高中数学选修-5知识点(最全版)

高中数学选修-5知识点(最全版)
高中数学选修-5知识点(最全版)

高中数学选修4-5知识点

1.不等式的基本性质

1.实数大小的比较

(1)数轴上的点与实数之间具有一一对应关系.

(2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a b .

(3)两个实数的大小与这两个实数差的符号的关系(不等式的意义)

???a >b ?a -b >0

a =

b ?a -b =0a

(4)两个实数比较大小的步骤

①作差;②变形;③判断差的符号;④结论.

2.不等关系与不等式

(1)不等号有≠,>,<,≥,≤共5个.

(2)相等关系和不等关系

任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的.

(3)不等式的定义:用不等号连接起来的式子叫做不等式.

(4)不等关系的表示:用不等式或不等式组表示不等关系.

3.不等式的基本性质

(1)对称性:a >b ?b

(2)传递性:a >b ,b >c ?a >c ;

(3)可加性:a >b ,c ∈R ?a +c >b +c ;

(4)加法法则:a >b ,c >d ?a +c >b +d ;

(5)可乘性:a >b ,c >0?ac >bc ;a >b ,c <0?ac

(6)乘法法则:a >b >0,c >d >0?ac >bd ;

(7)乘方法则:a >b >0,n ∈N 且n ≥2?a n >b n ;

(8)开方法则:a >b >0,n ∈N 且n ≥2?n a >n b .

(9)倒数法则,即a >b >0?1a <1b .

2.基本不等式

1.重要不等式

定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.

2.基本不等式

(1)定理2:如果a ,b >0,那么a b +≥ a +b 2≥ab),当且仅当a =b 时,等号成立.

(2)定理2的应用:对两个正实数x ,y ,

①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,

最大值为S2 4.

②如果它们的积P是定值,则当且仅当x=y时,它们的和S取得最小值,最小值为2P.

3.基本不等式ab≤a+b

2的几何解释

如图,AB是⊙O的直径,C是AB上任意一点,DE是过C点垂直AB的弦.若

AC=a,BC=b,则AB=a+b,⊙O的半径R=a+b

2,Rt△ACD∽Rt△DCB,

CD2=AC·BC=ab,CD=ab,CD≤R?ab≤a+b

2,当且仅当C点与O点重合

时,CD=R=AB

2,即ab=

a+b

2.

4.几个常用的重要不等式

(1)如果a∈R,那么a2≥0,当且仅当a=0时取等号;

(2)如果a,b>0,那么ab≤(a+b)2

4,当且仅当a=b时等号成立.

(3)如果a>0,那么a+1

a≥2,当且仅当a=1时等号成立.

(4)如果ab>0,那么a

b+

b

a≥2,当且仅当a=b时等号成立.

3.三个正数的算术-几何平均不等式

1.如果a、b、c∈R+,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立.

2.(定理3)如果a、b、c∈R+,那么3

++≥

a b c (a+b+c

3≥

3

abc),

当且仅当a=b=c时,等号成立.即三个正数的算术平均不小于它们的几何平均.

3.如果a1,a2,…,a n∈R+,那么a1+a2+…+a n

n≥

n

a1a2…a n,当且仅当

a1=a2=…=a n时,等号成立.即对于n个正数a1,a2,…,a n,它们的算术平均不小于它们的几何平均.

二绝对值不等式

1.绝对值三角不等式

1.绝对值及其几何意义

(1)绝对值定义:|a |=?

????a (a ≥0)

-a (a <0) (2)绝对值几何意义:实数a 的绝对值|a |表示数轴上坐标为a 的点A 到原点O 的距离|OA |.

(3)数轴上两点间的距离公式:设数轴上任意两点A ,B 分别对应实数x 1,x 2,则|AB |=|x 1-x 2|.

2.绝对值三角不等式

(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.

推论1:如果a ,b 是实数,那么|a |-|b |≤|a -b |≤|a |+|b |.

推论2:如果a ,b 是实数,那么|a |-|b |≤|a +b |≤|a |+|b |.

(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.

2.绝对值不等式的解法

1.|x |a 型不等式的解法

设a >0,则(1)|x |

(2)|x |≤a ?-a ≤x ≤a ;

(3)|x |>a ?x <-a 或x >a ;

(4)|x |≥a ?x ≤-a 或x ≥a .

2.|ax +b |≤c (c >0)与|ax +b |≥c (c >0)型不等式的解法

(1)|ax +b |≤c ?-c ≤ax +b ≤c ;

(2)|ax +b |≥c ?ax +b ≤-c 或ax +b ≥c .

3.|x -a |+|x -b |≤c 与|x -a |+|x -b |≥c 型不等式的解法

(1)利用绝对值不等式的几何意义求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释.

(2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值号内多项式的正、负号,进而去掉绝对值号.

(3)通过构造函数,利用函数的图象求解,体现了函数与方程的思想.正确求出函数的零点并画出函数图象(有时需要考察函数的增减性)是关键.

注:绝对值的几何意义

(1)|x |的几何意义是数轴上点x 与原点O 的距离;

(2)|x -a |+|x -b |的几何意义是数轴上点x 到点a 和点b 的距离之和;

(3)|x -a |-|x -b |的几何意义是数轴上点x 到点a 和点b 的距离之差.

2.绝对值不等式的几何意义

(1)|x |≤a (a >0)的几何意义是以点a 和-a 为端点的线段,|x |≤a 的解集是[-a ,a ].

(2)|x |>a (a >0)的几何意义是数轴除去以点a 和-a 为端点的线段后剩下的两条射线,|x |>a 的解集是(-∞,-a )∪(a ,+∞).

3.解含绝对值不等式的关键是去掉绝对值变形为不含绝对值的不等式(组)

求解.

例题:例如:分类讨论法:即通过合理分类去绝对值后再求解。

例1: 解不等式125x x -++<。

分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。

解:当x <-2时,得2

(1)(2)5x x

x <-??---+

解得:23-<<-x 当-2≤x ≤1时,得21,

(1)(2)5x x x -≤≤??-

-++

解得:12≤≤-x 当1>x 时,得1,

(1)(2) 5.x x x >??-++

解得:21<

例2:解不等式|2x -4|-|3x +9|<1.

解:①当x >2时,原不等式可化为

?

????x >2,

(2x -4)-(3x +9)<1,

解得x >2.

②当-3≤x ≤2时,原不等式可化为

?

????-3≤x ≤2,-(2x -4)-(3x +9)<1,

解得-65

③当x <-3时,原不等式可化为

?

????x <-3,

-(2x -4)+(3x +9)<1,

解得x <-12.

综上所述,原不等式的解集为 {x |x <-12或x >-65

}. 第二讲 证明不等式的基本方法

一 比较法

比较法主要有1.作差比较法 2.作商比较法

1.作差比较法(简称比差法)

(1)作差比较法的证明依据是:a >b ?a -b >0;a =b ?a -b =0;a

(2)基本步骤是:①作差;②变形;③判号;④结论.

2.作商比较法(简称比商法)

(1)作商比较法的证明依据是:当b >0时,a b >1?a >b ;a b =1?a =b ;a b <1?a

(2)基本步骤是:①作商;②变形;③比较与1的大小;④结论.

注意:对作差比较法的理解

(1)在证明不等式的各种方法中,作差比较法是最基本、最重要的方法.作差比较法是通过确定不等式两边的差的符号来证明不等式的,因而其应用非常广泛.

(2)不等式差的符号是正是负,一般必须利用不等式的性质经过变形才能判断,其中变形的目的在于判断差的符号,而不必考虑差的值是多少.变形的方法主要有配方法、通分法、因式分解法等.

(3)作差比较法,主要适用于不等式两边是整式或分式型的有理不等式的证明.

(4)在判定不等式两边的式子同号的条件下,如果直接作差不易变形,可以借助不等式性质作平方差或立方差,进行证明.

2.对作商比较法的理解

(1)使用作商法证明不等式a >b 时,一定要注意b >0这个前提条件.若b <0,a b <1?a >b ,a b =1?a =b ,a b >1?a

(2)当欲证明的不等式的两边是乘积形式、指数幂形式,不同底的对数式形式时,常用作商法证明.

二 综合法与分析法

1.综合法

一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法.综合法又叫顺推证法或由因导果法.

2.分析法

证明命题时,从要证的结论出发,逐步寻求使它成立的充分条件,直到所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法.这是一种执果索因的思考和证明方法.

注意:

1.用综合法证明不等式的逻辑关系

A ?

B 1?B 2?…?B n ?B

由已知逐步推演不等式成立的必要条件,从而得结论.

2.用分析法证明不等式的逻辑关系

A?B1?B2?…?B n?B

由结论步步寻求不等式成立的充分条件,从而到已知.

3.综合法和分析法的比较

(1)相同点:都是直接证明.

(2)不同点:综合法:由因导果,形式简洁,易于表达;分析法:执果索因,利于思考,易于探索.

4.证明不等式的通常做法

常用分析法找证题切入点,用综合法写证题过程.

三反证法与放缩法

1.反证法

证明不等式时,首先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立.我们把它称之为反证法.

2.放缩法

证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法.

3.换元法

将所证的不等式的字母作适当的代换,以达到简化证题过程的目的,这种方法称为换元法.

注意:

1.关于反证法

(1)反证法的原理是否定之否定等于肯定.

即第一次否定—在假设中,否定了结论

第二次否定—通过推理论证,又否定了假设

(2)反证法的使用范围

一般以下几种情况适宜使用反证法:

①结论本身是以否定形式出现的一类命题;

②有关结论是以“至多…”或“至少…”的形式出现的一类命题;

③关于唯一性、存在性的命题;

④结论的反面是比原结论更具体、更容易研究的命题.

(3)使用反证法的主要步骤

(4)准确地作出反设是反证法证题的前提,下面是常用词语的反设

(5)①反设时一定不能把“假设”写成“设”.

②当结论的反面有多种可能时,必须全部列出,否则证明是不完整的. ③必须从结论的否定出发进行推理,就是一定把结论的否定作为推理的条件,只要推理中没有用到“假设”就不是反证法.

④最后导出的矛盾是多样的,可能与已知矛盾、与假设矛盾、与定义、定理、公式矛盾、与已知的事实矛盾等,但矛盾必须是明显的.

⑤反证法是一种间接证明的方法.

2.关于放缩法

(1)放缩法证明不等式的理论依据有:

①不等式的传递性;②等量加不等量为不等量.其中减去一个正数值变小(缩),加上一个正数值变大(放);③同分子(分母)异分母(分子)的两个分式大小的比较;④基本不等式与绝对值三角不等式;⑤三角函数的有界性等.

(2)运用放缩法证题的关键是:

放大或缩小要适当,千万不能放(缩)过头,否则问题无法获证.

(3)使用放缩法的常用变形

放缩法是不等式证明中最重要的变形方法之一,放缩必须有目标,而且要恰到好处,目标往往从要证明的结论考虑.常用的放缩法有增项、减项、利用分式的性质、利用不等式的性质、利用已知不等式、利用函数的性质等进行放

缩.比如:? ????a +122+34>? ????a +122;1n 2<1n (n -1)(n ∈N 且n ≥2);1n 2>1n (n +1)

(n ∈N *);1n <2n +n -1(n ∈N 且n ≥2),1n >2n +n +1

;当a >b >0,m >0时,b a a +m

b +m 等.

第三讲 柯西不等式与排序不等式

1.二维形式的柯西不等式

若a ,b ,c ,d 都是实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.

2.柯西不等式的向量形式

设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.

3.二维形式的三角不等式

设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥ (x 1-x 2)2+(y 1-y 2)2.

注意:

1.二维柯西不等式的三种形式及其关系

定理1是柯西不等式的代数形式,定理2是柯西不等式的向量形式,定理3是柯西不等式的三角形式.

根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示.

2.理解并记忆三种形式取“=”的条件

(1)代数形式中当且仅当ad =bc 时取等号.

(2)向量形式中当存在实数k ,α=kβ或β=0时取等号.

(3)三角形式中当P 1,P 2,O 三点共线且P 1,P 2在原点O 两旁时取等号.

3.掌握二维柯西不等式的常用变式

(1)

a 2+

b 2·

c 2+

d 2≥|ac +bd |. (2)

a 2+

b 2·

c 2+

d 2≥|ac |+|bd |. (3) a 2+b 2·c 2+d 2≥ac +bd .

(4)(a +b )(c +d )≥(ac +bd )2.

4.基本不等式与二维柯西不等式的对比

(1)基本不等式是两个正数之间形成的不等关系.二维柯西不等式是四个实数之间形成的不等关系,从这个意义上讲,二维柯西不等式是比基本不等式高一级的不等式.

(2)基本不等式具有放缩功能,利用它可以比较大小,证明不等式,当和(或积)为定值时,可求积(或和)的最值,同样二维形式的柯西不等式也有这些功能,利用二维形式的柯西不等式求某些特殊函数的最值非常有效.

二 一般形式的柯西不等式

1.三维形式的柯西不等式

设a 1,a 2,a 3,b 1,b 2,b 3是实数,则(a 21+a 22+a 23)(b 21+b 22+b 23)≥(a 1b 1+a 2b 2

+a 3b 3)2,当且仅当b i =0(i =1,2,3)或存在一个数k ,使得a i =kb i (i =1,2,3)时,等号成立.

2.一般形式的柯西不等式

设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存

在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.

注意:

1.对柯西不等式一般形式的说明:

一般形式的柯西不等式是二维形式 、三维形式、四维形式的柯西不等式的归纳与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.运用时的关键是构造出符合柯西不等式的结构形式.

2.关于柯西不等式的证明:

对于函数f (x )=(a 1x -b 1)2+(a 2x -b 2)2 +…+(a n x -b n )2,显然f (x )≥0时x ∈R 恒成立,

即f (x )=(a 21+a 22+…+a 2n )x 2-2(a 1b 1+a 2b 2+…+a n b n )x +(b 21+b 22+…+

b 2n )≥0对x ∈R 恒成立,

∴Δ= 4(a 1b 1+a 2b 2+…+a n b n )2-4(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≤0,

除以4得(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥ (a 1b 1+a 2b 2+…+a n b n )2.

3.一般形式柯西不等式成立的条件:

由柯西不等式的证明过程可知Δ=0?f (x )min =0?a 1x -b 1=a 2x -b 2=…=

a n x -

b n =0?b 1=b 2=…=b n =0,或a 1b 1=a 2b 2=…=a n b n

. 4.柯西不等式的几种常见变形:

(1)设a 21+a 22+…+a 2n =b 21+b 22+…+b 2n =1,则-1≤a 1b 1+a 2b 2+…+a n b n ≤

1;

(2)设a i ∈R(i =1,2,3,…,n ),则a 1+a 2+…+a n n ≤ a 21+a 22+…+a 2n n

; (3)设a i ∈R ,b i >0(i =1,2,3,…,n ),则a 21b 1+a 22b 2+…+a 2n b n

≥(a 1+a 2+…+a n )2b 1+b 2+…+b n ; (4)设a i b i >0(i =1,2,3,…,n ),则a 1b 1+a 2b 2+…+a n b n ≥(a 1+a 2+…+a n )2a 1b 1+a 2b 2+…+a n b n

. 三 排序不等式

1.乱序和、反序和、顺序和

设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1c 1+a 2c 2+a 3c 3+…+a n c n 为乱序和,a 1b n +a 2b n -1+a 3b n -2+…+a n b 1为反序和,a 1b 1+a 2b 2+a 3b 3+…+a n b n 为顺序和.

2.排序不等式(又称排序原理)

设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 是b 1,b 2,…,b n 的任一排列,那么a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2

+…+a n b n,

当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和.

3.排序原理的简记

反序和≤乱序和≤顺序和.

第四讲用数学归纳法证明不等式

一数学归纳法

1.数学归纳法的定义

一般地,当要证明一个命题对于不小于某正整数n0的所有正整数n都成立时,可以用以下两个步骤:

(1)证明当n=n0时命题成立.

(2)假设当n=k(k∈N+且k≥n0)时命题成立,证明当n=k+1时命题也成立.

在完成了这两个步骤后,就可以断定命题对于不小于n0的所有正整数都成立,这种证明方法称为数学归纳法.

2.数学归纳法的适用范围

适用于证明一个与无限多个正整数有关的命题.

3.数学归纳法的步骤

(1)(归纳奠基)验证当n=n0(n0为命题成立的起始自然数)时命题成立;

(2)(归纳递推)假设当n=k(k∈N+,且k≥n0)时命题成立,推导n=k+1时命题也成立.

(3)结论:由(1)(2)可知,命题对一切n≥n0的自然数都成立.

注意:用数学归纳法证明,关键在于两个步骤要做到“递推基础不可少,归纳假设要用到,结论写明莫忘掉”,因此必须注意以下三点:

(1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n0,这个n0就是我们要证明的命题对象的最小自然数,这个自然数并不一定就是“1”,因此“找准起点,奠基要稳”是正确运用数学归纳法要注意的第一个问题.

(2)递推是关键.数学归纳法的实质在于递推,所以从“k”到“k+1”的过程,必须把归纳假设“n=k”时命题成立作为条件来导出“n=k+1”时命题成立,在推导过程中,要把归纳假设用上一次或几次,没有用上归纳假设的证明不是数学归纳法.

(3)正确寻求递推关系.数学归纳法的第二步递推是至关重要的,那么如何寻找递推关系呢?①在第一步验证时,不妨多计算几项,并正确写出来,这样对发现递推关系是有帮助的;②探求数列的通项公式时,要善于观察式子或命题的变化规律,观察n处在哪个位置;③在书写f(k+1)时,一定要把包含f(k)的式子写出来,尤其是f(k)中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.

二用数学归纳法证明不等式举例

1.数学归纳法证明不等式

(1)用数学归纳法证明一个与正整数有关的不等式的步骤.

①证明:当n取第一个值n0时结论成立;

,且k≥n0)时结论成立,证明当n=k+1时结论也成

②假设当n=k(k∈N

立.

由①②可知命题对从n0开始的所有正整数n都成立.

(2)用数学归纳法证明不等式的重点.

用数学归纳法证明不等式的重点在第二步(同时也是难点所在),即假设

f (k )>

g (k )成立,证明f (k +1)>g (k +1)成立.

2.贝努利不等式

(1)定义:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx .

(2)作用:在数学研究中经常用贝努利不等式把二项式的乘方(1+x )n 缩小为简单的1+nx 的形式,这在数值估计和放缩法证明不等式中有重要应用.例如:

当x 是实数,且x >-1,x ≠0时,由贝努利不等式不难得到不等式? ??

??1-x 1+x n >1-nx 1+x

对一切不小于2的正整数n 成立. (3)贝努利不等式的一般形式.

(1)当α是实数,并且满足α>1或α<0时,有(1+x )α≥1+αx (x >-1);

(2)当α是实数,并且满足0<α<1时,有(1+x )α≤1+αx (x >-1).

3.归纳—猜想—证明的思想方法

数学归纳法作为一种重要的证明方法,常常体现在“归纳—猜想—证明”这一基本思想方法中.一方面可用数学归纳法证明已有的与自然数有关的结论;更重要的是,要用不完全归纳法去发现某些结论、规律并用数学归纳法证明其正确性,形成“观察—归纳—猜想—证明”的思想方法.

1.关于用数学归纳法证明不等式的四点注意

(1)在从n =k 到n =k +1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征.

(2)瞄准当n =k +1时的递推目标,从中分离出n =k 时的相应式子,借助不等式性质用上归纳假设.

(3)明确用上归纳假设后要证明的不等式应是怎样的,然后通过运用放缩法、分析法、比较法、综合法等方法进行证明.

(4)有些不等式先用分析法转化为另一个较为简单的不等式然后再用数学归纳法证明.

2.关于贝努利不等式

(1)(1+x )n >1+nx 成立的两个条件:①n ∈N +且n ≥2;②x 的取值范围是x >

-1且x ≠0.

于是有命题:当n ∈N +且n ≥2时不等式(1+x )n >1+nx 对一切x ∈(-1,

0)∪(0,+∞)恒成立.

(2)常用特例:①当x >-1且x ≠0时,(1+x )2>1+2x ;

②当x >-1且x ≠0时,(1+x )3>1+3x .

3.重要结论

(1)当n ≥5时,n 2<2n .

(2)当n ∈N +时,|sin n θ|≤n |sin θ|.

高中数学必修和选修知识点归纳总结

高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用

人教版高中高二文科数学选修1-2测试题

高二数学(文)选修1-2测试题(60分钟) 满分:100分 考试时间:2018年3月 姓名: 班级: 得分: 附:1.22 (),()()()() n ad bc K n a b c d a b a c b c b d -==+++++++ 一、 单项选择题(每题4分,共40分。每题只有一个选项正确,将答案填在下表中) 1、下列说法不正确的是( ) A .程序图通常有一个“起点”,一个“终点” B .程序框图是流程图的一种 C .结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成 D .流程图与结构图是解决同一个问题的两种不同的方法 2. 给出下列关系:其中具有相关关系的是( ) ①考试号与考生考试成绩; ②勤能补拙; ③水稻产量与气候; ④正方形的边长与正方形的面积。 A .①②③ B .①③④ C .②③ D .①③ 3、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中的白色地面砖有( ). A .4n -2块 B .4n +2块 C .3n +3块 D .3n -3块 4、如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有( ) A .1个 B .2个 C .3个 D .4个 5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 A.假设三内角都不大于60度; B. 假设三内角都大于60度; C. 假设三内角至多有一个大于60度; D. 假设三内角至多有两个大于60度。 6、在复平面内,复数 103i i +的共轭复数应对应点的坐标为( ) A . (1,3) B .(1,-3) C .(-1,3) D .(3 ,-1) 7、已知两个分类变量X 和Y ,由他们的观测数据计算得到K 2的 观测值范围是3.841 D .101?A ≥ 二、填空题:(每小题4分,共16分) 11、对于一组数据的两个线性模型,其R 2分别为0.85和0.25,若从 中选取一个拟合效果好的函数模型,应选 (选填“前者” 或“后者”) 12、2006 )11( i i -+=___________ 13、若三角形内切圆半径为 r ,三边长为a,b,c 则三角形的面积 12 S r a b c = ++();利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,;则四面体的体积V= 14、 把“函数y=2x+5的图像是一条直线”改写成三段论形式: 三、解答题:(共44分) 15.证明题(每小题6分共12分): (1 > ?∑∑∑ ∑ n n i i i i i=1 i=1 n n 2 22i i i=1i=1(x -x)(y -y) x -nxy b == , (x -x)x -nx y

高中数学必修五知识点详细解答附答案

姓名____________ 20XX 年____月_____日 第___次课 正、余弦定理 一。知识回顾:在初中我们知道:(1)在三角形中,大边对大角、大角对大边的边角关系; (2)在直角三角形中,sinA= a c ,sinB= b c ?c=sin a A ,c=sin b B ? sin a A =sin b B ,又Q sinC=1?sin a A =sin b B =sin c C 二。学习提纲: <一>.正弦定理: (1)概念:在一个三角形中,各边与它所对应角的正弦比相等,即: sin a A =sin b B =sin c C (2)证明: j r C ①几何证明法:(略,同学们自己证明) ②向量证明: 证明:(如图)当?ABC 为锐角三角形时, A B 过A 作单位向量j r ⊥AB u u u r ,则j r 与AB u u u r 的夹角为2π,j r 与BC uuu r 的夹角为2π-B ,j r 与CA u u u r 的夹角为2π +A ; 设AB=a,BC=c,AC=b. Q AB u u u r +BC uuu r +CA u u u r =0r ,∴j r g (AB u u u r +BC uuu r +CA u u u r )=j r g 0r ∴j r g AB u u u r +j r g BC uuu r +j r g CA u u u r =0 ∴|j r |g |AB u u u r |g cos 2π+|j r |g |BC uuu r |g cos(2π-B )+|j r |g |CA u u u r |g cos 2 π +A )=0 ∴asinB=bsinA,即:sin a A =sin b B 同理可得:sin b B =sin c C ,故:sin a A =sin b B =sin c C 当?ABC 为钝角三角形或直角三角形时,同样可证明得到:sin a A =sin b B =sin c C (3)正弦定理的变形: ①asinB=bsinA; csinB=bsinC; asinC=csinA; ②a :b:c=sinA:sinB:sinC ③ sin a A =sin b B =sin c C =2R (R 为?ABC 外接圆的半径) ?a=2RsinA; b=2RsinB; c=2RsinC ? sinA=2a R sinB=2b R sinC=2c R (二)余弦定理: (1)概念:三角形中任何一边的平方等于其他两边的平方的和减去这两边与他们的夹角的余弦的积的两倍,即: 2 a =2 b +2 c -2bccosA; 2 b =2 a +2 c -2accosB; 2 c =2 a +2 b -2abcosC 变形:2 sin A=2 sin B+2 sin C-2sinBsinCcosA 2 sin B=2 sin A+2 sin C-2sinAsinCcosB 2 sin C=2 sin A+2 sin B-2sinAsinBcosC 求角:cosA=2222bc b c a +- , cosB=2222c a c b a +-, cosC=222b 2a c ab +- 变形:cosA=222sin sin sin 2sin sin A B C A B +-,cosB=222sin sin sin 2sin sin A C B A C +-,cosC=222sin sin sin 2sin sin A B C A B +- (2)勾股定理:2 c =2a +2b 推广:A 为锐角→222a b c <+;A 为直角→222a b c =+;A 为钝角→222 a b c >+ (3)三角形的面积公式: ①ABC S ?=12ah ②ABC S ?=12absinC=12bcsinA=1 2 acsinB ③ABC S ?(p=12(a+b+c) ④ABC S ?=4abc R (4)对于任意的三角形,都有:sinA>0

高中数学选修4-4知识点清单

高中数学选修4-4 坐标系与参数方程知识点总结 第一讲 一平面直角坐标系 1.平面直角坐标系 (1)数轴:规定了原点,正方向和单位长度的直线叫数轴.数轴上的点与实数之间可以建立一一对应关系. (2)平面直角坐标系: ①定义:在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系; ②数轴的正方向:两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向; ③坐标轴水平的数轴叫做x轴或横坐标轴,竖直的数轴叫做y轴或纵坐标轴,x轴或y 轴统称为坐标轴; ④坐标原点:它们的公共原点称为直角坐标系的原点; ⑤对应关系:平面直角坐标系上的点与有序实数对(x,y)之间可以建立一一对应关系. (3)距离公式与中点坐标公式:设平面直角坐标系中,点P1(x1,y1),P2(x2,y2),线段P1P2的中点为P 2.

设点P(x,y)是平面直角坐标系中的任意一点,在变换φ 点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.二极坐标系 (1)定义:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标系的四个要素:①极点;②极轴;③长度单位;④角度单位及它的方向. (3)图示 2.极坐标 (1)极坐标的定义:设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为θ.有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ). (2)极坐标系中的点与它的极坐标的对应关系:在极坐标系中,极点O的极坐标是(0,θ),(θ∈R),若点M的极坐标是M(ρ,θ),则点M的极坐标也可写成M(ρ,θ+2kπ),(k∈Z). 若规定ρ>0,0≤θ<2π,则除极点外极坐标系内的点与有序数对(ρ,θ)之间才是一一对应关系. 3.极坐标与直角坐标的互化公式 如图所示,把直角坐标系的原点作为极点,x轴的正半轴作为极轴,且长度单位相同,设任意一点M的直角坐标与极坐标分别为(x,y),(ρ,θ). (1)极坐标化直角坐标 =ρcosθ, =ρsinθW. (2)直角坐标化极坐标 2=x2+y2, θ=y x(x≠0). 三简单曲线的极坐标方程 1.曲线的极坐标方程 一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 2.圆的极坐标方程 (1)特殊情形如下表:

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高中数学选修-5知识点(最全版)

高中数学选修4-5知识点 1.不等式的基本性质 1.实数大小的比较 (1)数轴上的点与实数之间具有一一对应关系. (2)设a 、b 是两个实数,它们在数轴上所对应的点分别是A 、B .当点A 在点B 的左边时,a b . (3)两个实数的大小与这两个实数差的符号的关系(不等式的意义) ???a >b ?a -b >0 a = b ?a -b =0a ,<,≥,≤共5个. (2)相等关系和不等关系 任意给定两个实数,它们之间要么相等,要么不相等.现实生活中的两个量从严格意义上说相等是特殊的、相对的,不等是普遍的、绝对的,因此绝大多数的量都是以不等关系存在的. (3)不等式的定义:用不等号连接起来的式子叫做不等式. (4)不等关系的表示:用不等式或不等式组表示不等关系. 3.不等式的基本性质 (1)对称性:a >b ?b b ,b >c ?a >c ; (3)可加性:a >b ,c ∈R ?a +c >b +c ; (4)加法法则:a >b ,c >d ?a +c >b +d ; (5)可乘性:a >b ,c >0?ac >bc ;a >b ,c <0?ac b >0,c >d >0?ac >bd ; (7)乘方法则:a >b >0,n ∈N 且n ≥2?a n >b n ; (8)开方法则:a >b >0,n ∈N 且n ≥2?n a >n b . (9)倒数法则,即a >b >0?1a <1b . 2.基本不等式 1.重要不等式 定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式 (1)定理2:如果a ,b >0,那么a b +≥ a +b 2≥ab),当且仅当a =b 时,等号成立. (2)定理2的应用:对两个正实数x ,y , ①如果它们的和S 是定值,则当且仅当x =y 时,它们的积P 取得最大值,

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

高中数学选修4系列1-4-5知识点总结(全套)

1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系的扩充与复数 选修2—3:计数原理、随机变量及其分布列,统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。

高中数学必修5知识点总结(精品)

必修5知识点总结 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径,则有 2sin sin sin a b c R C ===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =;③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) ⑤对于已知两边和其中一边所对的角的题型要注意解的情况。(一解、两解、无解三中情况) 如:在三角形ABC 中,已知a 、b 、A (A 为锐角)求B 。具体的做法是:数形结合思想 画出图:法一:把a 扰着C 点旋转,看所得轨迹以AD 有无交点: 当无交点则B 无解、 当有一个交点则B 有一解、 当有两个交点则B 有两个解。 法二:是算出CD=bsinA,看a 的情况: 当ab 时,B 有一解 注:当A 为钝角或是直角时以此类推既可。 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B , 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设a 、b 、c 是C ?AB 的角A 、B 、 C 的对边,则:①若222a b c +=,则90C = ; ②若2 2 2 a b c +>,则90C < ;③若222a b c +<,则90C > . 正余弦定理的综合应用:如图所示:隔河看两目标A 、B,

高中数学选修1 2知识点总结

知识点总结 1-2知识点总结选修统计案例第一章

.线性回归方程1 ①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系?③线性回归方程:(最小二乘法) ay?bx?n??ynxxy??ii?1?i?b?其中,n2??2nxx?i?1?i? bx?a?y??. 注意:线性回归直线经过定点)y(x,n?)?yx)(y(x?ii.相关系数(判定两个变量线性相关性):21i??r nn??22)y?x)?y((x ii1?i1i?负相关; <0时,变量注: ⑴>0时,变量正相关;y,xyx,rr接近,两个变量的线性相关性越强;② ⑵①越接近于1||r||r时,两个变量之间几乎不存在线性相关关系。0于条件概率3.ABAB发生的概对于任何两个事件和发生的条件下,,在已知BAAAPBPB)|, ) 其公式为|(. 率称为发生时发生的条件概率记为(ABP)(=AP)( 4相互独立事件 AB PABPAPB) ,则,如果_((())(1)一般地,对于两个事件=,AB 相互独立.、称 AAAnPAAA PAPA)(…(2)如果_,),…,=相互独立,则有)(…(n2111 22PA). (n----BBAABAAB也相互独立.(3)如果与,与相互独立,则,与,

:5.独立性检验(分类变量关系)列联表(1)2×2为两个变量,每一个变量设BA,变变量都可以取两个值,;?A,A:AA112量;?BB:B,B112通过观察得到右表所示数据: 列联表.×2并将形如此表的表格称为2 (2)独立性检验B,×2列联表中的数据判断两个变量A根据2 列联表的独立性检验.是否独立的问题叫2×2 的计算公式统计量χ 2(3)2bc n ad)-(2=χ

(文科)高中数学选修 重要知识点

第一部分 简单逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. p q p q ∧ p q ∨ p ? 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 7、⑴全称量词——“所有的”、“任意一个”等,用“”表示; 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示; 特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二部分 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 22 10y x a b a b +=>> 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A

人教版高中数学必修五知识点总结

必修5 第一章 解三角形 一、正弦定理 1.定理 2.sin sin sin a b c R A B C === 其中a ,b ,c 为一个三角形的三边,A ,B ,C 为其对角,R 为外接圆半径. 变式:a =2R sin A ,b =2R sin B ,c =2R sin C 二、余弦定理 1.定理 a 2= b 2+ c 2-2bc cos A 、b 2=a 2+c 2-2ac cos B 、c 2=a 2+b 2-2ab cos C 变形:222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222 cos 2a b c C ab +-= 2.可解决的问题 ①已知三边,解三角形; ②已知两边及其夹角,解三角形; ③已知两边及一边的对角,求第三边.

三、三角形面积公式 (1)111 222 a b c S ah bh ch ?===. 其中h a ,h b ,h c 为a ,b ,c 三边对应的高. (3)如果一个数列已给出前几项,并给出后面任一项与前面的项之间关系式,这种给出数列的方法叫做递推法,其中的关系式称为递推公式. (4)一个重要公式:对任何数列,总有 111, (2). n n n a S a S S n -??? ??==-≥ 注:数列是特殊的函数,要注意数列与函数问题之间的相互转化. 二、等差数列 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做数列的公差. (2)递推公式:a n +1=a n +d . (3)通项公式:a n =a 1+(n -1)d . (4)求和公式:11()(1).22 n n n a a n n S na d +-==+ (5)性质:

高中数学知识点总结选修

第一章计数原理 1.1分类加法计数与分步乘法计数 分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。分类要做到“不重不漏”。 分步乘法计数原理:完成一件事需要两个步骤。做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。分步要做到“步骤完整”。 n元集合A={a1,a2?,a n}的不同子集有2n 个。 1.2排列与组合 1.2.1排列 一般地,从n个不同元素中取出m(m≤n)

个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。 从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号表示。 排列数公式: n 个元素的全排列数 规定:0!=1 1.2.2 组合 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取

出m个元素的一个组合(combination)。 从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素 中取出m个元素的组合数,用符号或 表示。 组合数公式: ∴ 规定: 组合数的性质: (“构建组合意义”——“殊途同归”) (杨辉三角) *

1.3 二项式定理 1.3.1 二项式定理(binomial theorem) *注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。 (n∈N *) 其中各项的系数 (k ∈{0,1,2,? ,n})叫做二项式系数(binomial coefficient); 式中的叫做二项展开式的通项,用T k+1 表示通项展开式的第k+1项:

高中数学必修5知识点总结(史上最全版) 完整

解三角形 一.三角形中的基本关系: (1)sin()sin ,A B C += cos()cos ,A B C +=- tan()tan ,A B C +=- (2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++=== (3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理: 2sin sin sin a b c R C ===A B .R 为C ?AB 的外接圆的半径) 正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 两类正弦定理解三角形的问题: ①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解))

三.余弦定理: 222 2cos a b c bc =+-A 222 2cos b a c ac =+-B 222 2cos c a b ab C =+-. 注意:经常与完全平方公式与均值不等式联系 推论: 222 cos 2b c a bc +-A = 222 cos 2a c b ac +-B = 2 2 2 cos 2a b c C ab +-= . ①若2 22 a b c +=,则90 C =o ; ②若2 2 2 a b c +>,则90 C o .

高中数学选修2-2知识点总结(精华版)

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是 x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做 ) (x f y =在 x 处的导数,记作 ) (0'x f 或 |'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的 斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =() *n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-?

高中数学文科选修1-1知识点总结

第一章:命题与逻辑结构 知识点: 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的逆否命题为“若q ?,则p ?”. ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ?∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示. 含有存在量词的命题称为特称命题. 特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ?∈M ,()p x ”. 10、全称命题p :x ?∈M ,()p x ,它的否定p ?:x ?∈M ,()p x ?.全称命题的否定 是特称命题. 考点:1、充要条件的判定 2、命题之间的关系

相关文档
最新文档