高中数学必修5知识点总结(史上最全版) 完整

合集下载

高中数学必修5知识点总结

高中数学必修5知识点总结

高中数学必修5知识点总结解三角形:正弦定理:对于任意三角形ABC,边长a、b、c分别对应角A、B、C,R为三角形ABC的外接圆半径,则有 a/sinA = b/sinB =c/sinC = 2R。

这是解三角形的基本工具,可用于求解三角形的边长或角度。

余弦定理:对于任意三角形ABC,边长a、b、c分别对应角A、B、C,则有c² = a² + b² - 2ab*cosC,以及类似的公式对于其他两边和对应角度。

余弦定理主要用于已知两边和夹角求第三边,或者已知三边求角度。

三角形的形状判定:通过正弦定理和余弦定理,可以判断三角形的形状。

例如,如果a² + b² = c²,则三角形ABC是直角三角形;如果sinA = sinB = sinC,则三角形ABC是等边三角形。

数列:数列的概念和性质:数列是一种特殊的函数,它的定义域是正整数集或其有限子集。

数列的通项公式、前n项和公式等是数列的基本性质。

等差数列和等比数列:这是两种特殊的数列,它们分别具有等差和等比的性质。

等差数列的通项公式为an = a1 + (n-1)d,前n项和公式为Sn = n/2 * (a1 + an);等比数列的通项公式为an = a1 * q^(n-1),前n项和公式为Sn = a1 * (1 - q^n) / (1 - q)(q ≠ 1)。

数列的极限和收敛性:当n趋于无穷大时,如果数列的项趋于一个常数,则称这个常数为数列的极限,称数列收敛。

否则,称数列发散。

不等式:不等式的概念和性质:不等式是数学中比较基础的概念,它表示两个数之间的大小关系。

不等式的性质包括加法性质、乘法性质、传递性质等。

不等式的解法:不等式的解法主要包括移项、合并同类项、去括号等基本运算,以及利用不等式的性质进行变形和推导。

不等式的应用:不等式在实际生活中有广泛的应用,例如优化问题、最值问题、范围问题等。

以上是高中数学必修5的主要知识点总结。

高中数学必修五知识点总结

高中数学必修五知识点总结

高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。

2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。

3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。

4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。

二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。

2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。

3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。

4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。

三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。

2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。

3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。

四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。

2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。

3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。

五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。

数学必修五知识点总结

数学必修五知识点总结

数学必修五知识点总结一、函数的概念与性质1. 函数的定义- 函数的概念- 函数的表示方法:解析式、图象、表格- 函数的域与值域2. 函数的运算- 函数的四则运算- 复合函数- 反函数3. 函数的性质- 单调性- 奇偶性- 周期性- 极限与连续性二、三角函数1. 角的概念- 任意角- 弧度制与角度制的转换2. 三角函数的定义- 正弦、余弦、正切函数- 三角函数的图像与性质3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理与余弦定理- 三角形的面积公式三、数列与数学归纳法1. 数列的概念- 数列的定义- 有穷数列与无穷数列2. 等差数列与等比数列- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式3. 数学归纳法- 数学归纳法的原理- 证明方法与步骤四、解析几何1. 平面直角坐标系- 坐标系的定义- 点的坐标与距离公式2. 直线与圆的方程- 直线的斜率与方程- 圆的方程3. 圆锥曲线- 椭圆、双曲线、抛物线的方程与性质五、概率与统计1. 随机事件与概率- 事件的概率定义- 条件概率与独立事件2. 随机变量及其分布- 离散型随机变量与连续型随机变量- 概率分布与期望值3. 统计量与抽样分布- 样本均值、方差与标准差- 抽样分布的概念4. 参数估计- 点估计与区间估计- 置信区间的计算请将以上内容复制到Word文档中,并根据需要进行编辑和格式化。

您可以添加具体的公式、图像、例题和解析来丰富文档内容。

记得在编辑时使用清晰和专业的语言风格,并确保文档的结构逻辑清晰且连贯。

(完整版)人教版高二数学必修5知识点归纳(最完整版).doc

(完整版)人教版高二数学必修5知识点归纳(最完整版).doc

现在的努力就是为了实现小时候吹下的牛逼——标必修五数学知识点归纳资料第一章 解三角形1、三角形的性质:①.A+B+C=,sin( A B) sin C , cos( A B) cosCA B2C sinA2 B cosC222②.在 ABC 中 , a b >c , a b < c ; A > Bsin A > sin B ,A > BcosA < cosB, a >bA >B ③.若 ABC 为锐角,则 A B > ,B+C >,A+C > ;222a 2b 2 >c 2 , b 2 c 2 > a 2 , a 2 + c 2 > b 22、正弦定理与余弦定理:①.正弦定理:abc 2R (2R 为 ABC 外接圆的直径 )sin Bsin Asin Ca 2R sin A 、b 2Rsin B 、c 2R sin C(边化角)sin Aa 、 sin Bb 、 sin Cc(角化边)2R2R 2R面积公式: S ABC1ab sin C1bc sin A1ac sin B222②. 余 弦 定 理 : a 2b 2c 2 2bc cos A、 b 2 a 2 c 22ac cos B 、c 2a 2b 22ab cosCcos A b 2 c 2 a 2 、 cos B a 2 c 2 b 2 、 cosCa 2b 2c 2 (角化边)2bc 2ac2ab补充:两角和与差的正弦、余弦和正切公式:⑴ coscos cos sin sin ;⑵ coscos cos sin sin ; ⑶ sinsin cos cos sin ;⑷ sinsin coscos sin ;⑸ tantan tan( tantantan1 tan tan);1 tantan现在的努力就是为了实现小时候吹下的牛逼——标⑹ tantan tan( tantantan1 tan tan).1 tan tan二倍角的正弦、余弦和正切公式:⑴ sin 2 2sin cos . 1 sin 2sin 2cos 22 sincos(sincos )2⑵ cos2cos 2sin 22cos 2 1 1 2sin 2升幂公式 1 cos2 cos 2 ,1 cos2 sin 222降幂公式 cos2cos2 1, sin 21 cos2 .223、常见的解题方法:(边化角或者角化边)第二章 数列1、数列的定义及数列的通项公式:①.a n( ) ,数列是定义域为 N 的函数 f (n) ,当 n 依次取 , , 时的一列函f n1 2 数值②. a n 的求法:i. 归纳法ii.a nS 1 , n 10 ,则 a n 不分段;若 S 00 ,则 a n 分段S n S n若 S 01, n 2iii. 若 a n 1pa nq ,则可设 a n 1 m p(a n m) 解得 m,得等比数列 a n miv.若 S nf (a n ) ,先求 a 1 ,再构造方程组 : S n f (a n )得到关于 a n 1 和 a n 的递推S n 1 f (a n 1 )关系式例如:2 a n 1S n 2a n 12a n 1 2a nS n 先求 a 1 ,再构造方程组:(下减上) a n 1Sn 12a n 1 12. 等差数列:① 定义: a n 1 a n = d (常数) , 证明数列是等差数列的重要工具。

高中数学必修5的知识点

高中数学必修5的知识点

2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:
(1)将数据列成表格; ( 2)列出约束条件与目标函数; ( 3)根据求最值方法:①画:画可行域;②移:移
与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;
( 4)验证。
两类主要的目标函数的几何意义 :
高中数学必修 5 知识点总结
(一)解三角形:
1、正弦定理:在
C 中, a 、 b 、 c 分别为角 、 、 C 的对边,,则有 a
b
c 2R
sin sin sin C
( R为
C 的外接圆的半径 )
2、正弦定理的变形公式:① a 2Rsin , b 2Rsin , c 2Rsin C ;
② sin
a , sin
ap aq Sn , S3n
S2 n 成等差数列
则 am an a p aq 3. Sn , S2n Sn , S3n
S2n 成等比
数列
(三)不等式
1、 a b 0 a b ; a b 0 a b ; a b 0 a b .
2、不等式的性质: ① a b b a ; ② a b, b c a c ; ③ a b a c b c ;
5、均值定理的应用:设 x 、 y 都为正数,则有
s2 ⑴若 x y s (和为定值) ,则当 x y 时,积 xy 取得最大值 .
4
⑵若 xy p (积为定值) ,则当 x y 时,和 x y 取得最小值 2 p .
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。
高考试题来源: /zyk/gkst/
赠送以下资料
英语万能作文 (模板型) Along with the advance of the society more and more problems are brought to our

数学必修五知识点总结

数学必修五知识点总结

数学必修五知识点总结1、数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N某或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列1、等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+14、等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。

本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。

二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。

2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。

3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。

三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。

2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。

四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。

2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。

五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。

2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。

3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。

4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。

5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。

6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。

7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。

六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。

2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。

3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。

数学必修五知识点归纳

数学必修五知识点归纳

数学必修五知识点归纳【数学必修五知识点归纳(上)】一、函数与导数1. 函数及其图像的性质:定义域、值域、单调性、奇偶性、周期性、反函数2. 函数的运算:和、差、积、商、复合函数3. 导数的概念及其意义:导数的定义、导数的几何意义、导数的物理意义4. 导数的计算:导数的四则运算、链式法则、反函数求导法、隐函数求导法、参数方程求导法5. 应用:切线方程、法线方程、最值问题、凹凸性判别、用导数研究函数的单调性、函数的极值及最值,曲率与几何和物理的应用二、不等式与极限1. 不等式性质:同增性、奇偶性、加减倍数不等式、取等条件2. 一元二次不等式及其应用3. 数列基本概念:项、项数、通项公式、公式和、等差数列、等比数列、等比数列的和4. 数列极限的概念及性质:极限的定义、唯一性、极限的四则运算、夹逼准则、单调有界原理5. 无穷数列的极限:等比数列的通项公式、通项求和公式、有限项和公式、无限项和公式【数学必修五知识点归纳(下)】三、三角函数1. 正弦、余弦函数及其图像、对称轴、周期、定义域、值域、单调性等2. 正切、余切函数及其图像、对称轴、周期、定义域、值域、单调性等3. 三角函数的基本性质:同角关系、和角公式、差角公式、倍角公式、半角公式、余角公式4. 三角函数的图像变换:平移、反转、伸缩5. 应用:三角函数在平面直角坐标系中的应用、导数的运算、解最值、求交点、航空与航海问题中的运用四、解析几何1. 点、向量、向量的基本运算、数量积、向量积及其基本性质2. 直线的表示方法、两条非平行直线的位置关系、直线的方程一般式、点斜式、两点式、截距式及其相互转化3. 平面的表示方法、平面的解析方程、点与平面的位置关系、直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系4. 球面的基本性质、球面的方程及其应用、空间直角坐标系、空间直角坐标系下的图形方程五、概率统计与选修课内容1. 随机事件与概率、概率的基本性质、几何概型、条件概率、独立性、全概率公式、贝叶斯公式、重复试验及其概率2. 随机变量的概念、离散随机变量及其概率分布、连续随机变量及其概率密度函数、随机变量的数学期望、方差及标准差等基本概念3. 统计学基础:样本、总体、样本均值、标准差、Z分数、t分数与t分布、样本容量与抽样分布、样本相关系数4. 必修三选修一:容斥原理、锦标赛问题、排队论、模拟算法、线性规划、动态规划、离散数学常用算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形一.三角形中的基本关系: (1)sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-(2)sin cos ,cos sin ,tan cot 222222A B C A B C A B C +++===(3)a>b 则A>B则sinA>sinB,反之也成立 二.正弦定理:2sin sin sin a b cR C===A B .R 为C ∆AB 的外接圆的半径)正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2aR A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C ++===A +B +A B .两类正弦定理解三角形的问题:①已知两角和任意一边求其他的两边及一角. ②已知两边和其中一边的对角,求其他边角. (对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、无解))三.余弦定理:2222cos a b c bc =+-A2222cos b a c ac =+-B 2222cos c a b ab C =+-.注意:经常与完全平方公式与均值不等式联系 推论:222cos 2b c a bc+-A =222cos 2a c bac+-B =222cos 2a b cC ab+-=. ①若222ab c+=,则90C=o; ②若222a b c +>,则90C<o;③若222a b c +<,则90C >o.余弦定理主要解决的问题:(1).已知两边和夹角求其余的量。

(2).已知三边求其余的量。

注意:解三角形与判定三角形形状时,实现边角转化,统一成边的形式或角的形式四、三角形面积公式:等差数列一.定义:如果一个数列从第2项起,每一项与 它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. 二.符号表示:1n n a a d +-=(n>=1)三.判断数列是不是等差数列有以下四种方法: (1)),2(1为常数d n d a a n n ≥=-- (可用来证明)(2)211-++=n n n a a a (2≥n )(可用来证明) (3)b kn a n +=(k n ,为常数)(4)12n n s a a a =+++L 是一个关于n 的2次式且无常数项 四.等差中项a ,A ,b 成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.五.通项公式:()11n a a n d =+-(是一个关于的一次式,一次项系数是公差)通项公式的推广:()n m a a n m d =+-; n ma a d n m -=-.六.等差数列的前n 项和的公式:①()12n n n a a S +=(注意利用性质特别是下标为奇数) ②()112n n n S na d -=+(是一个关于n 的2次式且无常数项,二次项系数是公差的一半) 七.等差数列性质: (1)若m n p q +=+则m n p q a a a a +=+;(2)若2n p q =+则2n p q a a a =+.(3) (4)且公差为原公差的成等差数列,}S {n n(5)①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶). 成等差数列Λn n n S S 232n n S ,S ,S --(6)若等差数列{ an} {bn}的前n 项和为,n nS T 则八.等差数列前n 项和的最值(1)利用二次函数的思想:n da n d S n )2(212-+=(2)找到通项的正负分界线若 则 有最大值,当n=k 时取到的 最大值k 满足若 则 有最大值,当n=k 时取到的最大值k 满足⎩⎨⎧<>01d a n s ⎩⎨⎧≤≥+001k k a a ⎩⎨⎧><001d a ⎩⎨⎧≥≤+01k k a a n s 1212--=n n n n T S b a等比数列一.定义、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.二.符号表示:1n na q a +=注:①等比数列中不会出现值为0的项;②奇数项同号,偶数项同号 (3)合比性质的运用三.数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n (可用来证明)②112-+⋅=n n na a a (2≥n )(可用来证明)③nncqa =(q c ,为非零常数).(指数式)④从前n 项和的形式(只用来判断)四.等比中项:在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.(注:由2G ab =不能得出a ,G ,b 成等比,由a ,G ,b ⇒2G ab=)五.等比数列的通项公式:11n n a a q-=.通项公式的变形: (1) n mn m a a q-=;(2)n mn m a qa -=.(注意合比性质的利用)六.前n 项和的公式:①()()()11111111n n n na q S a q a a qq qq =⎧⎪=-⎨-=≠⎪--⎩. ②12n ns a a a =+++L =A+B*q n ,则A+B=0七.等比数列性质: (1)若m n p q +=+,则m n p q a a a a ⋅=⋅;(2)若2n p q =+ 则2np q a a a =⋅.(3)通项公式的求法: (1).归纳猜想(2).对任意的数列{na }的前n 项和nS 与通项na 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n检验第②式满不满足第①式,满足的话写一个式子,不满足写分段的形式 (3).利用递推公式求通项公式 1、定义法:符合等差等比的定义 2、迭加法:3、迭乘法:4、构造法:5.如果上式后面加的是指数时可用同除指数式6.如果是分式时可用取倒数 (4)同时有和与通项有两种方向 一种:成等比数列Λn n n S S 232n n S ,S ,S --1()n n a a f n +-=1()n na f n a +=1n n a qa p+=+当n 大于等于2,再写一式,两式相减,可以消去前n 项和 二种:消去通项数列求和的常用方法1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。

2.裂项相消法:适用于⎭⎬⎫⎩⎨⎧+1n naa c其中{ na }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。

(分式且分母能分解成一次式的乘积)3.错位相减法:适用于{}nn b a 其中{ na }是等差数列,{}n b 是各项不为0的等比数列。

4.倒序相加法: 类似于等差数列前n 项和公式的推导方法.5.常用结论(1): 1+2+3+...+n = 2)1(+n n (2) 1+3+5+...+(2n-1) =2n(3)2333)1(2121⎥⎦⎤⎢⎣⎡+=+++n n n Λ(4))12)(1(613212222++=++++n n n n Λ; (5)111)1(1+-=+n n n n不等式一、不等式的主要性质:(1)对称性: a b b a <⇔>(2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;(4)同向不等式加法法则:d b c a d c b a +>+⇒>>,(5)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,(6)同向不等式乘法法则:bd ac d c b a >⇒>>>>0,0(7)乘方法则:)1*(0>∈>⇒>>n N n b ab a n n 且 (8)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (9)倒数法则:ba ab b a 110,<⇒>> 二、一元二次不等式02>++c bx ax和)0(02≠<++a c bx ax 及其解法二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a c bx ax y --=++= ))((212x x x x a c bx ax y --=++= c bx ax y ++=2 一元二次方程 ()的根002>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅(1) 二次项系数(正负零)(2) 根一种:能分解因式,主要是比较根的大小 。

二种:能分解因式就从判别式进进行行讨论(3)画图写解集四、线性规划1.在平面直角坐标系中,直线0x y C A +B +=同侧的点代入后符号相同,异侧的点相反2.由A 的符号来确定:先把x 的系数A 化为正后,看不等号方向:①若是“>”号,则0x y C A +B +>所表示的区域为直线:0x y C A +B +=的右边部分。

②若是“<”号,则0x y C A +B +<所表示的区域为直线 0x y C A +B +=的左边部分。

注意:)0(0<>++或C By Ax 不包括边界;)0(0≤≥++C By Ax 包括边界3.求解线性线性规划问题的步骤(1)画出可行域(注意实虚)(2)将目标函数化为直线的斜截式(3)看前的系数的正负.若为正时则上大下小,若为负则上小下大4.非线性问题:(1)看到比式想斜率(2)看到平方之和想距离四、均值不等式1、设a 、b 是两个正数,则2a b +称为正数a 、b 的算术平均数(等差中项)称为正数a 、b 的几何平均数.(等比中项)2、基本不等式(也称均值不等式):如果a,b 是正数,那么).""(22号时取当且仅当即==≥+≥+b a ab b a ab b a 注意:使用均值不等式的条件:一正、二定、三相等3、平均不等式:(a 、b 为正数),即b a ab b a b a 1122222+≥≥+≥+(当a = b 时取等)4、常用的基本不等式:①()222,a b ab a b R +≥∈;②()22,2a b ab a b R +≤∈; ③()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;④()222,22a b a b a b R ++⎛⎫≥∈ ⎪⎝⎭. 5、极值定理:设x 、y 都为正数,则有: ⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.五、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 ; 代数意义:⎪⎩⎪⎨⎧<-=>=0a 0 00 ||a a a a a 2、则不等式:如果,0>a(1) a x a x ax -<><=>>或|| ;(2)a x a x a x -≤≥<=>≥或||(3)a x a a x <<-<=><|| ; (4)a x a a x ≤≤-<=>≤||注意:上式中的x 可换成f(x)3、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号、其他常见不等式形式总结:式不等式的解法:移项通分,化分为整0)()(0)()(>⇔>x g x f x g x f ;⎩⎨⎧≠≥⇔≥0)(0)()(0)()(x g x g x f x g x f ②指数不等式:)()()1()()(x g x f a a a x g x f >⇔>>)()()10()()(x g x f a a a x g x f <⇔<<>③对数不等式:⎪⎩⎪⎨⎧>>>⇔>>)()(0)(0)()1)((log )(log x g x f x g x f a x g x f a a⎪⎩⎪⎨⎧<>>⇔<<>)()(0)(0)()10)((log )(log x g x f x g x f a x g x f a a ④高次不等式:数轴穿线法口诀: “从右向左,自上而下;奇穿偶不穿,遇偶转个弯;小于取下边,大于取上边”。

相关文档
最新文档