF 1|+|PQ |+|F 1Q |=4a , 即(2+2)t=4a,t=(4-22)a ,∴|PF 2|=2a-t=(22-2)a ,在Rt △PF 1F 2中,|F 1F 1|2=(2c)2,∴[(4-22)a ]2+[(22-2)a ]2=(2c)2∴(a c )2=9-62, ∴e=a c =26-.点评:一般的,涉及焦点、准线方程、离心率、圆锥曲线上的点中的三个,就要联想到圆锥曲线定义,有时甚至只要知道其中的两个,也可以联想到圆锥曲线定义.灵活巧妙地运用圆锥曲线的定义,将会带给我们意想不到的方便和简单.教学中应着重培养学生灵活运用知识的能力.3.利用数形结合求离心率.由图形的的特定形状,找出有关量的性质、特征,并把几何图形和数有机结合起来,从而求出离心率的范围.例3. 直线l 过双曲线12222=-b y a x的右焦点,斜率k=2.若l 与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围.解:如图1,若k=a b ,则直线l 与双曲线的渐近线平行,从而l 与双曲线只有一个交点;若k>a b ,则l 与双曲线的两交点均在右支上, 故点评:此题若是直接求解,计算量比较大,而利用渐近线与双曲线的特性,从图中直接观察直线与渐近线,较易得出所要得出的东西.涉及直线与圆锥曲线交点问题,有时用此法也会取到意想不到的结果.4.运用均值不等式求解.例4. F 1、F 2为椭圆12222=+b y a x 的两焦点,若椭圆上存在一点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.解:由椭圆定义知:|PF 1|+|PF 2|=2a ,两边平方得:4a 2=|PF 1|2+|PF 2|2+2|PF 1||PF 2|≤2(|PF 1|2+|PF 2|2),∵∠F 1PF 2=90°,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴4a 2≤2(2c)2,得22≤e <1.点评:涉及到角度时,利用勾股定理或余弦定理,再利用不等式放缩,往往简单明了,注意放缩时等号条件是否成立.5.利用三角函数的有界性求离心率. 例5. 题目同上.解:设点P 坐标为(acos θ,bsin θ),由定义、焦半径公式及题设有:(2c)2=(a -ccosθ)2+(a +ccosθ)2 , 化简得cos 2θ=2222122e c ac -=-. 或由∠F 1PF 2=90°得:1cos sin cos sin -=•-+c a b c a b θθθθ,整理得b 2sin 2θ+ a 2cos 2θ-c 2=0,即(a 2-b 2)cos 2θ= c 2-b 2,cos 2θ=2222122e c a c -=-. ∵ 0≤cos 2θ≤1,∴0≤212e -≤1,结合0<e <1得22≤e <1为所求.点评:设圆锥曲线的参数形式,列式子比较简洁,但要注意各参数所限制的范围.6.列方程组求离心率. 例6. 题目同上.解:原题等价于以F 1F 2为直径的圆与椭圆有公共点,则⎪⎩⎪⎨⎧=+=+11222222y x b y a x 有实数解,消元得b 2x 2+a 2(c 2﹣x 2)=a 2b 2,即(b 2﹣a 2)x 2+a 2c 2﹣a 2b 2=0有实数根,所以Δ≥0,即c 2﹣b 2≥0,c 2﹣(a 2 ﹣c 2)≥0,可得122<≤e .点评:若两曲线相交,联立两个方程解出交点,再利用范围,列出不等式并 求其解或由根判别式根据条件建立与a、b、c相关的一元二次方程,再用根的判别式列出不等式,可得简解.7.运用比例性质求解离心率.在椭圆或双曲线中,若已知焦点三角形中的两个角,则可由定义、正弦定理、合分比定理推出其离心率.例7.椭圆)0(12222>>=+b a by a x 中,如果α=∠21F PF ,β=∠12F PF ,求椭圆离心率.解:由椭圆定义知:|PF 1|+|PF 2|=2a ,|F 1F 2|=2c ,∵||||22221PF PF ca c a c e +===由正弦定理,得|PF 1|=2Rsin β,|PF 2|=2Rsin α,|F 1F 2|=2Rsin(α+β)∴2cos2cos2cos 2sin 22cos2sin 2 sin sin )sin()sin (sin 2)sin(2||||221βαβαβαβαβαβαβαβαβαβα-+=-⋅++⋅+=++=++=+=R R PF PF c e说明:曲线上的点与焦点连线构成的三角形称焦点三角形,与焦点三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.8.利用圆锥曲线中变量的变化范围求离心率.例8.已知椭圆,如果椭圆、的长轴两端点为B A b a by a x )0(12222>>=+上存在一点Q ,使0120=∠AQB ,求椭圆离心率的取值范围.解:根据椭圆的对称性,不妨设Q (x 0,y 0)在x 轴的上方,则b y ≤<00,a x y k a x y k QA QB+=-=0000, 321tan 202200-=+-=⋅+-=∠∴y a x ay k k k k AQB QB QA QA QB ①,又代入)1(22020b y a x -=①得)(322220b a ab y -=,则b b a ab ≤-<)(320222⇒ 22232c c a a ≤-,13631222<≤⇒≤-∴e e e . 点评:此题解法实质上是分离变量.通过将离心率用曲线上一点坐标出来,借助于曲线上点的坐标范围求解离心率.涉及圆锥曲线中的不等问题要注意利用曲线上点的范围,探求离心率的范围.9.利用焦半径公式.例9.如图所示,已知梯形中,|AB|=2|CD|,点满足,双曲线过C 、D 、E 三点,且以A 、B 为焦点,当4332<<λ时,求双曲线离心率的取值范围.解:∵,∴x 0=)1(2)2(+-λλc ①∴λλ+=1||||CA EA ,由焦半径公式,得:λλ+•+--=12ce a ex a ②, 将①代入②,得:2)1(2)2(cce a e a •+•--+-λλλλ+=1.∵e=a c ,∴2321+-=e λ.又∵4332≤≤λ,∴43233221≤-≤+e ,∴107≤≤λ.∴双曲线离心率取值范围为[7,10].点评:此题的特点是:已知一个变量的范围求另一个变量的范围,先利用题设条件建立含范围变量的关系式,将变量λ和另一个变量分离e ,得到函数关系,再利用已知变量λ的范围求出变量e 的范围,解法实质是分离变量.同时,该解法巧妙地运用了焦半径公式,使得求解过程变得简洁快捷,而且给人以一种轻松自在的感觉,这表明善于记忆一些结果对我们的学习帮助很大.。

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1

合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.2 第1课时

a=13,b=m1 ,
9 m2
取顶点0,13,一条渐近线为 mx-3y=0, 所以15=|-m32×+139|,则 m2+9=25,
∵m>0,∴m=4.
答案: D
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.已知点(2,3)在双曲线 C:ax22-by22=1(a>0,b>0)上, C 的焦距为 4,则它的离心率为________.
合作探究 课堂互动
高效测评 知能提升
1.双曲线 2x2-y2=8 的实轴长是( )
A.2
B.2 2
C.4
D.4 2
解析: 双曲线方程可化为x42-y82=1,∴a2=4,a=2,
则 2a=4,故选 C. 答案: C
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
c e=__a__
__y_=__±_ba_x_
_y_=__±_ab_x__
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
等轴双曲线
___实__轴__和___虚__轴___等长的双曲线叫做等轴双曲线.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
由①②联立,无解.
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 y=0,解得 x=±3,因此顶点坐标为 A1(-3,0),A2(3,0), 焦点坐标为 F1(- 13,0),F2( 13,0). 实轴长是 2a=6,虚轴长是 2b=4, 离心率 e=ac= 313, 渐近线方程 y=±bax=±23x. 作出草图(如图所示).

高中数学人教A版选修2-1第二章2课件

高中数学人教A版选修2-1第二章2课件

A1(0,-a),A2(0,a)
e c (e 1) a
ya x b
当堂检测
复习引入 确定焦 点 位置:椭圆看分母大小,双曲线看系数正负
定义 | |MF1|-|MF2| | =2a(0 < 2a<|F1F2|)
双曲线 图象
y
M
F1 o F2 x
y
M F2
x
F1
双曲线的图象 特点与几何性质到 现在仍是一个谜?
x2 y2
方程
a2 b2 1
(a 0,b 0)
焦点
F ( ±c, 0)
(3)焦点坐标: F1(5,0), F2 (5,0)
(4)离心率: e c 5 a4
(5)渐近线方程:y 3 x
4
y F1• • A1 O A2• •F2 x
二、焦点在Y轴上的双曲线的几何性质
焦点在Y轴上的双曲线的几何性质
双曲线标准方程:
y2 a2
x2 b2
1a 0, b 0
双曲线性质:
对称性 关于x轴、y轴、原点对称
顶点 离心率 渐进线
A1(- a,0),A2(a,0)
e c (e 1) a
ybx a
..
y
A2 F2
B2 A1 O
B1
F1
F2(0,c) x F1(0,-c)
y2 x2 a2 b2 1 (a 0,b 0 )
y≥a 或 y ≤a,x R
关于x轴、y轴、原点对称
ybx
a
A2
x a
ybx a
焦点在x轴上的双曲线草图画法
Y
x2 y2
1
a2 b2
B2
F1
A1
A2

最新人教版高中数学选修2-1第二章《抛物线及其标准方程》教材梳理

最新人教版高中数学选修2-1第二章《抛物线及其标准方程》教材梳理

疱丁巧解牛知识·巧学一、抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫抛物线.点F 叫抛物线的焦点,直线l 叫做抛物线的准线.(1)定义的“双向运用”,即:一方面,符合定义的条件的动点轨迹为抛物线;另一方面,抛物线上点有定义中条件的性质.(2)两个定义的综合运用是解决有些抛物线问题的捷径.(3)求抛物线方程时,若由已知条件可知曲线是抛物线,一般用待定系数法;若由已知条件可知曲线的动点的规律,一般用轨迹法.2.抛物线的方程(1)抛物线的标准方程(a >b >0)①y 2=2px(p >0);②y 2=-2px(p >0);③x 2=2py(p >0);④x 2=-2py(p >0).抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,2p 等于焦点到抛物线顶点的距离.二次函数y=ax 2(a≠0)方程满足抛物线的定义,所以它的图象是抛物线,它的焦点坐标为(2a ,0),准线方程x=2p . (2)中心在(x 0,y 0)的抛物线方程(a >b >0)利用平面向量的平移可得到上述标准方程中对应的形式,如顶点在(x 0,y 0)有对称轴为y=y 0,开口向右的抛物线方程为(y-y 0)2=2p(x-x 0)(p >0).要点提示 在求抛物线的方程的时候一定要考虑焦点在哪个轴上,开口方向两个方面.此外,因为抛物线有四个标准方程,确定了焦点在哪个轴上和开口方向,这个抛物线的方程大致形状也就确定了.问题·探究问题1 抛物线在现实生活中有哪些应用?探究:抛物线在现实生活中的应用很广泛,我们熟悉的汽车前灯,太阳灶,有的大桥也设计成抛物线形状,抛物线最重要的应用还是在物理学上,根据抛物线的运行轨迹,人们把它运用到了军事上的大炮、导弹.问题2 学习抛物线方程,要注意些什么?探究:抛物线的标准方程有四个,在学习它们的时候一定要注意区分,焦点在x 轴上两个,焦点在y 轴上两个,焦点坐标与准线方程都于一次项的系数有关,抛物线的方程在确定了焦点位置和一次项的系数,抛物线的形状也就确定了下来.典题·热题例1 已知点M (3,2),F 为抛物线y 2=2x 的焦点,点p 在该抛物线上移动,当|PM|+|PF|取最小值时,点P 的坐标为______________________.思路分析:本题若建立目标函数来求|PM|+|PF|的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如右图所示,由定义知|PF|=|PE|,故|PM|+|PF|=|PF|+|PM|≥|ME|≥|MN|=213.取等号时,M,P,E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为(2,2).方法归纳 由抛物线的定义可知,抛物线上的点到焦点的距离等于它到准线的距离.要重视定义在解题中的应用,灵活地进行抛物线上的点到焦点距离与到准线距离的相互转换. 例2 求过点(-3,2)的抛物线的标准方程,并求对应抛物线的准线方程.思路分析:从方程形式看,求抛物线的标准方程仅需确定一个待定系数p ;从实际分析,一般需确定p 和确定开口方向两个条件,否则,应展开相应的讨论.解:(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0),∵过点(-3,2),∴4=-2p (-3)或9=2p·2.∴p=32或p=49. ∴所求的抛物线方程为y 2=x 34-或x 2=y 29.前者的准线方程是x=31,后者的准线方程是y=89-. 误区警示 这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切.思路分析:可设抛物线方程为y 2=2px(p >0).如右图所示,只须证明2||AB =|MM 1|,则以AB 为直径的圆,必与抛物线准线相切.证明:作AA 1⊥l 于A 1,BB 1⊥l 于B 1.M 为AB 中点,作MM 1⊥l 于M 1,则由抛物线的定义,可知|AA 1|=|AF|,|BB 1|=|BF|.在直角梯形BB 1A 1A 中:|MM 1|=21(|AA 1|+|BB 1|)=21(|AF|+|BF|)=21|AB|. ∴|MM 1|=21|AB|.故以AB 为直径的圆,必与抛物线的准线相切. 方法归纳 类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.例4 如右图所示,直线l 1和l 2相交于点1M ,l 1⊥l 2,点N ∈l 1,以A 、B 为端点的曲线段C上任一点到l 2的距离与到点N 的距离相等.若△AMN 为锐角三角形,|AM|=17,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C 的方程.思路分析:由题意所求曲线段是抛物线的一部分,求曲线方程需建立适当的直角坐标系,设出抛物线方程,由条件求出待定系数即可,求出曲线方程后要标注x 、y 的取值范围. 解:如图以直线l 1为x 轴,线段MN 的垂直平分线为y 轴,建立直角坐标系,由条件可知,曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段.其中A 、B 分别为曲线段C 的端点. 设曲线段C 的方程为y 2=2px (p>0)(x A ≤x≤x B ,y>0),其中x A 、x B 为A 、B 的横坐标,p=|MN|,所以M (2p -,0)、N (2p ,0). 由|AM|=17,|AN|=3,得(x A +2p )2+2px A =17, ① (x A -2p )2+2px A =9. ② ①②联立解得x A =p4,代入①式,并由p>0, 解得⎩⎨⎧==1,4A x p 或⎩⎨⎧==.2,2Ax p 因为△AMN 为锐角三角形,所以A x p >2. 故舍去⎩⎨⎧==.2,2A x p 所以⎩⎨⎧==.1,4Ax p 由点B 在曲线段C 上,得x B =|BN|-2p =4. 综上,曲线段C 的方程为y 2=8x (1≤x≤4,y>0).。

高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义

高中数学人教A版选修2-1第二章椭圆及其标准方程精讲讲义

当 PF1 PF 2 2a F1F 2 时, P 的轨迹为 以 F1、F2 为端点的线段
2.椭圆的方程与几何性质:
标准方程
x2 y 2 1(a b 0) a2 b2
参数关系

焦点
(c,0), (c,0)

焦距
范围
| x | a,| y | b
a2 b2 c2 2c
y2 a2
x2 b2
举一反三:【变式 1】两焦点的坐标分别为 0,4,0,- 4,且椭圆经过点(5,0)。
【变式 2】已知一椭圆的对称轴为坐标轴且与椭圆 x 2 y 2 1有相同的焦点,并且经过点(3, 94
-2),求此椭圆的方程。
2
类型三:求椭圆的离心率或离心率的取值范围 例 3.椭圆 x 2 y 2 1(a>b>0)的半焦距为 c,若直线 y=2x 与椭圆的一个交点的横坐标为 c,求 a2 b2
(Ⅰ)求以 A、B 为焦点,且过 C、D 两点的椭圆的标准方程;
5:直线与椭圆问题(韦达定理的运用)
弦长公式:若直线 l : y kx b 与圆锥曲线相交与 A 、 B 两点, A(x1, y1), B(x2 , y2 ) 则
弦长 AB (x1 x2 )2 ( y1 y2 )2 (x1 x2 )2 (kx1 kx2 )2 1 k 2 x1 x2
5
举一反三【变式 1】已知直线 l:y=2x+m 与椭圆 C: x2 y2 1 交于 A、B 两点 54
(1) 求 m 的取值范围
(2) 若|AB|= 5 15 ,求 m 的值 6
例 9、已知椭圆 C: x2 y2 1 ,直线 l:y=kx+1,与 C 交于 AB 两点,k 为何值时,OA⊥OB. 4

最新人教版高中数学选修2-1第二章《抛物线及其标准方程》知识导学

最新人教版高中数学选修2-1第二章《抛物线及其标准方程》知识导学

2.4 抛物线2.4.1 抛物线及其标准方程第一课时课标解读1.了解抛物线的实际背景,感受抛物线在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出抛物线模型的过程,掌握其定义、标准方程及几何图形. 学会思考1.把一根直尺固定在图板上直线l 的位置,把一块三角尺的一条直角边紧靠着直尺的边缘,再把一条细绳的一端固定在三角尺的另一条直角边的一点A ,取绳长等于点A 到直角顶点C 的长(即点A 到直线l 的距离),并且把绳子的另一端固定在图板上的一点F .用铅笔尖扣着绳子,使点A 到笔尖的一段绳子紧靠着三角尺,然后将三角尺沿着直尺上下滑动,笔尖就在图板上描出了一条曲线.请问此曲线上任意一点到定点F 的距离与到l 的距离有何关系?此曲线为何曲线?2.抛物线的标准方程y 2=2px (p >0)中,p 具有一定的几何意义,它表示__________________. 答案:1.相等,抛物线.2.抛物线的焦点到准线的距离自学导引1.平面内与一个定点F 和一条定直线l 的距离_________的点的轨迹叫做抛物线点F 叫做抛物线的_________,直线l 叫做抛物线的_________.2.方程y 2=±2px ,x 2=±2py (p >0)叫做抛物线的_________方程.3.抛物线y 2=2px (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.4.抛物线y 2=-2px (p >0)的焦点坐标是_________,它的准线方程是________,它的开口方向 ________.5.抛物线x 2=2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.6.抛物线x 2=-2py (p >0)的焦点坐标是_________,它的准线方程是_________,它的开口方向_________.答案:1.相等 焦点 准线2.标准3.(2p ,0) 2p x -= 向右 4.(2p -,0) 2p x = 向左 5.(0,2p ) 2p y -= 向上 6.(0,2p -) 2p y = 向下典例启示知识点1求抛物线的标准方程【例1】 分别求满足下列条件的抛物线的标准方程.(1)过点(3,-4);(2)焦点在直线x +3y +15=0上.解:(1)∵点(3,-4)在第四象限,∴抛物线的标准方程为y 2=2px (p >0)或x 2=-2p 1y (p 1>0).把点(3,-4)的坐标分别代入y 2=2px 和x 2=-2p 1y ,得(-4)2=2p ·3,32=-2p 1·(-4), 即3162=p ,4219=p . ∴所求抛物线的方程为x y 3162=或y x 492-=. (2)令x=0,得y=-5;令y=0,得x=-15.∴抛物线的焦点为(0,-5)或(-15,0).∴所求抛物线的标准方程为y 2=-60x 或x 2=-20y .启示:求抛物线的标准方程需要:(1)求p ;(2)判断焦点所在坐标轴的位置.【例2】 分别求适合下列条件的抛物线方程.(1)顶点在原点,以坐标轴为对称轴,且过点A (2,3);(2)顶点在原点,以坐标轴为对称轴,焦点到准线的距离为25. 解:(1)由题意,方程可设为y 2=mx 或x 2=ny ,将点A (2,3)的坐标代入,得32=m •2或22=n •3,∴29=m 或34=n . ∴所求的抛物线方程为x y 292=或y x 342=. (2)由焦点到准线的距离为25,可知25=p , ∴所求抛物线方程为y 2=5x 或y 2=-5x 或x 2=5y 或x 2=-5y .启示:(1)抛物线的标准方程有四种形式,主要看其焦点位置或开口方向.(2)抛物线的标准方程只有一个参数p ,即焦点到准线的距离,常称为焦参数.知识点2抛物线定义及标准方程的应用【例3】 已知抛物线的焦点为(3,3),准线为x 轴,求抛物线的方程解:设M (x ,y )为抛物线上的任意一点, 则由抛物线的定义,得||)3()3(22y y x =-+-. 平方整理,得3612+-=x x y 为所求抛物线的方程. 启示:当抛物线不在标准位置时,只有利用其定义来求方程.【例4】 平面上动点P 到定点F (1,0)的距离比P 到y 轴的距离大1,求动点P 的轨迹方程.解法一:设P 点的坐标为(x ,y ),则有1||)1(22+=+-x y x ,两边平方并化简得y 2=2x +2|x |.∴⎩⎨⎧<≥=,0,0,0,42x x x y 即点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).解法二:由题意,动点P 到定点F (1,0)的距离比到y 轴的距离大1,由于点F (1,0)到y 轴的距离为1,故当x <0时,直线y=0上的点适合条件;当x ≥0时,原命题等价于点P 到点F (1,0)与到直线x=-1的距离相等,故点P 在以F 为焦点,x=-1为准线的抛物线上,其轨迹方程为y 2=4x .故所求动点P 的轨迹方程为y 2=4x (x ≥0)或y=0(x <0).启示:求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.随堂训练1.已知抛物线过点(-11,13),则抛物线的标准方程是( ) A.x y 221692= B.x y 111692-= C.x y 111692-=或y x 131212= D.y x 131212-= 解析:∵点(-11,13)在第二象限,∴抛物线的张口向左或向上.当抛物线的张口向左时,设抛物线的方程为y 2=-2px ,把点 (-11,13)的坐标代入方程得 132=-2p ·(-11),∴111692=p . ∴抛物线的标准方程为x y 111692-=. 当抛物线的张口向上时,设抛物线的方程为x 2=2p 1y ,把点(-11,13)的坐标代入得(-11)2=2p ·13, ∴131212=p . ∴抛物线的方程为y x 131212=. 答案:C2.已知抛物线的准线方程是x=-7,则抛物线的标准方程是( )A.x 2=-28yB.y 2=28xC.y 2=-28xD.x 2=28y解析:∵72=p , ∴p =14.∵抛物线的焦点在x 轴上,∴抛物线的方程是y 2=28x .答案:B3.已知抛物线的焦点在直线3x -y +36=0上,则抛物线的标准方程是( )A.x 2=72yB.x 2=144yC.y 2=-48xD.x 2=144y 或y 2=-48x解析:令x =0得y =36,令y =0得x =-12,∴抛物线的焦点为(0,36)或(-12,0).答案:D4.抛物线y 2=-4px (p >0)的焦点为F ,准线为l ,则p 表示( )A.F 到l 的距离B.F 到y 轴的距离C.F 点的横坐标D.F 到l 的距离的41 解析:在抛物线的标准方程y 2=-2px (p >0)中,p 是焦点到准线的距离,2p 是焦点到y 轴的距离或y 轴与准线间的距离,所以在抛物线方程y 2=-4px (p >0)中,p 为焦点到y 轴或y 轴与准线间的距离.答案:B5.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p 的值为( )A.4B.3C.2D.1解析:抛物线的焦点为(2p ,0), 由5)03()22(22=-+--p ,得p =4. 答案:A6.若点P 到定点F (4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹方程是( )A.y 2=-16xB.y 2=-32xC.y 2=16xD.y 2=16x 或y=0(x <0)解析:∵点F (4,0)在直线x +5=0的右侧,且P 点到点F (4,0)的距离比它到直线x +5=0的距离小1,∴点P 到F (4,0)的距离与到直线x +4=0的距离相等,故点P 的轨迹为抛物线,且顶点在原点,开口向右,p =8,故P 点的轨迹方程为y 2=16x .答案:C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的几何性质
焦点的位置焦点在x轴上
焦点在y轴上图形
标准方程()
22
22
10
x y
a b
a b
+=>>()
22
22
10
y x
a b
a b
+=>>范围a x a
-≤≤且b y b
-≤≤b x b
-≤≤且a y a
-≤≤顶点
()
1
,0
a
A-、()
2
,0
a
A
()
1
0,b
B-、()
2
0,b
B
()
1
0,a
A-、()
2
0,a
A
()
1
,0
b
B-、()
2
,0
b
B 轴长短轴的长2b
=长轴的长2a
=
焦点()
1
,0
F c-、()
2
,0
F c()
1
0,
F c-、()
2
0,
F c
焦距()
222
12
2
F F c c a b
==-
对称性关于x轴、y轴、原点对称
离心率()
2
2
101
c b
e e
a a
==-<<
准线方程
2
a
x
c

2
a
y
c

13、设M是椭圆上任一点,点M到
1
F对应准线的距离为
1
d,点M到
2
F对应准线
的距离为
2
d,则12
12
F F
e
d d
M M
==.
双曲线方程
平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
15、双曲线的几何性质:
焦点的位置 焦点在x 轴上
焦点在y 轴上 图形
标准方程 ()22
2210,0x y a b a b
-=>> ()22
2
210,0y x a b a b
-=>> 范围 x a ≤-或x a ≥,y R ∈
y a ≤-或y a ≥,x R ∈
顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A 轴长 虚轴的长2b = 实轴的长2a =
焦点 ()1,0F c -、()2,0F c
()10,F c -、()20,F c
焦距 ()222122F F c c a b ==+
对称性 关于x 轴、y 轴对称,关于原点中心对称
离心率
()2
211c b e e a a
==+>
准线方程 2a x c =± 2
a y c =±
渐近线方程
b y x a =± a y x b
=± 16、实轴和虚轴等长的双曲线称为等轴双曲线.
17、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准
线的距离为2d ,则121
2
F F e d d M M =
=.
抛物线方程
平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.
19、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 20、焦半径公式:
若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02p
F x P =+
; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02p
F x P =-+;
若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02p
F y P =+;
若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02
p
F y P =-+.
21、抛物线的几何性质:
标准方程
22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-
()0p >
图形
顶点
()0,0
对称轴
x 轴
y 轴
焦点
,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛
⎫ ⎪⎝⎭
0,2p F ⎛
⎫- ⎪⎝⎭
准线方程
2
p
x =-
2
p
x =
2
p y =-
2
p y =
离心率 1e =
范围 0x ≥ 0x ≤
0y ≥ 0y ≤。

相关文档
最新文档